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Abstract: The adaptive control problem of a class of stochastic time-delay
systems is investigated. Firstly we consider a simple class of stochastic sys-
tems with time-varying delays and design the corresponding adaptive con-
troller based on the solution of linear matrix inequalities (LMIs), which can
render the closed-loop asymptotically stable in probability. Then we apply
the adaptive idea to the interconnected system case. Under the condition that
interconnections satisfy the matching condition, we propose a class of decen-
tralized feedback controllers and the corresponding closed-loop systems are
also asymptotically stable in probability. Numerical examples on controlling
the two classes of stochastic systems are given to show the validity of obtained
theoretical results.
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1 Introduction

Time-delay is often encountered in various engineering systems, such as electrical net-
works, turbojet engines, microwave oscillators, nuclear reactors, rolling mills, chemical
processes, manual control, long transmission lines in pneumatic, and hydraulic systems,
etc. Its existence is often a source of instability and poor performance. Therefore, the
problem of stability analysis and robust control for dynamic time-delay systems has at-
tracted considerable attention of a number of researchers over the past years, see for
example, [1 – 4] and the references therein.
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In this paper we will focus on controlling stochastic time-delay systems. In the existing
literature, some work has been done on stability analysis and control for stochastic time-
delay systems. The robust stability problem of linear stochastic time-delay systems
was studied in [5], while robust stability analysis for stochastic delay interval systems is
considered in [6]. In [7], the problem of control for uncertain stochastic time-delay systems
was considered, and the results were given in the form of LMIs. Filtering problem for
uncertain stochastic systems was considered in [8 – 10]. In the meantime, the problem of
control for interconnected stochastic time-delay systems was tackled in [11].

Unlike the existing results in literature, in this paper, we investigate the adaptive con-
trol problem of stochastic time-delay systems, whose bounds of uncertainties in matching
parts are not required to be known. Firstly we consider a simple class of stochastic sys-
tems with time-varying delays. Corresponding adaptive controller is designed based on
the solution of LMI. Then we apply the adaptive idea to the interconnected system case.
Under the condition that interconnections satisfy the matching condition, we propose
a class of decentralized feedback controllers, which can render the closed-loop systems
asymptotically stable.

2 Problem Formulation

Consider the following time delay system

dx = (Ax+ f(x, x(t− d(t)) +Bu) dt+ g(x, x(t − h(t))) dw,

x(t) = ϕ(t), t ∈ [−d, 0].
(1)

where x ∈ Rn and u ∈ Rm are the state and control input respectively, d(t) and h(t) are
time-varying delay parameters, A and B are known constant matrices with appropriate
dimensions. w is a zero-mean Wiener process. f(·) and g(·) are uncertain nonlinear
function vectors.

For system (1), we introduce the following standard assumptions.

Assumption 2.1 The time-varying time delays d(t) satisfies

ḋ(t) ≤ τ < 1, ḣ(t) ≤ k < 1. (2)

Assumption 2.2 The nonlinear function f (·) can be decomposed into the matched
form and the unmatched form

f(x, x(t− d(t))) = Bξ(x, x(t − d(t))) + ζ(x, x(t − d(t))), (3)

where ξ(x, x(t − d(t))) and ζ(x, x(t − d(t))) satisfy

‖ξ (x, x (t− d (t)))‖ ≤ β1 ‖x‖ + β2 ‖x (t− d (t))‖ , (4)

‖ζ (x, x (t− d (t)))‖ ≤ γ1 ‖x‖ + γ2 ‖x (t− d (t))‖ , (5)

where γ1 and γ2 are known positive scalars, β1 and β2 are unknown positive scalars.
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Assumption 2.3 There exist matrix Y , positive matrix X and positive scalars ε1
and ε2 such that the following LMI holds


AX +XAT +BY + Y TBT + ε1γ

2
1I + ε2

1−τ γ
2
2I X X

X −ε1I 0
X 0 −ε2I


 < 0. (6)

Assumption 2.4 The nonlinear function g satisfies

gTPg ≤ α2

∥∥BTPx
∥∥ ‖x (t− h (t))‖ + α3

∥∥BTPx (t− h (t))
∥∥ ‖x‖

+ α1

∥∥BTPx
∥∥ ‖x‖ + α4

∥∥BTPx (t− h (t))
∥∥ ‖x (t− h (t))‖ ,

(7)

where matrix P = X−1, X satisfies LMI (6), αi (i = 1, 2, 3, 4) are unknown positive
scalars.

Remark 1 Assumption 2.1 is often needed on investigating time-delay systems by em-
ploying Lyapunov-Krasovskii method. Different from the existing literatures on control of
stochastic time-delay systems, we divide the uncertainties into matched and unmatched
parts and the bounds of matched parts are not needed to be known in Assumption 2.2.
Assumption 2.3 is to guarantee that the system is asymptotically stable without the
matching parts and the stochastic parts. In practical systems we may also not know the
function g exactly, so Assumption 2.4 is imposed.

Before giving the problem statement in this paper, we first introduce the following
definition of stability in probability.

Consider the nonlinear stochastic system

dx = f(x, x(t − d))dt+ g(x, x(t− d))dw, (8)

where x ∈ Rn is the state, w is an r-dimensional standard Wiener process, and functions
f and g are locally Lipschitz and satisfy f(0, 0) = 0 and g(0, 0) = 0.

Definition 2.1 [7] The equilibrium x = 0 of the system (8) is said to be globally
asymptotically stable in probability for given x(t) if for any s ≥ 0 and ε > 0

lim
x→0

P

{
sup
s<t

|xs,x
t | > ε

}
= 0, P

{
lim

t→+∞

|xs,x
t | = 0

}
= 1,

where xs,x
t denotes the solution at time t of a stochastic differential equation starting

from the state x at time s for s ≤ t.

Lemma 2.1 [12] Consider system (8) and suppose there exists a positive definite, ra-
dially unbounded, twice continuously differentiable function V (x) such that the following
inequality holds

LV (x) =
∂V (x)

∂x
f(x) +

1

2
tr

[
g(x)T

∂2V

∂x2
g(x)

]
< 0,

then system (8) is globally asymptotically stable in probability.

In this paper, we will firstly consider designing controller to render system (1) globally
asymptotically stable in probability under the above assumptions, then further apply
the design idea to interconnected stochastic system case and design the corresponding
controller.

3 Robust Controller Design

In this section we will investigate designing adaptive state feedback controller to stabilize
uncertain stochastic system (1).
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Theorem 3.1 For system (1), the following adaptive state feedback controller

u = Kx−
1

2
θ(t)BTPx, (9)

where K = Y X−1, and matrices P , Y and X satisfy (6), θ(t) is adaptive parameter
whose adaptive law is

dθ(t)

dt
= a‖BTPx‖2, (10)

where a is an arbitrary positive scalar, can render the closed-loop system robustly stable
in probability.

Proof Substituting (9) into (1), we can obtain

dx =

(
Ax+ f(x, x(t − d(t)) +BK −

1

2
Bθ(t)BTPx)

)
dt+ g(x, x(t − h(t)))dw. (11)

Choose the following Lyapunov–Krasovskii function

V = xTPx+
1

2
a−1θ̃Tθ̃ +

(
δ6 + ε−1

2

)
t∫

t−d(t)

‖x(ξ)‖2dξ

+

(
δ2

1 − k
+

δ4

1 − k

) t∫

t−h(t)

‖x(ξ)‖2dξ

+

(
α2

3

4δ3(1 − k)
+

α2
4

4δ4(1 − k)

) t∫

t−h(t)

‖BTPx(ξ)‖2dξ,

(12)

where δi, (i = 1, 2, . . . , 6) are positive scalars, θ̃ = θ − θ̂(t), θ̂ is a positive scalar defined
in (18).

Taking the time derivative of above Lyapunov function, one can get

LV ≤ 2xTP (Ax+ f (x, x (t− d)) +BK) − xTPBθ (t)BTPx

+ g (x, x (t− h))
T
Pg (x, x (t− h)) + a−1θ̃

˙̃
θ

+
(
δ6 + ε−1

2

) [
‖x‖

2
− (1 − τ) ‖x (t− d (t))‖

2
]

+
1

1 − k
(δ2 + δ4)

(
‖x‖

2
− (1 − k) ‖x(t − h(t))‖

2
)

+
1

(1 − k)

(
α2

3

4δ3
+
α2

4

4δ4

) (∥∥BTPx (t)
∥∥2

− (1 − k)
∥∥BTPx (t− h (t))

∥∥2
)
.

(13)

From Assumption 2.4, we obtain that

gTPg ≤ α2

∥∥BTPx
∥∥ ‖x (t− h (t))‖ + α3

∥∥BTPx (t− h (t))
∥∥ ‖x‖

+ α1

∥∥BTPx
∥∥ ‖x‖ + α4

∥∥BTPx (t− h (t))
∥∥ ‖x (t− h (t))‖

≤
α2

1

4δ1

∥∥BTPx
∥∥2

+ δ1 ‖x‖
2
+
α2

2

4δ2

∥∥BTPx
∥∥2

+ δ2 ‖x (t− h (t))‖
2

+
α2

3

4δ3

∥∥BTPx (t− h (t))
∥∥2

+ δ3 ‖x‖
2

+
α2

4

4δ4

∥∥BTPx (t− h (t))
∥∥2

+ δ4 ‖x (t− h (t))‖2
.

(14)
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We know

2xTP (A+ f (x, x(t− d)) +BK)

= xT
(
PA+ATP + PBK +KTBTP

)
x+ 2xTPBξ (x, x (t− d (t)))

+ 2xTPζ (x, x (t− d)t))

≤ xT
(
PA+ATP + PBK +KTBTP

)
x+

β2
1

δ5
xTPBBTPx+ δ5 ‖x‖

2

+
β2

2

(1 − τ) δ6
xTPBBTPx+ (1 − τ) δ6 ‖x (t− d (t))‖

2
+ ε1γ

2
1x

TPPx

+ ε−1
1 ‖x‖

2
+

ε2

(1 − τ)
γ2
2x

TPPx+ (1 − τ) ε−1
2 ‖x (t− d (t))‖

2
.

(15)

Substituting (14), (15) into (13), we can further obtain that

LV ≤ −xTΦx+
(
θ̂ − θ

) ∥∥BTPx
∥∥2

+ a−1θ̃
˙̃
θ, (16)

where

−Φ = PA+ATP + PBK +KTBTP + ε1γ
2
1PP + ε−1

1 I +
ε2

(1 − τ)
γ2
2PP

+ ε−1
2 I + δ1 +

1

1 − k
δ2 + δ3 +

1

1 − k
δ4 + δ5 + δ6,

(17)

θ̂ =
β2

1

δ5
+

β2
2

δ6 (1 − τ)
+
α2

1

4δ1
+
α2

2

4δ2
+

α2
3

4δ3 (1 − k)
+

α2
4

4δ4 (1 − k)
. (18)

As we know if LMI (6) holds, the following inequality stands

AX +XAT +BY + Y TBT + ε1γ
2
1I +

ε2

1 − τ
γ2
2I + ε−1

1 XTX + ε−1
2 XTX < 0. (19)

Further, the following inequality holds (by multiply P on both sides of (19)
with P = X−1)

PA+ATP + PBK +KTBTP +

(
ε1γ

2
1 +

ε2

1 − τ
γ2
2

)
PP + ε−1

1 I + ε−1
2 I < 0. (20)

Therefore, from (17) and (20) we know there always exist sufficiently small positive
scalars δi ( i = 1, 2, . . . , 6) such that

Φ > 0. (21)

Substituting (10) into (16), we can obtain

LV ≤ −xTΦx (22)

which implies that the closed-loop system is robustly stable in probability.
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Corollary 3.1 If Assumptions 2.1, 2.4 and Assumption 2.2 with ζ(·) = 0 are satis-
fied, and the pair (A, B) is completely controllable, the following controller

u = −
1

2
θ(t)BTPx (23)

with adaptive law
dθ(t)

dt
= a‖BTPx‖2, (24)

where a is a positive scalar, will render the closed-loop system (1) robustly stable in
probability.

Proof If (A, B) are completely controllable, for a given positive matrix Ω there always
exist positive scalar µ such that the following Riccati equality

PA+ATP − µPBBTP = −Ω (25)

has positive matrix solution P . From the above proof, we can design the following
controller

u = −
1

2
µBTPx−

1

2
Θ(t)BTPx (26)

with adaptive law
dΘ(t)

dt
= a‖BTPx‖2. (27)

Further we let θ(t) = Θ(t) + µ, where µ is a positive scalar. Thus the controller (26),
(27) will give us the desired result.

Corollary 3.2 If B = I (I is an identity matrix) and Assumption 2.1 holds, the
following controller

ui = −
1

2
Θ(t)x

with adaptive law
dΘ(t)

dt
= a‖x‖2

will render the closed-loop system (1) robustly stable in probability.

