Topological Sequence Entropy and Chaos of Star Maps*

J.S. Cánovas

Departamento de Matemática Aplicada y Estadística,
Universidad Politécnica de Cartagena,
Pasco de Alfonso XIII, 30203 Cartagena (Murcia), Spain

Received: October 02, 2003; Revised: May 25, 2004

Abstract: Let \(X_n = \{ z \in \mathbb{C} : z^n \in [0, 1] \} \), \(n \in \mathbb{N} \), and let \(f : X_n \to X_n \) be a continuous map such that \(f(0) = 0 \). In this paper we prove that \(f \) is chaotic in the sense of Li–Yorke iff there is a strictly increasing sequence of positive integers \(A \) such that the topological sequence entropy of \(f \) relative to \(A \) is positive.

Keywords: Star maps; Li–Yorke chaos; topological sequence entropy.

Mathematics Subject Classification (2000): 37B40, 37E25.

1 Introduction

Let \((X, d)\) be a compact metric space and let \(C(X) \) denote the set of continuous maps \(f : X \to X \). For any \(f \in C(X) \), the pair \((X, f)\) is called a discrete (semi)dynamical system. Given \(x \in X \), the sequence \((f^i(x))_{i=0}^{\infty}\) is the trajectory of \(x \) (also orbit of \(x \)). Recall that a point \(x \in X \) is periodic if \(f^i(x) = x \) for some \(i \in \mathbb{N} \). Denote by \(\text{Per}(f) \) the set of periodic points of \(f \). The map \(f \) is said to be chaotic in the sense of Li–Yorke (or simply chaotic) if there is an uncountable set \(S \subset X \setminus \text{Per}(f) \) such that for any \(x, y \in S \), \(x \neq y \), and any \(p \in \text{Per}(f) \) it holds

\[
\begin{align*}
\liminf_{n \to \infty} d(f^n(x), f^n(y)) &= 0, \\
\limsup_{n \to \infty} d(f^n(x), f^n(y)) &> 0, \\
\limsup_{n \to \infty} d(f^n(x), f^n(p)) &> 0.
\end{align*}
\]

*This paper has been partially supported by the grant PI–8/00807/FS/01 from Fundación Séneca (Comunidad Autónoma de Murcia).

© 2005 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua