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1 Introduction

Undoubtedly, data security has been an issue of increasing importance in communica-
tions as the Internet and personal communication systems are being made accessible
world-wide. Recently, increasing efforts have been made to use chaotic systems for en-
hancing some features of communication systems. In particular, chaotic synchronization
to design secure communication systems. Chaos and cryptography have some common
features, the most prominent being extremely sensitivity to parameter changes. Chaos
has already been used to design cryptography systems [9]. One common feature of most
existing chaos-based secure communication schemes is that a chaotic signal is used for
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transmitting the message. More precisely, by a proper modulation of the chaotic trans-
mitter dynamics, the private message is hidden and sent to the chaotic receiver dynamics.
At the receiving side, a synchronous chaotic system is built to synchronize with the trans-
mitter to recover the original message. Different approaches for chaos synchronization
have been proposed to synchronize identical systems, see e.g., [3 – 5,7,8,11,13,16,17,19,24–
26, 30] and references inside. Although synchronization of identical chaotic systems is use-
ful to transmit private information, some researchers have proposed different methods to
synchronize nonidentical chaotic systems, which has been suggested to several potential
applications. Adaptive control has been used to synchronize nonidentical chaotic systems
in [2, 31]. Feedback linearization and adaptive feedback linearization has been proposed
in [28]. A method to get an equivalence between two nonidentical chaotic attractors was
presented in [12]. Synchronization of nonidentical chaotic systems is useful in many cases
of practical interest, and significantly when it occurs in living systems, like synchroniza-
tion of the activity of groups of neurons located in different brain areas [20, 27] or, in the
synchronization between heart and respiratory rates [15] or, the coupling of biological
oscillators [29]. However, the synchronization of nonidentical chaotic systems is a much
more difficult problem. The aim of this paper is to illustrate an effective method for
synchronizing chaotic systems in continuous-time. This objective is achieved by using
results from nonlinear control theory; in particular, we use the model-matching problem
[6, 10]. This synchronization method presents the following advantages:

• It is systematic.
• It is useful to synchronize identical and nonidentical chaotic systems.
• It uses unidirectional coupling, that let the coupling signal requires less transmis-

sion channels, because of the model/master does not need to know any informa-
tion from the plant/slave.

Moreover, with this methodology chaotic synchronization has applications on trans-
mission of private information schemes. To this purpose, the attention is at first focused
on Rössler–Rössler and Lorenz–Rössler synchronization. Finally, we give an application
to private/secure communication for transmission and recovering of audio and binary
messages (i.e., analog and digital signals) using different chaotic communication schemes.

The paper is organized as follows: Section 2 states the problem formulation. Briefly,
the model-matching problem from nonlinear control theory is reviewed in Section 3. In
Section 4, we apply this approach to synchronize identical and nonidentical chaotic sys-
tems based on Lorenz and Rössler systems. In Section 5, we propose three private/secure
communication schemes based on chaotic synchronization for transmission and recovering
of audio and binary messages. Finally, Section 6 summarizes the concluding remarks.

2 Problem Statement

Consider a dynamical system described by state equations of the form

P :






dx

dt
= f(x) + g(x)u,

y = h(x),

(1)

where the state x(t) ∈ Rn, the input u(t) ∈ R, and the output y(t) ∈ R, being f(x) and
g(x) smooth and analytical functions. In addition, consider another nonlinear system
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described by

M :

{
dxM

dt
= fM (xM ) + gM (xM )uM ,

yM = hM (xM ),
(2)

where the state xM (t) ∈ RnM , the input uM (t) ∈ R, and the output yM (t) ∈ R, being
fM (xM ) and gM (xM ) smooth and analytical functions too. We assume that x◦ is an
equilibrium point of system (1), i.e., f(x◦) = 0. Similarly, x◦

M is an equilibrium point of
system (2). Assume that dynamical systems (1) and (2) under certain conditions have
chaotic behavior. Then, the chaotic system (1) synchronizes with the chaotic system (2),
if

lim
t→∞

|y(t) − yM (t)| = 0, (3)

no matter which initial conditions x(0) and xM (0) have, and for suitable input signals
u(t) and uM (t).

Note that, we are only considering output synchronization problem between chaotic
systems (1) and (2). Moreover, no matter if the chaotic systems (1) and (2) are iden-
tical or nonidentical. In the next section, we will describe how to satisfy the output
synchronization condition (3) from the perspective of the model-matching problem.

On the other hand, in the context of secure/private communications based on the
chaotic synchronization between systems (1) and (2); in the chaotic transmitter system,
the private message is hidden/encrypted and sent to the chaotic receiver system via
public channel. Finally, the original message is retrieved/decrypted at the receiver end.
For this purpose, we will use the chaotic masking and chaotic switching techniques.

3 Model-Matching Problem

Now, consider the dynamical systems (1) and (2) like a plant P and model M , respec-
tively. We want to design a feedback control law u(t) for the plant P which, irrespectively
of the initial states of P and M , makes the output y(t) asymptotically converges to the
output yM (t) produced by M under an arbitrary input uM (t). This problem is the
so-called asymptotic model-matching problem from nonlinear control theory. It is also
well-known that different approaches to solve the model-matching problem have been
proposed in the literature, see e.g. [6, 10]. In this work, we adopt the following solution:
the model-matching problem is reduced into a problem of decoupling the output of a
suitable auxiliary system from the input uM (t) to the model M . To this purpose the
auxiliary system is defined as follows

E :






dxE

dt
= fE(xE) + ĝ(xE)u + ĝM (xE)uM ,

yE = hE(xE),

(4)

with state xE = (x, xM )T ∈ Rn+nM , inputs u(t) and uM (t), and

fE(xE) =

(
f(x)

fM (xM )

)
, ĝ(xE) =

(
g(x)

0

)
,

ĝM (xE) =

(
0

gM (xM )

)
, hE(xE) = h(x) − hM (xM ).
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That corresponds to a system having as “output” the difference between the output of
P and the output of M . We consider uM (t) as a “disturbance” acting on the auxiliary
system (4), and we want to decouple it from the output yE(t). We are allowed to use
disturbance “measurements” because uM (t) is the input of M , and thus we may use a
control law of the form

u = α(xE) + γ(xE)uM + β(xE)v, (5)

with v(t) an additional input signal to obtain asymptotic stability in the closed-loop
auxiliary system, which corresponds to the convergence rate of output synchronization.

The control objective of the model-matching problem is contained in the following
definition.

Definition 1 (Model-matching problem) Given the plant P and the model M around
their respective equilibrium points x◦ and x◦

M , and a point x◦

E . The model-matching
problem consists in finding a feedback control law u(t) ∈ R for auxiliary system E
equation (4) such that, the output yE(t) of system E (feedback by u(t) of the form (5)),
yE(t) → 0 as t → ∞.

In the sequel, the model matching problem will be treated in terms of a relative degree
associated with the output y(t) of P and the output yM (t) of M .

Definition 2 (Relative degree [10]) The single-input single-output nonlinear system
(1), is said to have relative degree r at a point x◦ if

(1) LgL
k
fh(x) = 0 for all x in a neighborhood of x◦ and for all k < r − 1;

(2) LgL
r−1
f h(x◦) 6= 0.

In Definition 2, Lfh(x) =
∂h(x)

∂x
f(x) and LgL

k
fh(x) =

∂(Lk
fh(x))

∂x
g(x). A similar

definition can be given for the relative degree of model (2), rM near x◦

M . Suppose that
the output y(t) of P and the output yM (t) of M have a finite relative degree r and rM ,
respectively. It is well-known that the model matching problem is locally solvable if, and
only if [10],

r ≤ rM . (6)

Now, we show the auxiliary system E equation (4) feedback by (5) in terms of P and
M in a different coordinate frame. In this work, we restrict our results on output synchro-
nization to fully linearizable plants P , i.e., for r = n. From definition of relative degrees
r and rM ; h(x), . . . , Ln−1

f h(x), and hM (xM ), . . . , Ln−1
fM

hM (xM ) are sets of independent

functions from P and M , and can be chosen as new coordinates ξi(x) = Li−1
f h(x) and

ξMi(xM ) = Li−1
fM

hM (xM ) with i = 1, . . . , n, around x◦ and x◦

M , respectively. Let us

now consider the auxiliary system E and the new coordinates [10]

(ζ(xE), xM ) = φ(xE) = φ(x, xM ),

where ζ(xE) = (ζ1(xE), . . . , ζn(xE))T, and ζi(xE) = Li−1
fE

hE(xE) = ξi(x) − ξMi(xM ),
i = 1, . . . , n.

