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1 Introduction

In this paper we deal with questions regarding the existence, uniqueness, boundedness,
stability and attractivity of solutions u of the following class of initial-boundary-value
problems:

Lu = f(x, t, u, ux, uxx, ut), 0 < x < 1, 0 < t < T, (1.1)

where L = −ε∂xxt − c2∂xx + ∂tt, f is a continuous function of its arguments, c and ε are
positive constants, and

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1, (1.2)

u(0, t) = h1(t), u(1, t) = h2(t), 0 < t < T, (1.3)
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where T ≤ +∞, h1, h2 ∈ C2([0, T [), u0, u1 ∈ C2([0, 1]) are assigned and fulfill the
consistency condition

h1(0) = u0(0),
dh1(0)

dt
= u1(0),

h2(0) = u0(1),
dh2(0)

dt
= u1(1).

(1.4)

Solutions u of such problems describe a number of physically remarkable continuous
phenomena occurring on a finite space interval. In the operator L the D’Alembertian
−c2∂xx + ∂tt induces wave propagation, −ε∂xxt dissipation. The term on the right-
hand side of (1.1) may contain forcing terms, nonlinear (local) couplings of u to itself,
further dissipative terms. For instance, when f = −b sinu − aut + F (x, t), where a, b
are positive constants, we deal with the perturbed Sine-Gordon equation, which can be
used e.g. to describe the classical Josephson effect with driving force F in the theory
of superconductors [6, 11]. F is a forcing term, −aut is a dissipative one and −b sinu
is a nonlinear coupling. On the other hand it is well known [12] that equation (1.1)
describes the evolution of the displacement u(x, t) of the section of a rod from its rest
position x in a Voigt material when an external force f is applied; in this case c2 = E/ρ,
ε = 1/(ρµ), where ρ is the (constant) linear density of the rod at rest, and E, µ are
respectively the elastic and viscous constants of the rod, which enter the stress-strain
relation σ = Eν + ∂tν/µ, where σ is the stress, ν is the strain. As we shall see in the
sequel, even considering only one of these examples, e.g. the perturbed Sine-Gordon
equation f = −b sinu− aut, it is important to keep room for a more general f because
the latter will naturally appear when asking whether a particular solution u∗ of the
problem is stable or attractive, or when reducing the original problem to one with trivial
boundary conditions.

Several papers [2 – 5, 7 – 9, 13] have already been devoted to the analysis of the op-
erator L and more specifically to the investigation of the boundedness, stability and
attractivity of the solutions of the above problem. Here we improve previous results,
by weakening the assumptions on f , and find some new ones. In Section 2 we improve
the existence and uniqueness Theorem 2.1 proved in [2], in that we require f to satisfy
only locally Lipschitz condition. In Section 3.2 we improve the boundedness and stability
Theorem 3.1 of the same reference, in that we require only a suitable time average of
the quadratic norm of f to be bounded. While doing so we prove two lemmas concern-
ing boundedness and attractivity of the zero solution for a class of first order ordinary
differential equations in one unknown; the second lemma is a generalization of a lemma
due to Hale [10]. In Sections 4 and 5 we respectively improve the exponential asymptotic
stability Theorem 3.3 of [2] and the uniform asymptotic stability Theorem 2 of [5], valid
for some special f , by removing the boundedness assumption on the latter. The trick
we use is to associate to each neighbourhood of the origin with radius σ (the ‘error’) a
Liapunov functional depending on a parameter γ adapted to σ, instead of fixing γ once
and for all.

2 Existence and Uniqueness of the Solution

To discuss the existence and uniqueness of the above problem it is convenient to formulate
it as an equivalent integro-differential equation so as to apply the fixed-point theorem.
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As in [2], we start from the identity

∂ξ(c
2uwξ − c2uξw + εuξwτ − εuwξτ ) + ∂τ (uτw − uwτ − εuξξw)

= fw − u(εwξξτ − c2wξξ + wττ ),
(2.1)

that follows from (1.1) for any smooth function w(ξ, τ), assuming u(ξ, τ) is a smooth
solution of (1.1). We choose w as a function depending also on x, t and fulfilling the
equation Lw = 0, more precisely

w(x, ξ, t− τ) = θ(x − ξ, t− τ) − θ(x + ξ, t− τ), (2.2)

with

θ(x, t) = K(|x|, t) +
∞∑

m=1

[K(|x+ 2m|, t) +K(|x− 2m|, t)] . (2.3)

The function K represents the fundamental solution of the linear equation LK = 0. It
has been determined and studied in [3], and reads

K(|x|, t) =

t∫

0

e−c2τ/ε

√
πετ

dτ

∞∫

0

x2(z + 1)

4ετ
e−x2(z+1)2/4ετ I0

(
c

ε
2|x|

√
z

)
dz, (2.4)

where I0 is the modified Bessel function of order zero. Since θ(−x, t) = θ(x, t) and
θ(x + 2m, t) = θ(x, t), m ∈ N , it is sufficient to restrict our attention to the domain
0 ≤ x < 2, and note that θ is continuous together with its partial derivatives and satisfies
the equation Lθ = 0. Moreover, from the analysis of K developed in [3], we can deduce
that θ is a positive function that has properties similar to ones of the analogous function
θ used for the heat operator, see [1].

As for the data we shall assume that:

f(x, t, n, p, q, r) is defined and continuous on the set (2.5)

{(x, t, n, p, q, r) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T, −∞ < n, p, q, r <∞, T > 0},

it locally satisfies a Lipschitz condition, namely for any bounded (2.6)

set Ω ⊂ [0, T ]× R
¯

4 there exists a constant µΩ such that for any

(t, n1, p1, q1, r1), (t, n2, p2, q2, r2) ∈ Ω and x ∈ [0, 1]

|f(x, t, n1, p1, q1, r1) − f(x, t, n2, p2, q2, r2)|
≤ µΩ{|n1 − n2| + |p1 − p2| + |q1 − q2| + |r1 − r2|},

u0, u
′
0, u

′′

0 , u1 continuous on 0 ≤ x ≤ 1, (2.7)

hi,
dhi

dt
, i = 1, 2, continuous on 0 ≤ t ≤ T, (2.8)

h1(0) = u0(0), h2(0) = u0(1),
dh1(0)

dt
= u1(0),

dh2(0)

dt
= u1(1). (2.9)
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Given a solution u of (1.1) – (1.3), by integrating (2.1) on {(ξ, τ) : 0 < ξ < 1, δ < τ <
t− δ}, δ > 0, and letting δ → 0, we find that it satisfies the following integral equation

u(x, t) =

1∫

0

wt(x, ξ, t)u0(ξ) dξ +

1∫

0

w(x, ξ, t)[u1(ξ) − εu′′0(ξ)] dξ (2.10)

− 2

t∫

0

h1(τ)(c
2 + ε∂t)θx(x, t− τ) dτ + 2

t∫

0

h2(τ)(c
2 + ε∂t)θx(1 − x, t− τ) dτ

+

t∫

0

dτ

1∫

0

w(x, ξ, t− τ)f(ξ, τ, u(ξ, τ), uξ(ξ, τ), uτ (ξ, τ), uξξ(ξ, τ)) dξ.

Conversely, one can immediately verify that under the assumptions (2.5) – (2.9) a
solution u of (2.10) satisfies (1.1) using the fact that Lθ = 0 and Lw = 0. We refer
the reader to [2] for the slightly longer proof that the initial conditions (1.2) and the
boundary conditions are satisfied.

If f = f(x, t), (2.10) gives the unique explicit solution of (1.1) – (1.3). On the contrary,
if f depends on u (2.10) is an integro-differential equation. We shall now discuss the
existence and uniqueness of its solutions.

For any c, d ∈ [0, T ], c ≤ d, we shall denote

B[c,d] := {u(x, t) : u, ux, ut, uxx ∈ C([0, 1] × [c, d])}.

For any a ∈ [0, T ], v ∈ B[0,a] and t ∈ [a, T ] we define a mapping of B[a,T ] into itself by

Tvu(x, t) := ωv(x, t) +

t∫

a

dτ

1∫

0

w(x, ξ, t− τ)f(ξ, τ, u(ξ, τ), uξ(ξ, τ), uτ (ξ, τ), uξξ(ξ, τ)) dξ

(2.11)
where

ωv(x, t) =

1∫

0

wt(x, ξ, t)u0(ξ) dξ +

1∫

0

w(x, ξ, t)[u1(ξ) − εu
′′

0 (ξ)] dξ

− 2

t∫

0

h1(τ)(c
2 + ε∂t)θx(x, t− τ) dτ + 2

t∫

0

h2(τ)(c
2 + ε∂t)θx(1 − x, t− τ) dτ

+

a∫

0

dτ

1∫

0

w(x, ξ, t− τ)f(ξ, τ, v(ξ, τ), vξ(ξ, τ), vτ (ξ, τ), vξξ(ξ, τ)) dξ.

We fix a ρ > 0 and for any t ∈ [a, T ] we consider the domain

Sv,t := {u ∈ B[a,T ] : ∀x ∈ [0, 1] |u(x, t) − ωv(x, t)| < ρ, |ux(x, t) − ωvx(x, t)| < ρ,

|uxx(x, t) − ωvxx(x, t)| < ρ, |ut(x, t) − ωvt(x, t)| < ρ}
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and define

M = M(a, T, v, ρ) := sup
τ∈[a,T ]
ξ∈[0,1]

sup
u∈Sv,τ

|f(ξ, τ, u(ξ, τ), uξ(ξ, τ), uτ (ξ, τ), uξξ(ξ, τ))|,

b− a = min

{
T − a,

ρ

M
,
cρ

M
,
ερ

M
,

√
2ρ

M

}
,

Ra,b,v := {u ∈ B[a,b] : ∀ (x, t) ∈ [0, 1]× [a, b] |u(x, t) − ωv(x, t)| ≤ ρ,

|ux(x, t) − ωvx(x, t)| ≤ ρ, |uxx(x, t) − ωvxx(x, t)| ≤ ρ,

|ut(x, t) − ωvt(x, t)| ≤ ρ}.

(2.12)

Note that by its definition M is finite because f is continuous and evaluated on a compact
subset of R6. We denote by µ = µ(a, b, v, ρ) the constant µΩ of (2.6) corresponding to
the choice

Ω = {(t, n, p, q, r) : with t ∈ [a, b], and such that ∃x ∈ [0, 1], ∃u ∈ Ra,b,v

such that n = u(x, t), p = ux(x, t), q = uxx(x, t), r = ut(x, t)},

we choose a positive constant λ

λ = λ(a, b, v, ρ) > max

{
1, µ

(
2 +

1

c
+

1 + 2c2

ε

)}

and we introduce a norm

‖u‖a,b := sup
[0,1]×[a,b]

|e−λtu(x, t)| + sup
[0,1]×[a,b]

|e−λtux(x, t)|

+ sup
[0,1]×[a,b]

|e−λtut(x, t)| + sup
[0,1]×[a,b]

|e−λtuxx(x, t)|.
(2.14)

We now show that Tv is a map of Ra,b,v into itself, more precisely a contraction (w.r.t
the above norm). From (2.11) we get for any (x, t) ∈ [0, 1] × [a, b]

|Tvu(x, t) − ωv(x, t)| ≤M(a, T, v, ρ)

t∫

a

dτ

1∫

0

|w(x, ξ, t − τ)| dξ,

and, because of the inequality [3]

1∫

0

|w(x, ξ, t − τ)| dξ =

1∫

0

|θ(x − ξ, t− τ) − θ(x+ ξ, t− τ)| dξ ≤ t− τ, (2.15)

and the definition of b we find

|Tvu(x, t) − ωv(x, t)| ≤M(a, T, v, ρ)
(b− a)2

2
≤ ρ. (2.16)
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Similarly, one can prove that

|Tvux(x, t) − ωvx(x, t)| ≤ ρ, (2.17)

|Tvuxx(x, t) − ωvxx(x, t)| ≤ ρ, (2.18)

|Tvut(x, t) − ωvt(x, t)| ≤ ρ, (2.19)

making use of the basic properties of K proved in [3], which lead to the following esti-
mates:

1∫

0

|wx(x, ξ, t− τ)| dξ ≤ 1/c,

1∫

0

|wt(x, ξ, t− τ)| dξ ≤ 1,

1∫

0

|wxx(x, ξ, t− τ)| dξ ≤ 1

ǫ
[1 + 2c2(t− τ)].

(2.20)

The first two inequalities were already given in [2], together with

1∫

0

|(∂t − ∂2
x)w(x, ξ, t − τ)| dξ ≤ 1. (2.21)

The third was used but not explicitly written, and easily follows from the latter inequality,
the equation Lθ = 0, and the relation θ(x, 0) = 0. In fact, from Lθ = 0 it immediately
follows that

θt − θxx = ∂t

[
θ +

ǫ

c2
θxx − 1

c2
θt

]
,

and therefore

wt(x, ξ, t− τ)−wxx(x, ξ, t− τ) = ∂t

[
w(x, ξ, t− τ)+

ǫ

c2
wxx(x, ξ, t− τ)− 1

c2
wt(x, ξ, t− τ)

]
.

Integrating over ξ and using (2.21) we find |∂tA(x, t− τ)| ≤ 1, where

A(x, t− τ) :=

1∫

0

[
w(x, ξ, t− τ) +

ǫ

c2
wxx(x, ξ, t− τ) − 1

c2
wt(x, ξ, t− τ)

]
dξ.

As θ(x, 0) = 0, then A(x, 0) = 0. By the comparison principle we therefore find

τ − t ≤ A(x, t− τ) =

1∫

0

w dξ +

1∫

0

ǫ

c2
wxx dξ −

1∫

0

1

c2
wt dξ ≤ t− τ,

implying ∣∣∣∣∣

1∫

0

ǫ

c2
wxx

∣∣∣∣∣ ≤ (t− τ) +

∣∣∣∣∣

1∫

0

w dξ

∣∣∣∣∣+
∣∣∣∣∣

1∫

0

1

c2
wt dξ

∣∣∣∣∣;
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using (2.15) and (2.20)2 to bound the integrals on the right hand-side we find (2.20)3.

From the above results we conclude that Tvu(x, t) ∈ Ra,b,v as claimed.

From (2.11), (2.15)) we get for t ∈ [a, b]

|Tvu1(x, t) − Tvu2(x, t)|e−λt ≤ µ‖u1 − u2‖a,b

t∫

a

e−λ(t−τ) dτ

1∫

0

|w(x, ξ, t − τ)| dξ

≤ µ‖u1 − u2‖a,b

t∫

a

e−λ(t−τ)(t− τ) dτ ≤ µ

λ2
‖u1 − u2‖a,b.

(2.22)

From (2.11), (2.20) one can get analogous results for the partial derivatives ∂x, ∂t, ∂
2
x

of (2.11):

|Tvu1x(x, t) − Tvu2x(x, t)| e−λt ≤ µ

λc
‖u1 − u2‖a,b,

|Tvu1t(x, t) − Tvu2t(x, t)| e−λt ≤ µ

λ
‖u1 − u2‖a,b,

|Tvu1xx(x, t) − Tvu2xx(x, t)| e−λt ≤ µ

λε

(
1 +

2c2

λ

)
‖u1 − u2‖a,b.

(2.23)

Thus, we obtain

‖Tvu1(x, t) − Tvu2(x, t)‖a,b ≤ µ

λ

[
1

λ
+

1

c
+ 1 +

1

ε
+

2c2

ελ

]
‖u1 − u2‖a,b, (2.24)

with µ ≡ µ(a, b, v, ρ), λ ≡ λ(a, b, v, ρ). Under assumption (2.13), inequality (2.24) shows
that Tv is a contraction of Ra,b,v into itself. Thus we are in the conditions to apply
the fixed point theorem, and we find that there exists a unique solution in Ra,b,v of the
problem Tvu = u in the time interval [a, b].

We now apply the above result iteratively. We start by choosing a = 0 = a0, v = 0;
the last integral disappears from (2.12). From the definition of b we determine the

corresponding b = a1 and by the fixed point theorem a unique solution u(1)(x, t) of the

problem (1.1) – (1.4) in the time interval [0, a1]. Next we choose a = a1, v = u(1); from
(2.12) we determine the corresponding b = a2 and by the fixed point theorem a unique
solution of the problem Tu(1)u = u in the time interval [a1, a2]. This is also a smooth

continuation of u(1), therefore we have found a unique solution u(2)(x, t) of the problem
(1.1) – (1.4) in the time interval [0, a2], and so on. We conclude by stating the following

Theorem Under hypotheses (2.5) – (2.9), the quasilinear problem (1.1) – (1.3) has a
unique smooth solution in the time interval [0, a∞], where

a∞ := lim
k→+∞

ak ≤ T.
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3 Eventual Boundedness and Asymptotic Stability

3.1 Preliminaries

By the rescaling t → t/c, ε → cε and of f → c2f we can factor c out of (1.1), so that
it completely disappears from the problem, without loosing generality. In the sequel we
shall assume we have done this. Moreover, without loss of generality we can also consider
h1(t) = h2(t) ≡ 0 in (1.3), as any problem (1.1) – (1.4) is equivalent to another one of
the same kind with trivial boundary conditions and a different f . In fact, setting for
any t ∈ J = [0,∞[

v(x, t) := u(x, t) + p(x, t), p(x, t) := (1 − x)h1(t) + xh2(t)

we immediately find that v(0, t) = v(1, t) ≡ 0, that the initial condition for v, vt are
completely determined and that v fulfills the equation

−εvxxt + vtt − vxx = f̃(x, t, v, vx, vxx, vt),

where

f̃(x, t, v, vx, vxx, vt) := f(x, t, v − p, vx − h2 + h1, vxx, vt − pt) − ptt.

The difference u = ũ−u∗ between a generic solution ũ and a given one u∗ of the problem
(1.1) – (1.4) is also a solution of a new problem of the same kind, which we denote by
problem P , but with h1(t) ≡ h2(t) ≡ 0, namely

−εuxxt + utt − uxx = f(x, t, u, ux, uxx, ut), x ∈]0, 1[, t > t0 ∈ J,

u(0, t) = 0, u(1, t) = 0, t ∈ J,
(3.1)

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x∈]0, 1[, (3.2)

fulfilling the consistency conditions

u0(0) = u1(0) = u0(1) = u1(1) = 0. (3.3)

Here

f(x, t, u, ux, uxx, ut) = f(x, t, u+ u∗, ux + u∗x, uxx + u∗xx, ut + u∗xx)

− f(x, t, u∗, u∗x, u
∗
xx, u

∗
t )

and u0(x) := ũ0(x) − u∗0(x), u1(x) = ũ1(x) − u∗1(x). The two solutions ũ, u∗ are ‘close’
to each other iff u is a ‘small’ solution of the latter problem, and coincide iff u is the zero
solution.

We introduce the distance between the origin O and a nonzero element(
u(·, t), ut(·, t)

)
∈ Γ :=

(
C0([0, 1]) ∩ C2([0, 1])

)
× C0([0, 1]) as the functional d(u, ut),

where for any (ϕ, ψ) ∈ Γ we define

d2(ϕ, ψ) =

1∫

0

(ϕ2 + ϕ2
x + ϕ2

xx + ψ2) dx. (3.4)

The notions of (eventual) boundedness, stability, attractivity, etc. are formulated using
this distance. Imposing the condition that ϕ, ψ vanish in 0, 1 one easily derives that
|ϕ(x)|, |ϕx(x)| ≤ d(ϕ, ψ) for any x; therefore a convergence in the norm d implies also a
uniform pointwise convergence of ϕ,ϕx.
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Definition 3.1 The solutions of (3.1) – (3.3) are eventually uniformly bounded if for
any α > 0 there exist an s(α) ≥ 0 and a β(α) > 0 such that if t0 ≥ s(α), d(u0, u1) ≤ α,
then d(u(t), ut(t)) < β(α) for all t ≥ t0. If s(α) = 0 the solutions of (3.1) are uniformly
bounded.

Definition 3.2 The origin O of Γ is eventually quasi-uniform-asymptotically stable
in the large for the solutions of (3.1) if for any ρ, α > 0 there exist s(α) ≥ 0, and

T̂ (ρ, α) > 0 such that if d(u0, u1) ≤ α, t0 ≥ s(α) then d(u, ut) < ρ for any t ≥ t0 + T̂ .
If s(α) = 0, u(x, t) ≡ 0 is said to be quasi-uniform-asymptotically stable in the large for
the solutions of (3.1).

Suppose now that problem P admits the solution u(x, t) ≡ 0.

Definition 3.3 The solution u(x, t) ≡ 0 is uniform-asymptotical stable in the large
if it is uniformly stable and quasi-uniform-asymptotically stable in the large, and the
solutions of problem P are uniformly bounded.

Definition 3.4 The solution u(x, t) ≡ 0 of the problem P is exponential-asymptoti-
cally stable in the large if for any α > 0 there are two positive constants D(α), C(α)
such that if d(u0, u1) ≤ α, then

d(u(t), ut(t)) ≤ D(α) exp [−C(α)(t− t0)] d(u0, u1), ∀ t ≥ t0. (3.5)

To prove our theorems we shall use the Liapunov direct method. We introduce the
Liapunov functional

V (ϕ, ψ) =
1

2

1∫

0

{(εϕxx − ψ)2 + γψ2 + (1 + γ)ϕ2
x} dx, (3.6)

where γ is an arbitrary positive constant. Using the inequality |2εϕxxψ| ≤ ε(ϕ2
xx + ψ2)

we find

V ≤ 1

2

1∫

0

{ε2ϕ2
xx + ψ2 + εϕ2

xx + εψ2 + γψ2 + (1 + γ)ϕ2
x} dx.

Setting
c22 = max{ε(1 + ε)/2, (1 + ε+ γ)/2}, (3.7)

we thus derive
V (ϕ, ψ) ≤ c22d

2(ϕ, ψ). (3.8)

Moreover, it is known that [13]

ϕ(0) = 0, ϕ(1) = 0 =⇒






1∫
0

ϕ2
x(x) dx ≥ π2

1∫
0

ϕ2(x) dx

1∫
0

ϕ2
xx(x) dx ≥ π2

1∫
0

ϕ2
x(x) dx

(3.9)

(these inequalities can be easily proved by Fourier analysis of ϕ). In view of the bounds
we shall consider below we introduce the notation

ω1 :=
π4

1 + π4
≈ 0.99, ω2 :=

π4

1 + π2 + π4
≈ 0.90, ω3 :=

π2

1 + π2
≈ 0.91. (3.10)
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Using (3.9) and an argument employed in [2], we get

V (ϕ, ψ) ≥ c21d
2(ϕ, ψ). (3.11)

where

c21 = min

{
ε2

8
ω1,

1

2

(
γ − 1

2

)}
, (γ > 1/2). (3.12)

Therefore, from (3.8) and (3.11) we find

V

c22
≤ d2 ≤ V

c21
. (3.13)

On the other hand, choosing γ = 1 in (3.6) and reasoning as it has been done in [2] it
turns out that

dV

dt
=

1∫

0

{
− ε

2
u2

xx − εu2
xt +

ε

2
u2

t −
ε

2
(uxx + f)2 − ε

2
(ut − 2f/ε)2 +Af2

}
dx

≤ −
1∫

0

{
ε

2
ω2(u

2 + u2
x + u2

xx) + ε

(
π2 − 1

2

)
u2

t +Af2

}
dx

≤ −c23d2(u, ut) +

1∫

0

Af2dx

(3.14)

where we have set

A :=
ε

2
+

2

ε
, c23 :=

ω2

2
ε, (3.15)

and we have used (3.9). In the sequel we shall set also p := c23/c
2
2.

3.2 Eventual boundedness and asymptotic stability

We assume that

A

1∫

0

f2 dx ≤ g(t)c21d
2 + g̃1(t, d

2) + g̃2(t, d
2), (3.16)

where f is the function appearing in (3.1), and g(t), g̃i(t, η) (i = 1, 2 and t ∈ J , η > 0)
denote suitable nonnegative continuous functions fulfilling the following conditions:

(1) there exists a constant σ > 0 such that for any t ≥ t0 ≥ 0

t∫

t0

g(τ) dτ − p(t− t0) ≤ σ; (3.17)

(2) there exist constants χ ∈ [0, 1], κ ∈ [0, 1] and q ≥ 0 (with q < p if χ = 1) and
M > 0 such that ∣∣∣∣∣∣∣∣∣

t∫
0

g(τ)dτ

1 + tχ
− q

∣∣∣∣∣∣∣∣∣

<
M

1 + tκ
; (3.18)
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(3) for any η > 0

lim
t→+∞

g̃1(t, η)e
ξ(tχ−tκ) = 0,

∞∫

0

g̃2(τ, η)e
ξ(τχ−τκ) dτ = σ2(η) < +∞,

(3.19)

where ξ is some positive constant if χ > κ, while ξ = 0 if χ ≤ κ.

Without loss of generality we can assume that g̃i(t, η) are non-decreasing in η; if
originally this is not the case, we just need to replace g̃i(t, η) by max

0≤u≤η
g̃i(t, u) to fulfill

this condition.
From (3.14), using (3.4), (3.16), (3.13) we now find

dV (u, ut)

dt
≤ −c3d2(u, ut) + g(t)c21d

2 + g̃1(t, d
2) + g̃2(t, d

2)

≤ −p V + g(t)V + g1(t, V ) + g2(t, V ),

(3.20)

where we have set

gi(t, η) = g̃i

(
t,
η

c21

)
. (3.21)

By the “Comparison Principle” (see e.g. [14]) V is bounded from above

V (t) ≤ y(t), (3.22)

by the solution y(t) of the Cauchy problem

dy

dt
= −p y + g(t)y + g1(t, y) + g2(t, y), y(t0) = y0 ≡ V (t0) ≥ 0. (3.23)

We therefore study the latter, proving first a theorem of eventual uniform boundedness.

Lemma 1 Assume g(t), g̃i(t, η) (i = 1, 2 and t ∈ J , η > 0) are continuous nonnega-
tive functions fulfilling the conditions (3.17) – (3.19). Then ∀ α̃ > 0 there exist s̃(α̃) ≥ 0,

β̃(α̃) > 0 such that if |y0| ≤ α̃, t0 ≥ s̃(α̃), the modulus of the solution y(t; t0, y0) of

(3.23) is bounded by β̃:

|y(t; t0, y0)| < β̃, t ≥ t0 ≥ s̃(α̃); (3.24)

if in particular y0 ∈ [0, α̃], then

0 ≤ y(t; t0, y0) < β̃, t ≥ t0 ≥ s̃(α̃). (3.25)

Proof Problem (3.23) is equivalent to the integral equation

y(t) = y0 e
−p(t−t0)+

t∫
t0

g(τ)dτ

+ e
−pt+

t∫
0

g(τ)dτ
t∫

t0

[g1 (τ, y(τ)) + g2 (τ, y(τ))] e
pτ−

τ∫
0

g(z)dz
dτ.

(3.26)
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Take β̃(α̃) := α̃(eσ +
e2M

m
+ e2M ), where

m =





p

2
if χ < 1

p− q

2
if χ = 1.

(3.27)

Because of (3.17), if |y0| ≤ α̃, for any t ≥ t0 one finds

|y0|e
−p(t−t0)+

t∫
t0

g(τ)dτ

≤ α̃eσ. (3.28)

Moreover, because of (3.18), we obtain

q(1 + tχ) −M
1 + tχ

1 + tκ
<

t∫

0

g(z) dz < q(1 + tχ) +M
1 + tχ

1 + tκ
. (3.29)

Let

ϑ :=






0 if χ ≤ κ,

min

{
1,

ξ

2M

}
if 1 > χ > κ

min

{
1,
p− q

2M
,
ξ

2M

}
if 1 = χ > κ,

tϑ :=






0 if ϑ = 0,
(

1 − ϑ

ϑ

)1/κ

if ϑ > 0;

considering separately the cases χ ≤ κ, χ > κ and recalling the definition of ξ, we find

1 + tχ

1 + tκ
= 1 +

tχ − tκ

1 + tκ
≤ 1 + ϑ(tχ − tκ)

for any t ≥ tϑ. Then from (3.29)

q(1 + tχ) −M [1 + ϑ(tχ − tκ)] <

t∫

0

g(z) dz < q(1 + tχ) +M [1 + ϑ(tχ − tκ)] (3.30)

for any t ≥ tϑ. Consequently, for i = 1, 2 and |y| ≤ β̃

e
−pt+

t∫
0

g(τ)dτ
t∫

t0

gi(τ, y)e
pτ−

τ∫
0

g(z)dz
dτ

< e−pt+q(1+tχ)+M [1+ϑ(tχ−tκ)]

t∫

t0

gi(t, β̃)epτ−q(1+τχ)+M [1+ϑ(τχ−τκ)] dτ

= eqtχ+Mϑ(tχ
−tκ)−pte2M

t∫

t0

gi(t, β̃)epτ−qτχ+Mϑ(τχ
−τκ)dτ,

(3.31)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(1) (2005) 9–38 21

where we have used also the fact that gi(t, η) are non-decreasing functions of η.
Now consider the function

h(τ) := pτ − qτχ −Mϑ(τχ − τκ) (3.32)

and its derivative h′(τ) = p − qχτχ−1 −Mϑ(χτχ−1 − κτκ−1). We now show that, for
any χ ∈ [0, 1],

h′(τ) ≥ h′(t̃) = m if τ ≥ t̃ :=

[
χ(2q + ξ)

p

] 1
1−χ

(3.33)

with the m defined in (3.27) (this implies that for τ ≥ t̃ the function h(τ) is increasing).
In fact, if ϑ > 0, then it is either 0 ≤ κ < χ < 1, implying

h′(τ) > p− (q +Mϑ)χτχ−1 ≥ p

2
= m

for any τ ≥ t̃, or 0 ≤ κ < χ = 1, implying (because of the inequality p− q > 0 and the
definition of ϑ)

h′(τ) = p− q −Mϑ+Mϑκτκ−1 > p− q −Mϑ ≥ p− q

2
= m

for any τ > 0, in particular for τ ≥ t̃. If ϑ = 0, then it is either 0 ≤ χ ≤ κ ≤ 1 with
χ < 1, implying

h′(τ) > p− qχτχ−1 ≥ p

2
= m

for any τ ≥
[
2qχ

p

] 1
1−χ

≡ t̃, or χ = κ = 1, implying also h′(τ) = p− q > m (for any τ),

as claimed.
On the other hand, because of (3.19) there exist s1(α̃), s2(α̃) ≥ 0 (recall that β̃ =

β̃(α̃)) such that

g1(τ, β̃)eξ(τχ−τκ) ≤ α̃ if τ ≥ t0 ≥ s1(α̃),

∞∫

t0

g2(τ, β̃)eξ(τχ−τκ) dτ ≤ α̃ if t0 ≥ s2(α̃).
(3.34)

Hence, for t ≥ t0 ≥ max{t̃, tϑ, s1(α̃)} we find that if | y(τ)| ≤ β̃ for any τ ∈ [t0, t[ then

e
−pt+

t∫
0

g(τ)dτ
t∫

t0

g1
(
τ, y(τ)

)
e

pτ−
τ∫
0

g(z)dz
dτ

< e−h(t)+2M

t∫

t0

g1
(
τ, β̃
)
eh(τ)+ξ(τχ−τκ)dτ

≤ e−h(t)+2M α̃

t∫

t0

h′(τ)

m
eh(τ)dτ = α̃

e−h(t)+2M

m
(eh(t) − eh(t0)) <

e2M

m
α̃

(3.35)
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where in the first line we have used (3.31) and the definition of ϑ, in the second (3.33)

and (3.34)1. Similarly, for t ≥ t0 ≥ max{s2(α̃), tϑ, t̃} we find that if |y(τ)| ≤ β̃ for any
τ ∈ [t0, t[ then

e
−pt+

t∫
0

g(τ)dτ
t∫

t0

g2
(
τ, y(τ))e

pτ−
τ∫
0

g(z)dz
dτ

< e−h(t)+2M

t∫

t0

g2
(
τ, β̃)eh(τ)+ξ(τχ−τκ)dτ

< e−h(t)+h(t)+2M

∞∫

t0

g2(τ, β̃)eξ(τχ−τκ)dτ < α̃e+2M ,

(3.36)

(in the first inequality we have used (3.31) and again the definition of ϑ, in the second the
monotonicities of h and g2, in the third (3.34)2). Summarizing, the inequalities (3.28),

(3.35), (3.36) are fulfilled for t ≥ t0 ≥ s̃(α̃) = max{t̃, tϑ, s1(α̃), s2(α̃), }.
Now let us suppose per absurdum that there exists t1 > t0 ≥ s̃(α̃) such that

|y(t; t0, y0)| < β̃ for t0 ≤ t < t1, (3.37)

|y(t1; t0, y0)| = β̃. (3.38)

Because of (3.37) the inequalities (3.35), (3.36) are fulfilled; together with equations
(3.26), (3.28) for t = t1 they imply

|y(t1; t0, y0)| < β̃,

against the assumption (3.38). Finally, from (3.26) and the nonnegativity of the functions
gi we find that 0 ≤ y0 < α̃ implies y(t) > 0 for any t, whence (3.25).

As a result of the previous lemma, for any α̃ > 0 the solution y(t) of the Cauchy

problem (3.23) remains eventually uniformly bounded by β̃(α̃) if 0 ≤ y0 ≤ α̃. By (3.22)
and (3.13), the same applies with V (t) and d2(u, ut).

By the monotonicity of gi(t, η) in η and the comparison principle we find that y(t) is
also bounded

y(t) ≤ z(t), t ≥ t0 (3.39)

by the solution z(t) of the Cauchy problem

dz

dt
= −p z + g(t)z + g1(t, β̃) + g2(t, β̃), z(t0) = z0 (3.40)

(which differs from (3.23) in that the second argument of gi is now a fixed constant

β̃ > 0), provided that z0 = y0, and t0 ≥ s̃(α̃).
We therefore study the Cauchy problem (3.40), keeping in mind that for our final

purposes we will choose β̃ = β̃(α̃), t0 = t0(α̃) ≥ s̃(α̃).
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Lemma 2 Assume g(t), g̃i(t, η) ( i = 1, 2 and t ∈ J , η > 0) are continuous func-
tions fulfilling the conditions (3.17) – (3.19). Then for any ρ̃ > 0, t0 > 0, α̃ > 0 there

exists T̂ (ρ̃, α̃, β̃, t0) > 0 such that for |z0| ≤ α̃ ∈ [0, α̃] the solution z(t; t0, z0) of (3.40)
is bounded as follows:

|z(t; t0, z0)| < ρ̃, if t ≥ t0 + T̂ . (3.41)

If in particular z0 ∈ [0, α̃[, then

0 ≤ z(t; t0, z0) < ρ̃, if t ≥ t0 + T̂ . (3.42)

Proof The solution z(t) = z(t; t0, z0) is of the form

z(t) = z0 e
−p(t−t0)+

t∫
t0

g(τ)dτ

+ e
−pt+

t∫
0

g(τ)dτ
t∫

t0

[
g1(τ, β̃) + g2(τ, β̃)

]
e

pτ−
τ∫
0

g(λ)dλ
dτ.

