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Abstract: Let Xn = {z ∈ C : zn ∈ [0, 1]}, n ∈ N, and let f : Xn → Xn be a
continuous map such that f(0) = 0. In this paper we prove that f is chaotic
in the sense of Li–Yorke iff there is a strictly increasing sequence of positive
integers A such that the topological sequence entropy of f relative to A is
positive.
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1 Introduction

Let (X, d) be a compact metric space and let C(X) denote the set of continuous maps
f : X → X . For any f ∈ C(X), the pair (X, f) is called a discrete (semi)dynamical
system. Given x ∈ X , the sequence (f i(x))∞i=0 is the trajectory of x (also orbit of x).
Recall that a point x ∈ X is periodic if f i(x) = x for some i ∈ N. Denote by Per (f) the
set of periodic points of f . The map f is said to be chaotic in the sense of Li–Yorke (or
simply chaotic) if there is an uncountable set S ⊂ X\Per (f) such that for any x, y ∈ S,
x 6= y, and any p ∈ Per (f) it holds

lim inf
n→∞

d(fn(x), fn(y)) = 0, (1)

lim sup
n→∞

d(fn(x), fn(y)) > 0, (2)

lim sup
n→∞

d(fn(x), fn(p)) > 0. (3)
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The set S is called a scrambled set of f (see [18] or [21]).
The notion of chaos in the sense of Li–Yorke has been studied in the case of X = [0, 1]

and X = S1 (see e.g. [10, 14, 16, 17, 22] or [21]). In this setting, topological sequence
entropy plays a special role to characterize chaotic maps. Given a strictly increasing
sequence of positive integers A, denote by hA(f) the topological sequence entropy of f
with respect to A (see the definition in the next section). Then

Theorem 1 Let f ∈ C([0, 1]) ∪ C(S1). Then:

(1) f is chaotic iff there is a strictly increasing sequence of positive integers A such
that hA(f) > 0;

(2) for any sequence A there is a chaotic map fA ∈ C(I) (resp. fA ∈ C(S1)) such
that hA(fA) = 0.

Statement (1) was proved by Franzová and Smı́tal [14] for interval maps and by
Hric [17] for circle maps. Statement (2) was also proved by Hric [16, 17]).

Theorem 1 (1) is false in general in the case of two dimensional maps (see [13, [20]).
So, the following question remains open: is Theorem 1 true for continuous maps defined
on finite graphs?

In this paper we give a partial answer to this question. More precisely, we consider the
n-star Xn = {z ∈ C : zn ∈ [0, 1]}, n ∈ N. Dynamical systems generated by continuous
maps on the n-star have been studied in the literature (see [1, 3 – 6, 8]). Moreover, the
construction of chaotic n-star maps holding (2) in Theorem 1 was made in [17]. Let
C0(Xn) be the set of continuous maps f ∈ C(Xn) such that f(0) = 0. The aim of this
paper is to prove the following result which extends Theorem 1 (1) to the space C0(Xn).

Theorem 2 Let f ∈ C0(X). Then f is chaotic iff there is an strictly increasing
sequence of positive integers A such that hA(f) > 0.

This paper is organized as follows. Next section is devoted to introduce basic notation
and definitions. In Section 3 we prove useful technical results which are used in the last
section, where the main result is proved.

2 Basic Notation

First we introduce the notion of topological sequence entropy for continuous maps defined
on compact metric spaces. Let (X, d) be a compact metric space and let f ∈ C(X).
Consider a strictly increasing sequence of positive integers A = (ai)

∞
i=1 and let Y ⊆ X

and ε > 0. We say that a subset E ⊂ Y is (A, ε, m, Y, f)-separated if for any x, y ∈
E, x 6= y, there is an i ∈ {1, . . . , m} such that d(fai(x), fai(y)) > ε. Denote by
sm(A, ε, Y, f) the cardinality of any maximal (A, ε, m, Y, f)-separated set. Define

s(A, ε, Y, f) = lim sup
m→∞

1

m
log sm(A, ε, Y, f). (4)

Let
hA(f, Y ) = lim

ε→0
s(A, ε, Y, f). (5)

The topological sequence entropy of f respect to the sequence A is

hA(f) = hA(f, X). (6)
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When A = (i)∞i=0, we receive the usual definition of topological entropy (see [2, Chap-
ter 4]).