Proof If B = I, it is easy to see (A, B) are completely controllable and Assump-
tion 2.4 is satisfied. Therefore, we can design the required adaptive controller to achieve
our goal.

Remark 3.1 In the designed controller, we adopt the adaptive law (10). In fact, we
can also use the σ-modification adaptive law, that is (10) can be changed into

dθ(t)

dt
= a‖BTPx‖2 − σθ(t), (28)

where σ is an adjustable parameter. Compared with the adaptive law (10), the modified
adaptive control law (28) can improve the robust performance for the closed-loop systems.
Similar to the proof of above, we can also obtain the closed-loop system (1) and (28) is
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uniformly ultimately bounded stable, and the bounds of the steady-state can be adjusted
to be sufficiently small by selecting small parameter σ [4].

4 Control of Interconnected Time Delay Systems

In this section, we investigate a class of interconnected stochastic time-delay systems. A
controller is designed to stabilize the underlying system. Different from the literature,
instead of using bounds of uncertainties to design the controller, we assume all the
bounds unknown. Therefore, the proposed adaptive decentralized feedback controller
can be applied to stabilization of a large class of interconnected time-delay systems.

Consider the following interconnected systems whose i-th subsystem is described by

dxi = (Aixi +Biui) dt+ fi(xi, x1, x2, . . . , xn, x1(t− di1(t), . . . , xn(t− din(t)))) dt

+ gi(xi, x1, x2, . . . , xn, x1(t− hi1(t), . . . , xn(t− hin(t)))) dw,

i = 1, 2, . . . , N.

(29)

We impose the following assumptions on system (29).

Assumption 4.1 For i, j = 1, 2, ..., N , the time-varying time delays satisfy

ḋij(t) ≤ τj < 1, ḣij(t) ≤ kj < 1. (30)

Assumption 4.2 For i, j = 1, 2, ..., N and given Qi > 0, there exist matrix Pi > 0
and scalar σi > 0 such that the following equality holds

PiAi +AiPi − σiPiBiB
T
i Pi = −Qi. (31)

Assumption 4.3 For i = 1, 2, ..., N , the nonlinear functions fi(·) satisfy matching
condition

fi (·) = Biξi (·) , (32)

where ξi (·) satisfies

‖ξi (·)‖ ≤

N∑

j=1

(ρij ‖xj‖ + ϕij ‖xj (t− dij (t))‖) . (33)

Here ρij and ϕij are unknown positive scalars, i, j = 1, 2, ..., N .

Assumption 4.4 The following inequalities hold

gi (·)
T
Pigi (·) ≤

N∑

j=1

∥∥BT
i Pixi

∥∥ (
φij ‖xj‖ + φij ‖xj (t− hij (t))‖

)

+

N∑

j=1

∥∥BT
i Pixi (t− hij)

∥∥ (
ψij ‖xj‖ + ψij ‖xj (t− hij (t))‖

)
,

(34)

where φij , φij , ψij and ψij are positive scalars, i, j = 1, 2, ..., N .

Now we are ready to present our main result in this paper.
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Theorem 4.1 For interconnected stochastic systems (29) under Assumptions 4.1 –
4.4, the following decentralized feedback controller, for i = 1, 2, ..., N ,

ui = −
1

2
Θi (t)BT

i Pixi (35)

with adaptive law
dΘi (t)

dt
= ai

∥∥BT
i Pixi

∥∥2
(36)

will render the closed-loop system robustly stable in probability, where ai is a positive
scalar.

Proof Choose the following Lyapunov function

V =
N∑

i=1

Vi +
N∑

i=1

N∑

j=1

1

1 − τj
δ2j

t∫

t−dij

‖xj(ζ)‖
2dζ +

N∑

i=1

1

2
a−1

i Θi(t)
2

+

N∑

i=1

N∑

j=1

1

1 − kj
(δ4j + δ6j)

t∫

t−hij

‖xj(ζ)‖
2dζ

+

N∑

i=1

N∑

j=1

1

1 − kj
(δ−1

5j ψ
2
ij + δ−1

6j ψ
2

ij)

t∫

t−hij

‖BT
i Pixi(ξ)‖

2dξ,

(37)

where δsj (s ∈ [1, 6], j ∈ [1, N ]) are positive scalars and

Vi = xT
i Pixi,

Θi (t) = Θ̂i − Θi (t) ,
(38)