(3.43)

We now consider each of the three terms on the right-hand side of (3.43) separately.

By equation (3.30) for t ≥ tϑ

−p(t− t0) +

t∫

t0

g(τ) dτ ≤ −(t− t0)

[
p− q

1 + tχ

t− t0
−M

1 + ϑ(tχ − tκ)

t− t0

]
;

the right-hand side is negatively divergent for t− t0 → +∞, and so will be the left-hand
side; this implies that there exists a T0(ρ̃, α̃, t0) ≥ 0 such that

|z0| e
−p(t−t0)+

t∫
t0

g(τ)dτ

<
ρ̃

3
, t ≥ t0 + T0, z0 ∈ [−α̃, α̃]. (3.44)

As for the second term, given β̃ > 0, ρ̃ > 0, because of (3.19)1 there exist T1(β̃, ρ̃) ≥
max{t̃, tϑ} and σ1(β̃) such that

g1(τ, β̃) ≤ σ1 if τ ≥ 0,

g1(τ, β̃)eξ(τχ−τκ) ≤ 1

6
mρ̃ e−2M if τ ≥ T1

(3.45)

(t̃, m have been defined respectively in (3.33), (3.27)). Since the function h(t) defined in

(3.32) is increasing as the first power of t for t ≥ t̃, there exists T2(β̃, ρ̃) ≥ T1 such that
for t ≥ T2

σ1

p
e−h(t)+M+q+pT1 <

ρ̃

6
. (3.46)
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Therefore, for t ≥ T2,

e
−pt+

t∫
0

g(τ)dτ
t∫

t0

g1(τ, β̃)e
pτ−

τ∫
0

g(λ)dλ
dτ

< e−pt+q(1+tχ)+M [1+ϑ(tχ−tκ)]

t∫

0

g1(τ, β̃)e
pτ−

τ∫
0

g(λ)dλ
dτ

< e−h(t)+M+q

T1∫

0

g1(τ, β̃)epτdτ + e−h(t)+2M

t∫

T1

g1(τ, β̃)eh(τ)+ξ(τχ−τκ)dτ

< e−h(t)+M+qσ1

T1∫

0

epτdτ + e−h(t)+2Me−2M mρ̃

6

t∫

T1

h′(τ)

m
eh(τ)dτ

< e−h(t)+M+qσ1
epT1

p
+
ρ̃

6
e−h(t)(eh(t) − eh(T1))

<
ρ̃

6
(1 + 1) =

ρ̃

3
,

(3.47)

where in the first and in the second inequality we have used (3.30), the nonnegativity of

g1, the fact that ξ(τχ − τκ) ≥ 0 and the definition of h(t), in the third (3.45) and (3.33),

in the fourth we have performed integration over τ , and in the last we have used (3.46).

As for the third term on the right-hand side of (3.43), from (3.19)2 it follows that

there exists T3(β̃, ρ̃) ≥ max{t̃, tϑ} such that for t ≥ T3

e2M

t∫

T3

g2(τ, β̃)eξ(τχ−τκ)dτ <
ρ̃

6
(3.48)

and on the other hand that

T3∫

0

g2(τ, β̃)epτdτ < σ2, (3.49)

where σ2 has been defined in (3.19). Moreover, there exists T4(β̃, ρ̃) ≥ T3 such that

for t ≥ t̃+ T4

σ2e
−h(t)+q+M <

ρ̃

6
. (3.50)
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Therefore for t ≥ T4

e
−pt+

t∫
0

g(τ)dτ
t∫

t0

g2(τ, β̃)e
pτ−

τ∫
0

g(z)dz
dτ

< e−pt+q(1+tχ)+M [ϑ(tχ−tκ)+1]

t∫

0

g2(τ, β̃)e
pτ−

τ∫
0

g(z)dz
dτ

< e−h(t)+q+M

T3∫

0

g2(τ, β̃)epτdτ + e−h(t)+2M

t∫

T3

g2(τ, β̃)eξ(τχ
−τκ)eh(τ)dτ

< e−h(t)+q+Mσ2 + e−h(t)+2M+h(t)

t∫

T3

g2(τ, β̃)eξ(τχ−τκ)dτ

<
ρ̃

6
+
ρ̃

6
=
ρ̃

3
,

(3.51)

where we have used the nonnegativity of g2 and (3.30) in the first inequality, again (3.30),
the fact that ξ(τχ − τκ) ≥ 0 and the nonnegativity of g in the second, (3.49) and the
monotonicity of h(τ) for τ ≥ T3 in the third, (3.48) and (3.50) in the last one.

Let T̂ (ρ̃, β̃, t0) := max{T0, T2, T4}. Collecting the results (3.44), (3.47), (3.51) we find
that the solution z(t) of (3.40) fulfills the condition

z(t, t0, z0) <
ρ̃

3
[1 + 1 + 1] = ρ̃, t ≥ t0 + T̂ .

Remark 1 This lemma is a generalization of Lemma 24.3 in [14], based in turn on an
argument due to Hale [10].

Remark 2 If χ ≤ κ then in the previous proof T0, and therefore T̂ , becomes indepen-
dent of t0. In fact, ϑ = 0 and from (3.30) we find

t∫

t0

g(z) dz =

t∫

0

g(z) dz −
t0∫

0

g(z) dz < q(tχ − tχ0 ) + 2M.

By Lagrange’s theorem there exists a τ ∈]t0, t[ such that tχ − tχ0 =
χ

τ1−χ
(t− t0). Since

t0 ≥ t̃ ≡ (2qχ/p)1/(1−χ) we find tχ − tχ0 <
p

2q
(t− t0)

−p(t− t0) +

t∫

t0

g(z)dz < −p(t− t0)

[
1 − 1

2

]
+ 2M = −p

2
(t− t0) + 2M.

This implies that the left-hand side is negatively divergent for t− t0 → +∞ uniformly
in t0, as anticipated. The argument is not applicable in the case χ > κ.

We are now in the conditions to prove the following
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Theorem 1 Assume that the function f of (3.1) is bounded as in (3.16), where
g(t), g̃i(t, η) (i = 1, 2 and t ∈ J , η > 0) are continuous functions fulfilling the conditions
(3.17) – (3.19). Then the solutions of the problem (3.1), (3.2) are eventually uniformly
bounded. Moreover, the origin O is eventually quasi-uniform-asymptotically stable in the
large with respect to the metric d.

Proof Set α̃ := α2c22, and apply Lemma 1. Under the assumption d(u0, u1) ≤ α,
by (3.13) we find y0 = V (t0) ≤ α̃, by (3.22) and the application of the lemma we

find that y(t) (and therefore V (t)) is bounded by β̃(α2c22), and again by (3.13) we find

d(t) ≤ β(α) :=
√
β̃(α2c22)/c

2
1 for t ≥ s(α) := s̃(α2c22), as claimed. Moreover, we can

now apply the comparison principle (3.39) – (3.40) and Lemma 2: chosen ρ > 0, we set
ρ̃ := c21ρ

2. As a consequence of (3.39), (3.42), (3.13) we thus find that for t0 ≥ s(α)

and t ≥ T̂ (c21ρ, t0(α), c22α
2) ≡ T (ρ, α)

d2(t) ≤ V (t)

c21
≤ y(t)

c21
≤ z(t, β̃(α))

c21
<

ρ̃

c21
= ρ2.

Remark 3 This theorem is a generalization of Theorem 3.1 in reference [2]: the claims
are the same, but the hypotheses on the function f are weakened. First, (3.16) is an
upper bound condition only on the mean square value of f2, rather than on its supremum
(as in [2]). Second, this upper bound may depend on t in a more general way than in
that reference. The hypotheses (3.17), (3.18), (3.19) considered here are fulfilled by the
ones considered there with g(t) ≡ const and χ = κ = 1. The former, but not the latter,
are satisfied e.g. by the following family of examples.

Examples Let f = b(t) sinϕ, with a function b(t) such that the integral
t∫
0

b2(τ) dτ

grows as some power tχ, where χ ≤ 1, and in the case χ = 1 is smaller than pt
for sufficiently large t; then we can set ĝ(t, η) ≡ b2(t). For instance we could take b2 a
continuous function that vanishes everywhere except in intervals centered, say, at equally
spaced points, where it takes maxima increasing with some power law ∼ tβ , but keeps
the integral bounded, e.g.

b2(t) = b20






4nα+β(t− n+
1

2nα
) if t ∈

[
n− 1

2nα
, n

]
,

4nβ − 4nα+β(t− n) if t ∈
]
n, n+

1

2nα

]
,

0 otherwise,

(3.52)

with b20 < p, α ≥ 1, β ∈ ]α− 1, α] and n ∈ N . (The case α = β = 1 has already been
considered in [5]).