For x ∈ X , let ω(x, f) denote the set of limit points of the sequence (f i(x))∞i=0.
ω(x, f) is called the omega limit set of f at x. Let ω(f) =

⋃

x∈X ω(x, f) be the omega
limit set of f .

Now, we introduce some definitions on n-star maps. The point 0 ∈ Xn is called the
branching point of Xn. The connected components of Xn\{0} are called branches of X,

denoted by B1, . . . , Bn. For Y ⊂ Xn, Y denotes the closure of Y . |x| denotes the module

of x ∈ X. For a fixed i ∈ {1, . . . , n} and x, y ∈ Bi, we write x < y (resp. x ≤ y) to

denote |x| < |y| (resp. |x| ≤ |y|). For x, y ∈ Bi, x ≤ y, by an interval we understand

the set [x, y] = {z ∈ Bi : x ≤ z ≤ y}, (x, y], [x, y) and (x, y) will be understand in the

obvious way. Then, for 1 ≤ i ≤ n, the closure Bi = [0, zi], with zn
i = 1. Now, define a

metric on Xn as follows. For any x, y ∈ Xn, let

ρ(x, y) =

{

|x − y| if x and y lie in the same branch;

|x| + |y| if x and y do not lie in the same branch.

For any x ∈ Xn and ε > 0, let B(x, ε) = {y ∈ Xn : ρ(x, y) < ε}.
Finally, we recall the notion of horseshoe (see [19]). Let k ∈ N. We say that f has

a k-horseshoe if there is a closed interval J contained in one branch of Xn and there
are k closed subintervals Ji ⊂ J , 1 ≤ i ≤ k, with pairwise disjoint interiors such that
J ⊆ f(Ji) for 1 ≤ i ≤ k.

3 Preliminary Results

This section is devoted to state some results which help us to prove the main theorem. We
use basically two ideas in the proof. The first one is based on the following proposition.

Proposition 3 Let (X, d) be a compact metric space and let f ∈ C(X). Then, for
any k ∈ N the following statements hold:

(1) fk is chaotic iff f is chaotic;
(2) for any strictly increasing sequence A there is a strictly increasing sequence B

such that hB(fk) ≥ hA(f).

Proof (1) is a well-known fact which is due to the uniform continuity of f . (2) was
proved in [17].

We begin with the n-star case. For any x ∈ Xn, let s(x) = (si)
∞
i=0 ∈ {0, 1, . . . , n}N

be defined by si = j iff f i(x) ∈ Bj for some j ∈ {1, . . . , n}, and si = 0 iff f i(x) = 0 .
We say that s(x) is eventually constant if there is k ∈ N such that si = sk for all i ≥ k.
We say that f ∈ C0(Xn) has property P if the condition x ∈ Per (f) implies that s(x)
is a constant sequence. The following remark is immediate but useful in what follows.
We will use it without citation.

Remark 1 If for some k ∈ N we have fk(x) = 0 then f l(x) = 0 for each l ≥ k and,
hence, ω(x, f) = {0} and s(x) is eventually constant.

Property P is the other key which allows us to prove the main result. As we will see
later, any map from C0(Xn) with zero topological entropy has an iterate which holds
property P . This fact jointly with Proposition 3 are the main ideas for proving our result.
Notice that maps from C0(Xn) having property P have every periodic orbit contained
in one branch, which is useful for proving next three lemmas proved previously in the
proof of Lemmas 5 and 6 from [11].
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Lemma 4 Assume f ∈ C0(Xn) has property P. Let x ∈ Bi, 1 ≤ i ≤ n, be such

that f(x) /∈ Bi. Then for any k ∈ N such that fk(x) ∈ Bi it follows that fk(x) < x.

Lemma 5 Assume f ∈ C0(Xn) has property P. Let x ∈ Xn be such that s(x) is
not eventually constant. Then lim

k→∞
fk(x) = 0, that is, ω(x, f) = {0}.