Thus, the closed-loop auxiliary system E, using the following feedback control law

u =
1

LgL
n−1
f h(x)

(v − Ln
f h(x) + Ln

fM
hM (xM ) + LgM

Ln−1
fM

hM (xM )uM ), (7)
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takes the form
dζi

dt
= ζi+1, i = 1, . . . , n − 1,

dζn

dt
= v = −c0 ζ1 − . . . − cn−1 ζn,

dxM

dt
= fM (xM ) + gM (xM )uM ,

yE = ζ1.

(8)

From (8) we see that the output y(t) of the closed-loop system P differs from the
output yM (t) of the model M by a signal yE(t) obeying the linear differential equation

y
(n)
E + cn−1y

(n−1)
E + . . . + c1y

(1)
E + c0yE = 0,

where c0, . . . , cn−1 are constant real coefficients, thus allowing us to make the output
y(t) converges to yM (t). We can also identify two subsystems in the closed-loop system
(8), namely:

1. The subsystem described by

dxM

dt
= fM (xM ) + gM (xM )uM ,

which represents the dynamics of M , and
2. The subsystem described by

dζ

dt
= A∗ζ

with

A∗ =





0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−c0 −c1 −c2 · · · −cn−1




,

which represents the dynamics of yE(t).

The model M is stable by assumption, and if we choose the control law u(t) so that
the eigenvalues of matrix A∗ have real part negative, then the closed-loop system will be
exponentially stable, and the output synchronization condition (3) holds.

Remark 1 Since yE(t) = ζ1(t) = ξ1(x) − ξM1
(xM ) → 0 as t → ∞, notice that

ξ(x) and ξM (xM ) are diffeomorphisms. Then, if P and M are identical chaotic systems,
ξ(x) → ξM (xM ) and, if the mappings have the same structure and tends to be equals,
then the arguments too, i.e., x(t) → xM (t). Moreover, from the control law (7) we can
see that, u(t) → uM (t), with the purpose to decouple the input uM (t) from the auxiliary
system E. Thus, for identical chaotic systems, complete synchronization is achieved, i.e.,
the condition

lim
t→∞

‖x(t) − xM (t)‖ = 0,

holds. However, for nonidentical chaotic systems only output synchronization is guaran-
tied, i.e., the condition (3) holds.
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Figure 4.1. Block diagram of chaotic synchronization through model-matching

approach.

4 Chaotic Synchronization through Model-Matching Approach

In this section, we use the previous material to show how synchronization of two chaotic
systems can be achieved. We consider two cases of study using identical and nonidentical
chaotic systems. Figure 4.1 shows the block diagram of chaotic synchronization through
model-matching approach. Controller C has like input signals to x(t), xM (t) and v(t). It
has like output signal to u(t) that is the input signal of the plant P . And e(t) = yE(t) =
y(t)−yM (t) is the output synchronization error between the output signals of P and M .

Rössler and Lorenz systems are used to illustrate chaotic synchronization, although
the proposed approach can be applied to any chaotic system that holds (6) and for all
plant P with a strong relative degree.

4.1 Rössler–Rössler synchronization

Consider the Rössler system given by [21]

dx1

dt
= −(x2 + x3),

dx2

dt
= x1 + α̂x2,

dx3

dt
= α̂ + x3(x1 − µ).

(9)

With the parameter values α̂ = 0.2 and µ = 7, the Rössler system (9) exhibits chaotic
dynamics. We can write it in the form (1) by means of adding a control law u(t) into
some equation, we choose rewrite it as follows

P :










dx1

dt

dx2

dt

dx3

dt




=




−(x2 + x3)

x1 + α̂x2

α̂ + x3(x1 − µ)



 +




0

0

1



u,

y = x2.

