
Nonlinear Dynamics and Systems Theory, 4(3) (2004) 285–301

Robust H∞ Filtering for Discrete Stochastic

Time-Delay Systems with Nonlinear Disturbances*

Huijun Gao1, James Lam2 and Changhong Wang1

1Space Control and Inertial Technology Research Center,

P.O.Box 1230, Harbin Institute of Technology,

Xidazhi Street 92, Harbin, 150001, P. R. China
2Department of Mechanical Engineering, The University of Hong Kong,

Pokfulam Road, Hong Kong

Received: September 29, 2004; Revised: November 4, 2004

Abstract: This paper deals with the problem of robust H∞ filtering for dis-
crete time-delay systems with stochastic perturbation and nonlinear distur-
bance. It is assumed that the state-dependent noises and the nonlinearities
satisfying global Lipschitz conditions enter into both the state and measure-
ment equations, and the system matrices also contain parameter uncertainties
residing in a polytope. Attention is focused on the design of robust full-order
and reduced-order filters guaranteeing a prescribed noise attenuation level in
an H∞ sense with respect to all energy-bounded noise inputs for all admissible
uncertainties and time delays. Sufficient conditions for the existence of such
filters are formulated in terms of a set of linear matrix inequalities, upon which
admissible filters can be obtained from the solution of a convex optimization
problem. A numerical example is provided to illustrate the applicability of
the developed filter design procedure.
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1 Introduction

During the past decades, stochastic modelling has played an important role in many
branches of science such as biology, economics and engineering applications. Therefore,
much attention has been drawn to systems with stochastic perturbations from researchers

*This work was partially supported by RGC HKU Grant 7028/04P.

c© 2004 Informath Publishing Group. All rights reserved. 285



286 HUIJUN GAO, JAMES LAM AND CHANGHONG WANG

working in related areas. By stochastic systems, we generally refer to systems whose pa-
rameter uncertainties are modelled as white noise processes. The appearance of these
parameter uncertainties are usually due to the random changes of the environment under
which the systems are operated, and thus it is a natural way to represent them in the
model by stochastic parameters fluctuating around some deterministic nominal values.
This kind of systems has been called systems with random parametric excitation [1], sto-
chastic bilinear systems [20, 30] and linear stochastic systems with multiplicative noise
[15, 17, 31]. Analysis and synthesis of stochastic systems have been investigated exten-
sively and many fundamental results for deterministic systems have been extended to
stochastic cases. To mention a few, the analysis of asymptotic behaviour can be found
in [21]; the optimal control problems were reported in [17, 31]; and recently with the
development of H∞ control theory, the robust control and filtering results have also been
extended to stochastic systems through Ricatti-like and linear matrix inequality (LMI)
approaches [8, 18].

On the other hand, since time delay exists commonly in dynamic systems and is
frequently a source of instability and poor performance, much theoretical work has been
produced for time-delay systems. The most powerful approach for solving problems
arising in time-delay systems so far has been the so-called Lyapunov-Krasovskii approach,
in which the asymptotic stability as well as performances can be established by employing
appropriate Lyapunov-Krasovskii functionals. Within this framework, a great number
of results have been reported, including stability analysis [26], state-feedback control
[5, 23, 28], output-feedback control [9, 10], filter design [12, 13] and model reduction [34],
etc.

The simultaneous presence of stochastic uncertainty and time delays results in sto-
chastic time-delay systems (STDS) have attracted much attention in recent years, and
some useful research results related to STDS have been reported in the literature. Among
these results, the exponential stability and asymptotic stability of stochastic differential
delay equations are investigated in [22, 24]; the problems of stabilization and H∞ con-
trol via a memoryless state-feedback are considered in [32]; and the filtering problems
have also been addressed in [2, 19] for different classes of STDS. These useful results
have greatly advanced the analysis and synthesis of stochastic systems. However, it is
worth noting that most of the aforementioned results are developed for continuous-time
systems, while few results are available for discrete time-delay systems with stochastic
perturbations which are also important in practical applications.

In this paper, we are interested in the problem of robust H∞ filtering for discrete sto-
chastic time-delay systems with parameter uncertainties and nonlinear disturbances. The
parameter uncertainty is assumed to be of polytopic-type, and the nonlinearity satisfies
global Lipschitz conditions, entering into both state and measurement equations. Atten-
tion is focused on the design of robust full-order and reduced-order filters guaranteeing
a prescribed noise attenuation level in an H∞ sense with respect to all energy-bounded
noise inputs for all admissible uncertainties and time delays. Sufficient conditions for
the existence of such filters are formulated in terms of a set of linear matrix inequalities,
upon which admissible filters can be obtained from the solution of a convex optimization
problem. A numerical example is provided to illustrate the applicability of the developed
filter design procedure.