For any Y ⊂ Xn, let τY : Xn → Y be the natural retraction from Xn to Y . For
f ∈ C0(Xn), let fY ∈ C(Y ) be defined by fY = τY ◦ f |Y , where f |Y means the

restriction of f to Y . For each i ∈ {1, . . . , n} define fi = fBi
∈ C(Bi). Notice that fi

is conjugated to a map g ∈ C([0, 1]) holding g(0) = 0.

Lemma 6 Assume f ∈ C0(Xn) has property P. Then for all j ∈ {1, . . . , n}, ω(f)∩

Bj = ω(fj). In particular, ω(f) =
⋃n

j=1 ω(fj) and hence ω(f) is compact.

Let x, y ∈ Xn. We write x ≺ y to mean that either x < y or x ∈ Bi and y ∈ Bj

for some i, j ∈ {1, . . . , n}, i 6= j. Given S, T ⊂ X, we say that S ≺ T if s ≺ t for all
s ∈ S and t ∈ T .

Lemma 7 Assume f ∈ C0(Xn) has property P and h(f) = 0. Let x ∈ Bi for some
1 ≤ i ≤ n and let a ∈ Bi be such that x ≺ a and f(1) = 0. Then f i(x) ≺ a for
all i ∈ N.

Proof Assume the contrary and let j ∈ N be such that a ≺ f j(x). Then a ≤ f j(x),
f j(1) = f j(0) = 0 and 0 < x < a. Therefore [0, a] ⊆ f j([0, x]) and [0, a] ⊆ f j([x, a]),
that is, f j has a 2-horseshoe. By [19, Theorem A], h(f j) > 0. By [2, Chapter 4],
h(f j) = h(f)j. Then h(f) > 0, which leads us to a contradiction.

Let x ∈ Xn and 0 < ε < min{|x|, 1 − |x|}. Denote by x−ε and xε the elements such
that x−ε < x < xε and |x − xε| = |x − x−ε| = ε.

Lemma 8 Assume f ∈ C0(Xn) has property P and h(f) = 0. Let J ⊂ X be an
open interval such that J ∩ ω(f) = ∅. Then, for any y ∈ J there is an interval Jy,
y ∈ Jy, containing at most two points of each orbit.

Proof For y ∈ J ⊂ Bj , j ∈ {1, . . . , n}, we distinguish three cases: f(y) /∈ Bj ,
f(y) ∈ Bj and f(y) = 0.

First, assume that f(y) /∈ Bj . Let (a, b) ⊂ Bj be such that y ∈ (a, b), f(1) = 0 and

f(a, b) ∩ Bj = ∅. If f i(a, b) ≺ (a, b) for all i ∈ N, then the proof concludes. So, let
m ∈ N be the first integer such that fm(a, b) ∩ (a, b) 6= ∅. Assume that if any positive
integer i is big enough, then it is held fm(y−εi

, yεi
)∩(y−εi

, yεi
) 6= ∅ with εi = 1/i. Hence

∩i(f
m(y−εi

, yεi
)∩ (y−εi

, yεi
)) = {y}. Since fm is continuous, we would have fm(y) = y,

which leads us to a contradiction. So there is i ∈ N such that fm(y−εi
, yεi

) ≺ (y−εi
, yεi

)
(cf. Lemma 4) and (y−εi

, yεi
) ⊂ (a, b). Now, we distinguish two cases. If a = 0 then by

Lemma 4 fk(y−εi
, yεi

) ≺ (y−εi
, yεi

) for all k ≥ m and the proof concludes. If a 6= 0,
then applying Lemmas 4 and 7, fk(y−εi

, yεi
) ≺ (y−εi

, yεi
) for all k ≥ m, which finishes

the proof.
Now, assume that f(y) ∈ Bj . Let (a, b) ⊂ Bj be such that y ∈ (a, b) and f(a, b) ⊂

Bj . Assume that any open subinterval J containing y contains at least three points of
some orbit, that is, there is an x ∈ X and there are n1 < n2 < n3 such that fni(x) ∈ J ,
1 ≤ i ≤ 3. By Lemma 6 and [10, Proposition 11, Chapter 4], there is an interval Jy

holding that for any x ∈ Xn with fni(x) ∈ Jy, 1 ≤ i ≤ 3, there is k ∈ N, n1 < k < n3,

such that fk(x) /∈ Bj . Then, fk−1(x) ∈ (c, d) with f(c) = 0 and f(c, d) ∩ Bj = ∅.
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By Lemma 7, (c, d) ≺ Jy. Then, by Lemma 4, for all integer m > k it holds that
fm(x) ≺ Jy, a contradiction.