Θ̂i is defined in (44) (below).
Taking the derivative of V with respect to time t, along the closed-loop system, we

obtain

LV =
N∑

i=1

LVi +
N∑

i=1

aiΘi (t) Θ̇i (t)

+

N∑

i=1

N∑

j=1

1

1 − τj
δ2j

(
‖xj (t)‖

2
− (1 − τj) ‖xj (t− dij (t))‖

2
)

+

N∑

i=1

N∑

j=1

1

1 − kj
(δ4j + δ6j)

(
‖xj (t)‖

2
− (1 − τj) ‖xj (t− hij (t))‖

2
)

+
N∑

i=1

N∑

j=1

1

1 − kj

(
δ−1
5j ψ

2
ij + δ−1

6j ψ
2

ij

)

×
(∥∥BT

i Pixi

∥∥2
− (1 − kj)

∥∥BT
i Pixi (t− hij (t))

∥∥2
)
.

(39)
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We know
LVi = 2xT

i Pi (Aixi +Biui + fi) + gT
i Pigi (40)

and
2xT

i Pifi = 2xT
i PiBiξi (·)

≤
N∑

j=1

[
2

∥∥xT
i PiBi

∥∥ ρij ‖xj‖ + 2
∥∥xT

i PiBi

∥∥ϕij ‖xj (t− dij (t))‖
]

≤

N∑

j=1

[
δ−1
1j ρ

2
ij

∥∥xT
i PiBi

∥∥2
+ δ1j ‖xj‖

2
]

+

N∑

j=1

[
δ−1
2j ϕ

2
2j

∥∥xT
i PiBi

∥∥2
+ δ2j ‖xj (t− dij (t))‖

2
]
.

(41)

From Assumption 4.3 one can get

gT
i Pigi ≤

N∑

j=1

‖BT
i Pixi‖(φij‖xj‖ + φij‖xj(t− hij(t))‖)

+
N∑

j=1

‖BT
i Pixi(t− hij(t))‖(ψij‖xj‖ + ψij‖xj(t− hij(t))‖)

≤
N∑

j=1

[
δ−1
3j φ

2
ij

∥∥BT
i Pixi

∥∥2
+ δ3j ‖xj‖

2
]

(42)

+
N∑

j=1

[
δ−1
4j φ

2

ij

∥∥BT
i Pixi

∥∥2
+ δ4j ‖xj (t− hij (t))‖2

]

+
N∑

j=1

[
δ−1
5j ψ

2
ij

∥∥BT
i Pixi (t− hij (t))

∥∥2
+ δ5j ‖xj‖

2
]

+
N∑

j=1

[
δ−1
6j ψ

2

ij

∥∥BT
i Pixi (t− hij (t))

∥∥2
+ δ6j ‖xj (t− hij (t))‖2

]
.

Substituting (40) – (42) into (39), we obtain

LV ≤

N∑

i=1

[
xT

i

(
PiAi +AT

i Pi − σiPiBiB
T
i Pi

)
xi + σi

∥∥BT
i Pixi

∥∥2
]

+

N∑

i=1

(
a−1

i Θi (t) Θ̇i (t) − Θi (t)
∥∥xT

i PiBi

∥∥2
)

+

N∑

i=1

N∑

j=1

(
δ−1
1j ρ

2
ij + δ−1

2j ϕ
2
ij + δ−1

3j φ
2
ij + δ−1

4j φ
2

ij

+
1

1 − kj

(
δ−1
5j ψ

2
ij + δ−1

6j ψ
2

ij

) ) ∥∥BT
i Pixi

∥∥2

+

N∑

i=1

N∑

j=1

[
δ1j +

1

1 − τj
δ2j + δ3j +

1

1 − kj
(δ4j + δ6j) + δ5j

]
‖xj‖

2
.

(43)
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Let

Θ̂i =

N∑

j=1

(
δ−1
1j ρ

2
ij + δ−1

2j ρ
2
ij + δ−1

3j φ
2
ij + δ−1

4j φ
2

ij +
1

1 − kj

(
δ−1
5j ψ

2
ij + δ−1

6j ψ
2

ij

) )
+ σi,

λi = N

[
δ1i +

1

1 − τi
δ2i + δ3i +

1

1 − ki
(δ4i + δ6i) + δ5i

]
. (44)

Further, we obtain

LV ≤ −

N∑

i=1

[
xT

i (Qi − λiI)xi + (Θ̂i − Θi(t))‖B
T
i Pixi‖

2 +

N∑

i=1

a−1
i Θi(t)Θ̇i(t)

]
. (45)

Substituting (36) into (45), we obtain that

LV = −
N∑

i=1

xT
i (Qi − λiI)xi. (46)

From (46), by selecting sufficiently small parameters δli (l ∈ [1, 6]) we know parameters
λi can be small enough to ensure

Qi − λiI > 0.