The graph of (b(t)/b0)
2 consists of a sequence of isosceles triangles enumerated by n,

having bases of length 1/nα and upper vertices with coordinates (x, y) = (n, 2nβ) (see
the Figure 3.1). Their areas are An = 1/nγ, where γ := α− β ∈ [0, 1[.

If 0 ≤ t− t0 < 2 then we immediately find

t∫

t0

g(τ) dτ ≤ b20 2. (3.53)
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Figure 3.1

If on the contrary t − t0 ≥ 2, then there exist integers m, n with 0 ≤ m ≤ n − 2 and
t > t0 ≥ 0 such that t ∈ ]n− 1/2, n+ 1/2] and t0 ∈ ]m− 1/2, m+ 1/2]. Then we find

n−1/2∫

m+1/2

g(τ) dτ ≤
t∫

t0

g(τ) dτ ≤
n+1/2∫

m−1/2

g(τ) dτ,

namely

n−1∑

k=m+1

b20
kγ

= b20

n−1∑

k=m+1

Ak ≤
t∫

t0

g(τ) dτ ≤ b20

n∑

k=m
k≥1

Ak =

n∑

k=m
k≥1

b20
kγ
. (3.54)

Consider the function e(y) := y1−γ , γ ∈ [0, 1[. Applying Lagrange’s theorem we find
that for any h ∈ N there exists a ξh ∈ ]h, h+ 1[ such that

(h+ 1)1−γ − h1−γ = (1 − γ)
1

ξγ
h

,

whence, taking h = k and h = k − 1 respectively,

(k + 1)1−γ − k1−γ < (1 − γ)
1

kγ
,

k1−γ − (k − 1)1−γ > (1 − γ)
1

kγ
;

therefore
1

1 − γ
[(k + 1)1−γ − k1−γ ] <

1

kγ
<

1

1 − γ
[k1−γ − (k − 1)1−γ ]. (3.55)

From (3.54), (3.55) we find

b20[n
1−γ − (m+ 1)1−γ ]

1 − γ
<

t∫

t0

g(τ) dτ <
b20[n

1−γ − (m− 1)1−γ(1 − δm
0 )]

1 − γ
. (3.56)
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where δm
0 denotes a Kronecker δ. Hence,

t∫

t0

g(τ) dτ =
b20

1 − γ
[n1−γ − (m+ 1)1−γ ] + Lm,n(t) (3.57)

where the remainder Lm,n(t) is bounded by the difference dm on the right-hand side
and left-hand side of (3.56),

0 < Lm,n(t) < dm :=
b20

1 − γ
[(m+ 1)1−γ − (m− 1)1−γ(1 − δm

0 )].

The expression in square bracket equals 1 for m = 0 and 21−γ for m = 1. It is immediate
to check that the function ẽ(y) := (y + 1)1−γ − (y − 1)1−γ is decreasing for y ≥ 1 and
therefore takes its maximum in y = 1. We therefore derive the bound

0 < Lm,n(t) < dm ≤ b20 ẽ(1)

1 − γ
=
b20 21−γ

1 − γ
. (3.58)

Moreover, since t > n− 1, t0 < m+ 1 and g is nonnegative, from (3.57) we find

t∫

t0

g(τ) dτ <
b20

1 − γ
[(t+ 1)1−γ − t1−γ

0 ] + Lm,n(t).

If t0 ≥ 1, applying again Lagrange’s theorem to the function e(t) = t1−γ we find

b20
1 − γ

[(t+ 1)1−γ − t1−γ
0 ] = b20

t− t0 + 1

t̄γ
< b20(t− t0 + 1)

with a suitable t̄ ∈ ]t0, t+ 1[, and therefore

t∫

t0

g(τ) dτ − b20(t− t0) < b20

(
1 +

21−γ

1 − γ

)
. (3.59)

If 0 ≤ t0 < 1,

t∫

t0

g(τ) dτ−b20(t−t0) ≤
1∫

0

g(τ) dτ−b20(1−t0)+
t∫

1

g(τ) dτ−b20(t−1) < b20

(
2+

21−γ

1 − γ

)
=: σ,

where we have used (3.59) with t0 = 1 and
1∫
0

g(τ)dτ ≤ b20, showing (together with (3.59)

itself and (3.53)) that g fulfills condition (3.17) in any case.
On the other hand, choosing t0 = 0 (and therefore m = 0) in (3.57), dividing by

1 + t1−γ and subtracting b20/(1 − γ) we find

t∫
0

g(τ) dτ

1 + t1−γ
− b20

1 − γ
=

b20
1 − γ

[
n1−γ − (1 + t1−γ) − 1

1 + t1−γ

]
+

L0,n(t)

1 + t1−γ
.
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But it is n− 1 < t < n+ 1, what implies

1 − 21−γ ≤ n1−γ − (n+ 1)1−γ < n1−γ − t1−γ < (t+ 1)1−γ − t1−γ < 1

(in fact the function ê(y) := (y+1)1−γ −y1−γ is decreasing and therefore has maximum
at the lower extremum of the interval in which we define it); hence, using also (3.58), we
find

− b20
1 − γ

[
21−γ + 1

1 + t1−γ

]
<

t∫
0

g(τ)dτ

1 + t1−γ
− b20

1 − γ
<

b20
1 − γ

[
21−γ − 1

1 + t1−γ

]
<

b20
1 − γ

[
21−γ + 1

1 + t1−γ

]
.

We have proved these inequalities under the current assumption t ≥ 2, showing that
in this domain also condition (3.18), with q = b20/(1 − γ), χ = κ = 1 − γ and M =
b20(2

1−γ + 1)/(1 − γ), is satisfied. For 0 ≤ t ≤ 2 the left-hand side of (3.18) is certainly
bounded by b20 3/[2(1 − γ)], therefore it is sufficient to choose e.g. M = b20 9/[2(1 − γ)]
to fulfill (3.18) for any t ≥ 0.

4 Exponential-Asymptotic Stability for Special f ’s via a Family of Liapunov

Functionals

In this section we specialize the function f of (3.1) as f = F (u)−a(x, t, u, ux, ut, uxx)ut,
where F ∈ C(R) and a ∈ C( ]0, 1[ × J ×R4), and examine the particular problem

Lu = F (u) − a(x, t, u, ux, ut, uxx)ut, x ∈]0, 1[, t > t0,

u(0, t) = 0, u(1, t) = 0, t > t0,
(4.1)

with initial and consistency conditions (3.2) – (3.3). We shall use the one-parameter
family of modified Liapunov functionals

Wγ(ϕ, ψ) =
1

2

1∫

0

{
(εϕxx − ψ)2 + γψ2 + (1 + γ)ϕ2

x

}
dx

− (1 + γ)

1∫

0

( ϕ(x)∫

0

F (z)dz

)
dx

(4.2)

where γ > 1/2 is for the moment an unspecified parameter.

Theorem 2 Under the following assumptions

(1) F (u) ∈ C1(R), F (0) = 0, and moreover there exists a positive constant K such
that

Fu ≤ K < 3π2/4; (4.3)

(2) the function a satisfies

ν := επ2 + inf a > 0; (4.4)

(3) there exist τ ∈ [0, 2[ and constants A > 0, A′ ≥ 0 such that

a(x, t, ϕ, ϕx, ϕxx, ψ) ≤ A[d(ϕ, ψ)]τ +A′, (4.5)
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the zero solution of the problem (4.1) is exponential-asymptotically stable in the large.

As anticipated in the introduction, this should be compared with Theorem 3.3. in
the main reference, [2]: by replacing the requirement that sup a < ∞ and adding the
assumption (4.5) we are still able to prove the exponential-asymptotic stability in the
large of the zero solution. The trick is to associate to each neighbourhood of the origin
with radius σ (the ‘error’) a Liapunov functional (4.2) with parameter γ adapted to σ,
instead of fixing γ once and for all.

Proof We start by improving or recalling some inequalities proved in [2]. From (4.3)
we find

ϕ∫

0

F (z) dz =

ϕ∫

0

dz

z∫

0

Fs(s) ds ≤ K

ϕ∫

0

dz

z∫

0

ds = Kϕ2/2. (4.6)

Employing this inequality and the estimate (3.9) we find

Wγ(ϕ, ψ) =
1

2

1∫

0

{
(εϕxx − 2ψ)2/4 + (εϕxx − ψ)2/2 + (γ − 1/2)ψ2

+ (1 + γ)ϕ2
x + ε2ϕ2

xx/4 − 2(1 + γ)

ϕ∫

0

F (z) dz
}
dx.