Finally, assume that f(y) = 0. Since f(0) = 0 and f is uniformly continuous, there
are real numbers εn > · · · > ε1 > 0 such that

f(B(0, εj)) ⊂ B(0, εj+1) for j = 1, 2, . . . , n − 1. (7)

Since f(y) = 0, there is δ > 0 such that f(y−δ, yδ) ⊂ B(0, ε1). On the other hand, let
K = max{|fj(z)| : z ∈ [0, y]} and let z0 ∈ [0, y] be such that |f(z0)| = |fj(z0)| = K.
Clearly εn and δ can be chosen such that

(y−δ, yδ)
⋂

[0, fj(z0)] = ∅ (cf. Lemma 7) (8)

and (y−δ, yδ) ∩ B(0, εn) = ∅. Now, let x ∈ (y−δ, yδ) and notice that f(x) ∈ B(0, ε1).
If f i

j(x) = f i(x) for all i ∈ N then, as (y−δ, yδ) ∩ [0, fj(z0)] = ∅, we conclude that

f i(x) /∈ (y−δ, yδ) for all i ∈ N and we finish. So, let m be the first integer such that

fm(x) /∈ Bj . If m > 1, and k > m holds fk(x) ∈ Bj , then by Lemma 4, fk(x) < f(x)

and hence fk(x) ∈ B(0, ε1). This, jointly with (8) gives us {f i(x) : i ∈ N} ∩ (y−δ, yδ) =
∅. To finish the proof, assume m = 1 and let k be the smallest integer such that
fk(x) ∈ Bj (if such k does not exist we finish). Let l < n be the number of branches

in which the set {f i(x) : 1 ≤ i ≤ k} lies. Notice that if an element z ∈ B(0, εs) ∩ Br,

1 ≤ r, s ≤ n, f i(z) ∈ Br for some i ∈ N and f i+1(z) /∈ Br, then by Lemmas 4 and 7,
f i(z) ∈ B(0, εs). Then, by (7), fk(x) ∈ B(0, εl) and by Lemma 4 and (8) we conclude
that {f i(x) : i ∈ N} ∩ (y−δ, yδ) = ∅, which ends the proof.

The argument of the proof of the following result is very similar to the analogous
result for interval continuous maps.

Corollary 9 Assume f ∈ C0(Xn) has property P and h(f) = 0. For any open
set U ⊃ ω(f) there is a positive integer q = q(U) such that at most q points of any
trajectory lie outside U .

Proof The set Xn\U is compact. By Lemma 8, for any y ∈ Xn\U , there is an open
interval Jy (relative to Xn\U) containing at most two points of any orbit. Since Xn\U
is a compact set we can obtain a finite number of such intervals covering Xn\U , which
ends the proof.

Proposition 10 Assume f ∈ C0(Xn) has property P. Then f is chaotic iff fi ∈

C(Bi) is chaotic for some i ∈ {1, . . . , n}.

Proof First, assume that fi is chaotic for some i ∈ {1, 2, . . . , n}, and let S ⊂ Bi

be a scrambled set. Notice that if x ∈ S then f j
i (x) 6= 0 for all j ∈ N (in other case

ω(x, f) = {0} and x /∈ S). Hence the trajectory of any x ∈ S is contained in Bi which
implies that the trajectories of x under fi and f are the same. Then S is also a scrambled
set for f .