It is readily to see that the closed-loop interconnected time-delay systems are robustly
asymptotically stable in probability.

5 Numerical Examples

In this section, simulation examples on time-delay stochastic systems and interconnected
stochastic systems are given to demonstrate the validness and feasibility of the obtained
theoretic results in previous sections.

Example 1 Consider the following stochastic time-delay system

dx =

{[
−3 1
1 2

]
x+

[
x1 (t− 0.5 (1 + sin t)) sin t

δ1x2 (t) cos t

]
+

[
0
1

]
u

}
dt

+

[
δ2 (|x2| |x1|)

1/2

δ3x2 (t− 0.3 (1 + sin (t))) cos t

]
dw,

(47)

where δ1, δ2 and δ3 are arbitrary scalars. We know the above system satisfying Assump-
tions 2.1 and 2.2, and when X = I, Y = 0, ε1 = ε2 = 1, Assumption 2.3 is also satisfied.
Further we can verify that Assumption 2.4 also holds.

Therefore, based on Theorem 2.1 we can obtain the following controller

u = −
1

2
θ(t)BTPx
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Figure 5.1. The states response curves with δi = 1.

Figure 5.2. The states response curves with δi = 5.

with adaptive law
dθ(t)

dt
= ‖x‖2.

The initial values are chosen as

x1(0) = 2, x2(0) = −1, θ(0) = 2

and the sample time is 0.01s. The simulation results are shown in Figure 5.1 and Fig-
ure 5.2. In Figure 5.1, it shows the response curves with above adaptive controller when
δ1 = δ2 = δ3 = 1. With the same controller, the response curves are shown in Figure 5.2
when δi = 5. From the figures, we can see that the designed controller can render the
closed-loop system stable.
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Example 2 Consider the following stochastic interconnected time-delay system

dx1 =

([
−4 1

1 1

] [
x11

x12

]
+

[
0
1

]
u

)
dt+

[
δ3 (|x11x21|)

1/2

δ4x12 (t− 0.3(1 + sin t)) cos t

]
dw

+

[
0

δ1x21 (t− 0.6 (1 + sin t)) + δ2x11 (t− 0.5 (1 + cos (t)))

]
dt,

dx2 =

{[
2 1
1 −4

] [
x21

x22

]
+

[
1
0

]
u+

[
δ5 (|x21 (t− 0.6 (1 + sin (t)))x12|)

1/2

0

]}
dt

+

[
δ6x21

δ7 (|x12 (t− 0.3 (1 + cos (t))) x21|)
1/2

]
dw.

We can verify that Assumptions 4.1 – 4.4 hold with Pi = I. Therefore the following
decentralized feedback controllers can be constructed.

ui = −
1

2
Θ̂i(t)B

T
i Pixi (48)

with adaptive law

dΘ̂i(t)

dt
= ‖BT

i Pixi‖
2. (49)

The initial values are chosen as

x11(0) = 2, x12(0) = 1, x21(0) = −1, x22(0) = −2, Θi(0) = 2.

When the parameters δi = 1, the states response curves are shown in Figure 5.3, while
Figure 5.4 depicts the curves when δi = 5. From the two figures, the proposed decentral-
ized feedback controllers guarantee the closed-loop system stable.

Figure 5.3. The states response curves of interconnected systems with δi = 1.
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Figure 5.4. The states response curves of interconnected systems with δi = 5.

6 Conclusion

In this paper, the robust control problem for uncertain stochastic time-delay systems is
investigated. First we considered a simple class of systems and designed the correspond-
ing adaptive feedback controller. Based on L-K method, we proved that the resulting
closed-loop system is asymptotically stable. Next, we studied the problem of adaptive
control of a class of time-delay interconnected stochastic systems. Sufficient conditions
to construct a desired controller are derived. Simulations on controlling the uncertain
systems are conducted and the results showed the potential of the proposed techniques.
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