(4.7)

It easy to see that

Wγ(ϕ, ψ) ≥ 1

2

1∫

0

[(
γ − 1

2

)
ψ2 + (1 + γ)ϕ2

x +
ε2

4
ϕ2

xx − 2(1 + γ)

ϕ∫

0

F (z) dz

]
dx

≥ 1

2

1∫

0

[(
γ − 1

2

)
ψ2 + (1 + γ)π2ϕ2 +

ε2

4
ω3(ϕ

2
xx + ϕ2

x) − (1 + γ)Kϕ2

]
dx

≥ k2
1d

2(ϕ, ψ),

(4.8)

where we have used again (4.3) and we have introduced the constant k2
1

k2
1 = min{ε2ω3/8, (2γ − 1)/4}, γ > 1/2. (4.9)

Another inequality of [2] reads

Wγ(ϕ, ψ) ≤ c22 [1 +m(d(ϕ, ψ))] d2(ϕ, ψ), (4.10)

where

m(|ϕ|) = max{|Fζ(ζ)| : |ζ| ≤ |ϕ|}. (4.11)
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The map B(d) := [1 + m(d)]1/2d is increasing and continuous, therefore invertible.
Finally,

dWγ(u, ut)

dt
= −

1∫

0

{εu2
xx + εγu2

xt + a(1 + γ)u2
t + εF (u)uxx − εauxxut} dx

= −
1∫

0

{
3

4
εu2

xx + ε
[ c
2
uxx − a

c
ut

]2
+ εγu2

tx + a [1 + γ − εa]u2
t − εFuu

2
x

}
dx

≤ −
1∫

0

{3ε(1 − λ)u2
xx/4 + ε(3λπ2/4 −K)u2

x

+ [(επ2 + a)γ + a(1 − εa)]u2
t}dx,

(4.12)

dWγ(u, ut)

dt
≤ −

1∫

0

{3ε(1 − λ)ω1(u
2
xx + u2)/4 + ε(3λπ2/4 −K)u2

x

+ [(επ2 + a)γ + a(1 − εa)]u2
t} dx,

(4.13)

where λ ∈ ]0, 1[ is a constant chosen in such a way that 3λπ2/4 −K > 0, and we have
used (3.9), (4.3).

Now we are going to show that for any “error” σ > 0 there exists a δ ∈ ]0, σ[ such
that d(t0) ≡ d(u0, u1) < δ implies

d(t) ≡ d(u(x, t), ut(x, t)) < σ ∀ t ≥ t0. (4.14)

To this end we associate to the neighbourhood with radius σ of the zero solution the
Liapunov functional (4.2) choosing the parameter γ and δ as the following functions
of σ:

γ(σ) = (Aστ +A′)ε+M, M :=
1 + επ2 + ε3π4

ν
+

1

επ2
+

1

2
, (4.15)

δ(σ) = B−1

(
σk1 (γ(σ))

c2 (γ(σ))

)
; (4.16)

we shall call the corresponding Liapunov functional Wσ. Per absurdum, assume that
there exist a t1 > t0 such that (4.14) is fulfilled for any t ∈ [t0, t1[, whereas

d(t1) = σ. (4.17)

Consider the term in the square bracket on the right-hand side of (4.13). From (4.15),
(4.4), (4.5) considering separately the cases a > 0, −επ2 < a ≤ 0, we find

−
[
(επ2 + a)γ + a(1 − εa)

]
≤ −1, (4.18)

whence
dWσ(u(t), ut(t))

dt
≤ −k2

3d
2(u(t), ut(t)) < 0, (4.19)
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where
k2
3 = min {3ε(1 − λ)ω1/4, ε(3λπ

2/4 −K), 1}. (4.20)

From (4.8), (4.19), (4.10), (4.16), it follows

k2
1d

2(t1) ≤Wσ(u(t1), ut(t1)) < Wσ(u(t0), ut(t0)) ≤ c22 [1 +m(d(t0))] d
2(t0)

< c22 [1 +m(δ)] δ2 = c22 [B(δ)]2 = c22

[
B

(
B−1

(
σk1

c2

))]2
= k2

1σ
2,

against (4.17).
Having proved (4.14), it follows m(d(t)) < m(σ), which replaced in (4.10) gives

Wσ ≤ c22(σ) [1 +m(σ)] d2(t);

together with (4.19) this in turn implies

dWσ(u(t), ut(t))

dt
≤ −C(σ)Wσ(u(t), ut(t)),

with C(σ) := k2
3/[c

2
2(σ)(1+m(σ))]. Using the comparison principle we find that d(t0) ≡

d(u0, u1) < δ implies

d(u(t), ut(t)) ≤ D(σ)e−
C(σ)

2 (t−t0)d(u0, u1), (4.21)

with D(σ) :=
c2
k1

√
1 +m(δ(σ)).

Last, we show that under the present assumptions the function (4.16) can be inverted.
It is evident from (4.9) that k1(σ) is non-decreasing, from (3.7) and (4.5) that σ/c2(γ(σ))
is strictly increasing, therefore that σk1(σ)/c2(γ(σ)) is strictly increasing too, hence
invertible. Since B−1 is invertible, δ(σ) is invertible and its range is J .

Thus we can express D(σ), C(σ) as functions of δ, proving the exponential asymptotic
stability of the zero solution.

Remark 4 The theorem holds also if we replace the right-hand side of (4.5) with A(d),

where A : [0,+∞[ → R+ is any nondecreasing function such that A(σ)/σ2 σ→+∞−−−−−→ 0.

Remark 5 If (4.5) holds with τ = 2 the function
σ

c2(γ(σ))
is still increasing but

its range is [0, 2/εA], implying that the function
σk1(γ(σ))

c2(γ(σ))
is still increasing but its

range is [0,
√
ω3/

√
2A] . Therefore the condition (3.5) of Definition 3.4 is fulfilled only

for α ∈ ]0, B−1(
√
ω3/

√
2A)[, and the attraction region includes the set d(u0, u1) <

B−1(
√
ω3/

√
2A).

We now give a variant of the preceding theorem, based on a hypothesis slightly different
from (4.5). Beside the distance (3.4), we need also a “weaker” distance d1(u, ut) between
the zero and a nonzero solution u(x, t) of the problem (3.1) – (3.2): for any (ϕ, ψ) ∈
C2

0 ([0, 1]) × C0([0, 1]) we define

d2
1(ϕ, ψ) =

1∫

0

(ϕ2 + ϕ2
x + ψ2) dx. (4.22)
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Clearly,

d1(ϕ, ψ) ≤ d(ϕ, ψ). (4.23)

The “Hamiltonian” Liapunov functional v(u, ut), with

v(ϕ, ψ) :=
1

2

1∫

0

{
ψ2 + ϕ2

x − 2

( ϕ(x)∫

0

F (z) dz

)}
dx, (4.24)

will play w.r.t. the distance d1 a role similar to the one played by the Liapunov functionals
V or Wγ w.r.t. the distance d.

Theorem 3 Under the following assumptions

(1) F (u) ∈ C1(R), F (0) = 0, and there exists a positive constant K such that

Fu ≤ K < 3π2/4; (4.25)

(2) the function a satisfies

inf a > −επ2; (4.26)

(3) there exists a nondecreasing map A : J → J such that

|a(x, t, ϕ, ϕx, ϕxx, ψ)| ≤ A [d1(ϕ, ψ)] , (4.27)

the zero solution of the problem (4.1) is exponential-asymptotically stable in the large.

Proof Some steps of the proof are exactly as in the previous theorem. Employing
inequality (4.6) and the estimate (3.9) we find

v ≥ 1

2

1∫

0

{(
1

8
u2

x +
7

8
u2π2

)
+ u2

t −
3

4
π2u2

}
dx ≥ 1

16
d2
1. (4.28)

Setting v(t) ≡ v(u, ut), integrating by parts and using (4.1), (4.26), (3.9) we also find

dv

dt
=

1∫

0

{ut[−uxx + utt − F (u)]} dx = −
1∫

0

{
εu2

xt + au2
t

}
dx

≤ −
1∫

0

(επ2 + a)u2
t dx < 0

(4.29)

Now we are going to prove the uniform boundedness of the solutions of the problem
(4.1). To this end first note that from the definition (4.11) it follows

∣∣∣∣∣

ϕ∫

0

F (z)dz

∣∣∣∣∣ ≤ m(|ϕ|)ϕ
2

2
;
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employing this inequality and the one ϕ2 ≤ d2
1(ϕ, ψ) we find

v ≤ 1

2
[1 +m (d1(u, ut))] d

2
1(u, ut). (4.30)

From (4.29) we derive the inequality v(t) < v(t0) for any t > t0, whence

1

16
d2
1(t) ≤ v(t) < v(t0) ≤

1

2
[1 +m (d1(t0))] d

2
1(t0).

Therefore, for any t > t0

d(t0) ≤ α =⇒ d1(t0) ≤ α =⇒ d1(t) < β1(α) := 2
√

2 [1 +m(α)]
1/2

α,

so that, in view of the assumption (4.27),

d(t0) ≤ α =⇒ |a(x, t, u, ux, ut, uxx)| ≤ A [β1(α)] ≡ A(α). (4.31)

Now we associate to any α > 0 the Liapunov functional (4.2) with the parameter γ
chosen as the following function of α:

γ(α) = A(α)ε+M, M :=
1 + επ2 + ε3π4

ν
+

1

επ2
+

1

2
; (4.32)

we shall call the corresponding Liapunov functional Wα. Consider the term in the square
bracket on the right-hand side of (4.13). From (4.31), (4.32), we find again (4.18), whence

dWα(u(t), ut(t))

dt
≤ −k2

3d
2(u(t), ut(t)) < 0, (4.33)

with the same k2
3 of (4.20). From (4.8), (4.33), (4.10), it follows for any t > t0

k2
1d

2(t) ≤Wα(u(t), ut(t)) < Wα(u(t0), ut(t0)) ≤ c22 [1 +m(d(t0))] d
2(t0)

< c22(γ(α)) [1 +m(α)]α2 = c22(γ(α))B2(α),

proving the uniform boundedness of u:

d(u(t), ut(t)) <
c2(γ(α))

k1(γ(α))
B(α) ≡ β(α). (4.34)

Having proved this, it follows m(d(t)) < m(β(α)), which replaced in (4.10) gives

Wα ≤ c22(γ(α))[1 +m(β(α))]d2(t);

together with (4.33) this in turn implies

dWα(u(t), ut(t))

dt
≤ −C(α)Wα(u(t), ut(t)),

with C(α) := k2
3(γ(α))/{c22(γ(α))[1+m(β(α))]}. Using the comparison principle we find

that d(t0) ≡ d(u0, u1) ≤ α implies

d(u(t), ut(t)) ≤ D(α)e−C(α)(t−t0)d(u0, u1), (4.35)

with D(α) :=
c2(γ(α))

k1(γ(α))

√
1 +m(β(α)), namely the exponential-asymptotical stability.

5 Uniform Asymptotic Stability in the Large for a Class of Non-Analytic f ’s

Here we give a generalization of Theorem 2 in [5]. As in the preceding sections, using
the trick of the one-parameter family of Liapunov functionals we are able to replace the
boundedness assumption for the function a by a weaker one.
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Theorem 4 Under the following assumptions

F (ϕ) ∈ C(R) such that F (0) = 0, (5.1)

there exist τ ∈ [0, 1[ and D > 0 such that, for any ϕ, ψ (5.2)

0 ≤ −
1∫

0

( ϕ(x)∫

0

F (z)dz

)
dx ≤ Ddτ+1(ϕ, ψ),

1∫

0

F (ϕ(x))ϕxx(x) dx ≥ 0 for any ϕ ∈ C2
0 ([0, 1]), (5.3)

the function a satisfies inf a > −επ2, (5.4)

there exists a nondecreasing map A : [0,∞[→ R+ such that (5.5)

|a(x, t, ϕ, ϕx, ϕxx)| ≤ A (d(ϕ, ψ)) ,

the zero solution of the problem (4.1) is uniformly asymptotically stable in the large.

Proof From (4.7), (5.2)

Wγ(ϕ, ψ) ≥ 1

2

1∫

0

{(γ − 1/2)ψ2 + (1 + γ)ϕ2
x + ε2ϕ2

xx/4} dx

≥ 1

2

1∫

0

{(γ − 1/2)ψ2 + (1 + γ)ω3(ϕ
2 + ϕ2

x) + ε2ϕ2
xx/4} dx ≥ k′1

2d2(ϕ, ψ),

(5.6)

where

k′1
2 :=

1

2
min

{
γ − 1

2
,
ε2

4
, (1 + γ)ω3

}
, γ >

1

2
. (5.7)

Moreover, taking into account (4.2), assumption (5.2), noting that (εϕxx−ψ)2 ≤ ε2ϕ2
xx+

ψ2 + ε(ϕ2
xx + ψ2), and considering (3.7) it follows

Wγ(ϕ, ψ) ≤ Gγ(d(ϕ, ψ)), (5.8)

where
Gγ(d) := c22(γ)d

2 +D(γ + 1)dτ+1. (5.9)

For any choice of γ >
1

2
the map Gγ(d) is increasing and continuous in d, therefore

invertible. Finally, with the help of (3.9) we obtain from (4.12)

dWγ(u, ut)

dt
≤ −

1∫

0

{(3/4)εu2
xx + [εγ + a(1 + γ − εa)]u2

t} dx

≤ −
1∫

0

{εω2(u
2
xx + u2

x + u2)/4 + [(ε+ a)γ + a(1 − εa)]u2
t} dx.

(5.10)
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Now we are going to show that for any “error” σ > 0 there exists a δ ∈ ] 0, σ [ such
that d(t0) ≡ d(u0, u1) < δ implies

d(t) ≡ d (u(x, t), ut(x, t)) < σ ∀ t ≥ t0. (5.11)

To this end we choose the parameter γ in the Liapunov functional (4.2) as in (4.32) and
δ as the following function of the error σ:

δ(σ) = G−1
γ(σ)

(
σ2k′1

2 (γ(σ))
)
; (5.12)

we shall indicate the corresponding Liapunov functional Wγ(σ) simply by Wσ. Per ab-

surdum, assume that there exist a t1 > t0 such that (4.14) is fulfilled for any t ∈ [t0, t1[,
whereas (4.17) holds for t = t1. Consider the term in the square bracket on the right-hand
side of (5.10). From (4.32), (4.4), (5.5) we get again (4.18), whence

dWσ(u(t), ut(t))

dt
≤ −k′32d2(u(t), ut(t)) < 0, (5.13)

where now k′3
2 := min{εω2/4, 1}. From (5.6), (5.8), (5.13),(5.12), it follows

k′1
2d2(t1) ≤Wσ(u(t1), ut(t1)) < Wσ(u(t0), ut(t0))

≤ Gγ(σ)(d(t0)) < Gγ(σ)(δ(σ)) = k′1
2σ2,

against (4.17). So we have proved the uniform stability of the zero solution.
Note now that the function δ(σ) is invertible, since it is the composition of two in-

creasing functions. Therefore Wσ can be expressed as a function Wδ of the parameter δ.
By (5.13) it is Wδ(t) ≤Wδ(t0) so by (5.6), (5.8) we find that for d(t0) ≡ d(u0, u1) ≤ δ

d2(t) ≤ Wδ(t)

k′1
2

≤ Wδ(t0)

k′1
2

≤ Gγ(d(t0))

k′1
2

≤ Gγ(δ)

k′1
2
(
γ(δ)

) =: β2(δ),

proving the uniform boundedness of u.
Employing an argument of [5] one can now show that for any choice of the initial

condition d(t0) < δ the functional Wδ decreases to zero (at least) as a negative power of
(t− t0) as (t− t0) → ∞. From (5.8) we find

d2 ≥ min

{
Wδ

2c22(γ(σ))
,

(
Wδ

2D(γ + 1)

) 2
τ+1
}
,

which considered in (5.13) gives

dWδ(u, ut)

dt
≤ −k′3 min

{
Wδ

2c22
,

(
Wδ

2D(γ + 1)

) 2
τ+1
}

≤ 0. (5.14)

If at t = t0

Wδ

2c22
≥
(

Wδ

2D(γ + 1)

) 2
τ+1

, (5.15)

then setting

E(δ) :=
k′3[

2D
(
γ(δ) + 1

)] 2
τ+1

1 − τ

1 + τ
> 0

one finds

d2(t) ≤ Wδ(t)

k′1
2

≤ 1

k′1
2[Wδ(t0) + E(t− t0)]

1+τ
1−τ

≤ 1

k′1
2[E(t− t0)]

1+τ
1−τ

(5.16)
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for t ≥ t0. If on the contrary

Wδ(t0)

2c22
<

(
Wδ(t0)

2D(γ + 1)

) 2
τ+1

,

(5.14) will imply for some time

dWδ(u, ut)

dt
≤ −k′3Wδ

and by the comparison principle an (at least) exponential decrease of Wδ. Hence there

will exist a T̃ (δ) > 0 such that

Wδ(t0 + T̃ )

2c22
=

(
Wδ(t0 + T̃ )

2D(γ + 1)

) 2
τ+1

,

after which (5.14) will take again the form considered in the previous case and thus imply

d2(t) ≤ Wδ(t)

k′1
≤ 1

k′1
2[Wδ(t0 + T̃ ) + E(t− t0 − T̃ )]

1+τ
1−τ

≤ 1

k′1
2[E(t− t0 − T̃ )]

1+τ
1−τ

(5.17)

for t ≥ t0 + T̃ . Formula (5.17) will be valid also if δ is so small that inequality (5.15)

occurs, provided we correspondingly define T̃ := 0, so that it reduces to (5.16). Formula
(5.17) evidently implies the quasi-uniform asymptotic stability in the large of the zero
solution.
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