Now, assume that f is chaotic and let S ⊂ Xn be an uncountable scrambled set of
f . Let x ∈ S. By Lemma 5, the sequence s(x) must be eventually constant, because
in other case the orbit of x would be attracted by the fixed point 0. Let r be such
that sj = sr for all j ≥ r, but sr−1 6= sr. On the other hand, let y ∈ S. Since

lim infj→∞ d(f j(x), f j(y)) = 0, we have that the trajectory of y is eventually contained

in Bsr
. Let [0, a] =

⋂

j≥0(fsr
)j(Bsr

). Since fsr
is an interval map, by [9, Lemma 3.5],
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if {(fsr
)j(f r(x)) : j ∈ N}∩ [0, a] is empty, then the trajectory of f r(x) will be attracted

by a periodic orbit and then x cannot belong to any scrambled set. So, there is jx ≥ r
such that f jx(x) ∈ [0, a]. Since fsr

|[0,a] is surjective, there is x0 ∈ [0, a] such that

f jx(x0) = f jx(x). Similarly, there are y0 ∈ [0, a] and jy ≥ r such that f jy(y0) = f jy (y).
Let S0 = {y0 ∈ Bse

: y ∈ S} ⊂ [0, a]. Then it is straightforward to see that S0 is a
scrambled set for fsr

and therefore fsr
is chaotic.

In order to finish the preparatory work to prove our main result, we prove the following
lemma, which is an extension of a similar lemma from [14].

Lemma 11 Assume f ∈ C0(Xn) has property P and h(f) = 0. Suppose f is non-
chaotic. Then, for any ε > 0 there are points x1, . . . , xk ∈ ω(f), and a set U ⊃ ω(f),
relatively open in Xn, with the following property: if

f j(x) ∈ U for 0 ≤ j ≤ r,

then there is some i such that for any j with 0 ≤ j ≤ r

d(f j(x), f j(xi)) < ε.

Proof Let f be non-chaotic. By Proposition 10, fi is non-chaotic for i = 1, . . . , n.
Then, by [12, Theorem 2.3], for i = 1, . . . , n it holds that fi|ω(fi) are Lyapunov stable

(it has equicontinuous powers), and any point y ∈ ω(fi) is almost periodic (for any
neighborhood G of y there is an integer m > 0 such that fm·j(y) ∈ G for any j ≥ 0).
By Lemma 6 it is easy to see that

f |ω(f) is Lyapunov stable (9)

and
every point in ω(f) is almost periodic. (10)

Then, using (9) and (10) and following the proof of the lemma from [14] we obtain the
result.

4 Proof of Theorem 2

First, consider the case h(f) = 0. Following the proof of Theorem 1.5 from [5] we see
that fN , N = n!(n − 1)! . . . 2!1!, holds property P . Additionally, by [2, Chapter 4],
h(fN ) = Nh(f) = 0. So, by Proposition 3 we may assume without loss of generality
that f has property P .

First, assume f is non-chaotic and let A be a strictly increasing sequence of positive
integers. Then, applying Lemma 11 and Corollary 9 and proceeding as in the first part
of the proof of the main result of [14], we obtain that hA(f) = 0 for all A. Now assume
that f is chaotic. By Proposition 10, fi is chaotic for some i ∈ {1, . . . , n}. Following [14],

there is a interval J ⊂ Bi, with f2j

i (J) = f2j

(J) = J for some j ∈ N and such that

fk
i (J) ⊂ Bi for 1 ≤ k ≤ 2j . Additionally, f2j

i |J is chaotic and hence hA(f2j

i |J) > 0.
Then

h2j ·A(f) ≥ h2j ·A(f, J) = h2j ·A(fi, J) = hA(f2j

i |J) = hA(f2j

i , J) > 0,
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where 2j · A = (2j · ai)
∞
i=1.

Finally, assume h(f) > 0. By [19], there is an l ∈ N such that f l has a k-horseshoe.
Since h(f l) = lh(f) > 0, by Proposition 3 we may assume that l = 1. So, there is an
interval J and k subintervals J1, . . . , Jk with pairwise disjoint interiors and such that
J ⊆ f(Ji). There is an invariant compact subset Y included in at most two branches
such that f |Y is semiconjugate to a shift map defined on Σ = {(xj)

∞
j=1 : xj ∈ {0, 1}}

(see e.g. [10, Chapter 2]). Then, it is straightforward to check that f is chaotic, and the
proof concludes.

Corollary 12 Let f ∈ C0(Xn) be such that 0 ∈ Per (f). Then f is chaotic iff there
is an increasing sequence of positive integers A such that hA(f) > 0.

Proof Just apply Proposition 3 and Theorem 2.
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