(10)
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The system (10) will be considered the plant P. The relative degree of P is r = 3.
Let us propose a reference model M for P , using another Rössler system writing it in
the form (2) and taking the same relative degree rM = 3. Notice that, if both systems
have the same relative degree, r = rM , that is, if (6) holds, then, there exists solution to
model-matching problem, and so we can achieve synchronization between systems (10)
and (11), i.e., the condition (3) is satisfied. So, we have

M :










dxM1

dt

dxM2

dt

dxM3

dt




=




−(xM2

+ xM3
)

xM1
+ α̂xM2

α̂ + xM3
(xM1

− µ)



 +




0

0

1



 uM ,

yM = xM2
.

(11)

We consider the same parameter values in P and M . To solve the model-matching
problem, and with this, the original output synchronization problem, we have to take
an auxiliary system (4) and thus we reduce the problem described before to disturbance
decoupling problem. Then we take uM (t) like a “ disturbance” signal and we seek the
control law (7) for system E that is given by

u = −v + (α̂2 − 1)(x1 − xM1
) + α̂(α̂2 − 2)(x2 − xM2

) + α̂(x3 − xM3
)

+ x3(x1 − µ) − xM3
(xM1

− µ) + uM .
(12)

The auxiliary system (4), after a change of coordinates ζ1 = x2 − xM2
, ζ2 = x1 −

xM1
+ α̂(x2 − xM2

), and ζ3 = α̂(x1 − xM1
) + (α̂2 − 1)(x2 − xM2

)− (x3 − xM3
), takes the

form (8), with v = −Cζ, or,

v = −c0 ζ1 − c1 ζ2 − c2 ζ3.

Choosing the poles in −3, we have C = ( 27 27 9 ). We can consider that the
synchronization between both outputs is given too when uM (t) = 0, but in this case
we used uM (t) = 0.3 sin(t). And thus we keep the model with chaotic dynamics but in
the presence of a disturbance signal. Some numerical simulations were done. The initial
conditions x(0) and xM (0) were (1, 1, 1) and (2,−2, 2), respectively. Figure 4.2 shows the
output of the plant, y(t) = x2(t) following the output of the model yM (t) = xM2

(t) (top
of figure), the error signal e(t) = yE(t) = y(t)−yM (t) (middle of figure), and the typical
phase plot confirming synchronization between the outputs y(t) and yM (t) (bottom of
figure). The control law u(t) takes action after 20 seconds.

Here, we obtain complete synchronization, i.e., all states of P and M synchronize,
because we considered identical chaotic systems.

4.2 Lorenz–Rössler synchronization

Now consider the coupling between two nonidentical chaotic systems as plant and model;
for example, a Lorenz system [14] like a model with relative degree rM = 3 (for all xM
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Figure 4.2. Rössler–Rössler synchronization. Solid line yM = xM2
, dashed line

y = x2 (top of figure). Error signal e = yE = y − yM (middle of figure). Output

synchronization between xM2
and x2 (bottom of figure). Control u takes action

when t = 20 sec.

such that xM1
6= 0) as follows:

M :










dxM1

dt

dxM2

dt

dxM3

dt




=




σ(xM2

− xM1
)

r̂xM1
− xM2

− xM1
xM3

xM1
xM2

− bxM3



 +




0

0

1



 uM ,

yM = xM1
.

(13)

Let us to consider again the same plant described by equation (10). Thus, the control
law u(t) for output synchronization between (10) and (14) is given by

u = −{v − [(α̂2 − 1)x1 − α̂(α̂2 − 2)x2 −−α̂x3 − α̂ − x3(x1 − µ)]

+ σ[σ(σ + r̂ − xM3
)(xM2

− xM1
) − (σ + 1)(r̂xM1

− xM2
− xM1

xM3
)

− xM1
(xM1

xM2
− bxM3

)] − σxM1
uM}.

(14)

The results are illustrated by means of some numerical simulations. The initial condi-
tions for plant and model are x(0) = (3, 1, 1) and xM (0) = (1, 1.5, 0.1), respectively. The
parameter values are σ = 10, r̂ = 28, b = 8/3, α̂ = 0.2 and µ = 7.

Figure 4.3 shows how the output of the plant y(t) = x2(t) follows yM (t) = xM1
(t) for

Lorenz–Rössler output synchronization: a) output of Lorenz/model yM (t) = xM1
(t),
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Figure 4.3. Lorenz–Rössler output synchronization: a) yM = xM1
, b) y = x2

following yM = xM1
after 25 seconds when control law takes action, c) x2 versus

xM1
, and d) error signal e = yE = y − yM .

b) output of Rössler/plant y(t) = x2(t) following the output yM (t) = xM1
(t) of

Lorenz/model, c) x2(t) versus xM1
(t), and d) error signal e(t) = yE(t) = y(t) − yM (t).

Remark 2 In this case, unlike the previous one, synchronization between the outputs
of both systems was only obtained. No other state of the plant synchronizes with those
of the model.

5 Private/Secure Communication Systems

This section does not pretend to propose secure chaos-based communication systems. It
tries to illustrate the flexibility of the model-matching approach for chaotic communica-
tion. Nevertheless, certain properties of security are found.

5.1 Chaotic communication using two channels

In order to illustrate the proposed approach to transmit private information signals, a
chaotic communication scheme using two transmission channels is now designed. It is
based on the output synchronization between identical and nonidentical chaotic systems.
To this purpose, consider that u(t) equation (5) can be separated in the following form

u = α(x, xM ) + β(x, xM )v + γ(x, xM )uM

= γ2(x){[α1(xM ) + β1(xM )v1(xM ) + γ1(xM )uM ] + [α2(x) + β2(x)v2(x)]}

= γ2(x)[u1(xM ) + u2(x)],
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Figure 5.1. Analog communication system using two transmission channels.

with

u1(xM ) = v1(xM ) + Ln
fM

hM (xM ) + LgM
Ln−1

fM
hM (xM )uM ,

u2(x) = v2(x) − Ln
f h(x),

γ2(x) =
1

LgL
n−1
f h(x)

,

v1(xM ) = c0ξM1
(xM ) + · · · + cn−1ξMn(xM ),

v2(x) = −c0ξ1(x) − · · · − cn−1ξn(x),

like we can see from (7).
This let us to propose the following coupling scheme shown in Figure 5.1, in which

u1(xM , uM ) is the output from a new control block C1, u2(x) is the output of C2 and
u(x, xM , uM ) or, simply u(t) is the output of controller C. This scheme has two transmis-
sion channels, one channel is used to send u1(xM , uM ) for output synchronization only,
with no connection to the private message. The other channel is used to transmit the hid-
den message m(t) through s(t) = yM (t)−m(t). This message is recovered by comparison
between the output y(t) and the signal s(t) at the receiver end, i.e., m∗(t) = y(t)− s(t).
Some numerical simulations that illustrate the transmission of private message using this
scheme were done.

Figure 5.2 shows an audio signal like the private message (top of figure), the trans-
mitted chaotic signal including the hidden message (middle of figure), and the recovered
message using Rössler–Rössler output synchronization (bottom of figure). The transmis-
sion of the message is through the output of the model xM2

(t).
A remarkable feature is that, in the proposed scheme, the signal that is sent in order

to obtain output synchronization is a nonlinear function of the state xM (t), but is not
the own state. So, with this scheme we obtain high privacy because it is possible to hide
a message through the coupling signal us(t) = u1(t)+m(t), and with this to increase the
security of cryptography, because now s(t) = yM (t) does not contain any message. So,
a third person cannot recover the hidden message with the reported methods in [22, 23].
Figure 5.3 shows a binary signal obtained from a picture like the private message (top
of figure), the transmitted chaotic coupling signal including the hidden binary message
(middle of figure), and the recovered message at the receiver end (bottom of figure),
using Lorenz–Rössler output synchronization.
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Figure 5.2. Transmission and recovering of an audio message using Rössler–

Rössler output synchronization.

Figure 5.3. Transmission and recovering of a binary message obtained from a

digital image using Lorenz–Rössler output synchronization.
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Figure 5.4. Analog communication system using a single transmission channel.

5.2 Chaotic communication using a single channel

Another scheme of transmission that can be used in the case of the synchronization of
only identical chaotic systems by model-matching approach is using a single transmission
channel to obtain synchronization and to transmit private information signals. This
scheme is shown in Figure 5.4. The message m(t) is injected into the transmitter through
the input signal uM (t). The output signal of the transmitter is a nonlinear function
u1(xM , uM ) whereas it is possible to take like output of receiver to u(t), which, when
synchronization is achieved between the outputs of P and M , then u(t) → uM (t) = m(t),
and thus we obtain the recovered message m∗(t). This scheme is only useful for identical
systems because in this case all states of P synchronizes with those of M and u(t) has
not to compensate any asynchronous states, so that u(t) → uM (t). Figure 5.5 samples
numerically the transmission through a single transmission channel using Rössler–Rössler
synchronization, in which, control u(t) takes action after 20 seconds and the private
message is sent after 40 seconds, when complete synchronization has been achieved.

Figure 5.5. Transmission of private information using a single channel.

Since, this scheme does not send any single chaotic signal, but it sends the nonlinear
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Figure 5.6. Digital communication system of private information by chaotic

switching.

function u1(t), any chaotic attractor can be reconstructed in order to extract the hidden
message by means of the reported existing methods in [22, 23].

5.3 Chaotic switching

In the following scheme that is shown in Figure 5.6, we have proposed p like the parame-
ters of P . The same way, p and p′ have been proposed like the parameters for controller
C1. During both P and C1 are on p then there exists synchronization or, at least, output
synchronization and during C1 is on p′ there exists an error different from zero. This
scheme commonly is known like chaotic switching or chaos shift keying.

Figure 5.7 shows how varying a parameter in the model (transmitter) it is possible
to send binary information and to recover it in the plant (receiver) using nonidentical
systems: Lorenz–Rössler output synchronization. To make this possible consider that
e2(t) → 0 when m = 0 and e2(t) 9 0 when m = 1, interpreting e(t) = 0 like “0”
logical and e(t) 6= 0 like “1” logical. In this example, the parameter r̂ of Lorenz system
(13) is switching in C1 between two values: p = r̂ = 28 when m = 0 and p′ = r̂′ = 29
when m = 1 in accordance with p∗ = r̂+m, with p∗ = (p, p′). The message is recovered
faithfully after a brief iterative signal processing.

Since, this scheme does not switch between two chaotic attractors of identical systems,
but it switches a controller parameter, it is a secure cryptography system, where the
hidden message through the coupling signal cannot be reconstructed by means of the
reported existing methods in literature (see e.g. [18, 23]).

6 Concluding Remarks

In this work we have presented a systematic method to synchronize chaotic systems
in continuous-time. In particular, we used the model-matching problem from the non-
linear control theory (see [1] for the discrete-time context). We have obtained com-

plete synchronization of Rössler/plant and Rössler/model, and output synchronization of
Rössler/plant and Lorenz/model. In addition, we have proposed some communication
schemes based on complete and output synchronization: using two transmission channels,
using a single transmission channel, and using chaotic switching. The advantages over
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Figure 5.7. Transmission of a binary signal by chaotic switching using Lorenz–

Rössler output synchronization: a) original message, b) recovered message at the

receiver by output synchronization error detection, c) absolute magnitude of the

error signal, d) rounding and iterative signal processing, and e) recovered binary

message.

the other cited approaches to synchronize nonidentical chaotic systems are the following:
This approach is systematic, it uses unidirectionally coupled systems, gains for controller
are small and synchronization is obtained after a short transient behavior. Moreover,
this methodology is useful to transmit private information through only one transmis-
sion channel (only for identical systems). In addition, this transmission scheme is secure
because the coupling signal, including the private message, is a nonlinear function of the
state, which is not useful to recover any chaotic attractor and thus it is a difficult if not
impossible task that some third person can recover the private message.

Acknowledgment

This work was supported by the CONACYT, México under Research Grant No. 31874-A.

References

[1] Aguilar, A. and Cruz-Hernández, C. Synchronization of two hyperchaotic Rössler systems:
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