Notations The notations used throughout the paper are fairly standard. The su-
perscript “T” stands for matrix transposition; Rn denotes the n-dimensional Euclidean
space and Rm×n is the set of all real matrices of dimension m × n; the notation P > 0
means that P is real symmetric and positive definite; I and 0 represent identity matrix
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and zero matrices; the notation | · | refers to the Euclidean vector norm; λmin(·), λmax(·)
denote the minimum and the maximum eigenvalue of the corresponding matrix respec-
tively. In symmetric block matrices or long matrix expressions, we use an asterisk (∗) to
represent a term that is induced by symmetry and diag{. . . } stands for a block-diagonal
matrix. In addition, E{x} and E{x| y} will, respectively, mean expectation of x and
expectation of x conditional on y. Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operations. The space of square summable
infinite sequence is denoted by l2[0,∞).

2 Problem Formulation

Consider the following discrete stochastic time-delay system with nonlinear disturbance:

S : xt+1 = [Axt + Adxt−d + Ff(xt, xt−d) + Bωt] + [Mxt + Mdxt−d]vt,

yt = [Cxt + Cdxt−d + Gg(xt, xt−d) + Dωt] + [Nxt + Ndxt−d]vt,

zt = Lxt,

xt = φt, t = −d, −d + 1, . . . , 0,

(1)

where xt ∈ Rn is the state vector; yt ∈ Rm is the measured output; zt ∈ Rp is the
signal to be estimated; ωt ∈ Rl is the disturbance input which belongs to l2[0,∞); vt

is a zero mean white noise sequence with covariance I; A, Ad, F , B, M , Md, C, Cd,
G, D, N , Nd, L are system matrices with appropriate dimensions; d > 0 is a constant
time delay; {φt : t = −d,−d + 1, . . . , 0} is a given initial condition sequence; f(xt, xt−d),
g(xt, xt−d) are known nonlinear functions. Throughout the paper, we make the following
assumptions.

Assumption 1 The nonlinear functions satisfy

(1) f(0, 0) = 0, g(0, 0) = 0;

(2) (Lipschitz conditions) there exist known real appropriately dimensioned matrices
S1, S2, T1, T2 such that for all x1, x2, y1, y2 satisfying

‖f(x1, x2) − f(y1, y2)‖ ≤ ‖S1(x1 − y1)‖ + ‖S2(x2 − y2)‖ ,

‖g(x1, x2) − g(y1, y2)‖ ≤ ‖T1(x1 − y1)‖ + ‖T2(x2 − y2)‖ .

Assumption 2 The system matrices are appropriately dimensioned with partially
unknown parameters. We assume that

Ω , (A, Ad, F, B, M, Md, C, Cd, G, D, N, Nd, L) ∈ R

where R is a given convex bounded polyhedral domain described by s vertices

R ,

{

Ω(λ) : Ω(λ) =

s
∑

i=1

λiΩi;

s
∑

i=1

λi = 1, λi ≥ 0

}

and Ωi , (Ai, Adi, Fi, Bi, Mi, Mdi, Ci, Cdi, Gi, Di, Ni, Ndi, Li) denotes the vertices of the
polytope R.
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Remark 1 The system under investigation in this paper contains both parameter and
nonlinear uncertainties. As can be seen in Assumption 2, the parameter uncertainties
are assumed to be of polytopic-type, entering into all the matrices of the system model.
The polytopic uncertainty has been widely used in the problems of robust control and
filtering for uncertain systems, see, e.g., [3, 7, 14] and the references therein and many
practical systems possess parameter uncertainties which can be either exactly modeled or
over-bounded by the polytope R. In addition, the nonlinear uncertainty in Assumption 1
has also been widely used in the literature, see, e.g., [16, 29, 33].

Remark 2 Although there is only a single delay taken into consideration in system S,
the results developed in this paper can be easily extended to systems with multiple state
delays. The reason why we consider single delay systems is to make our derivation more
lucid and to avoid complicated notations. It is also worth mentioning that the results
obtained in this paper can be readily extended to the case where vt enters system S in a
summation form, that is, the dynamic and measurement equations in system S have the
following form

xt+1 = [Axt + Adxt−d + Ff(xt, xt−d) + Bωt] +
r

∑

i=1

[Mixt + Mdixt−d] vti,

yt = [Cxt + Cdxt−d + Gg(xt, xt−d) + Dωt] +

r
∑

i=1

[Nixt + Ndixt−d] vti.

Here we are interested in estimating the signal zt by a linear dynamic filter of general
structure described by

F : x̂t+1 = AF x̂t + BF yt,

ẑt = CF x̂t,

x̂t = ϕt, t = −d,−d + 1, . . . , 0,

(2)

where x̂t ∈ Rk is the filter state vector and (AF , BF , CF ) are appropriately dimensioned
filter matrices to be determined. It should be pointed out that here we are interested
not only in the full-order filtering problem (when k = n), but also in the reduced-order
filtering problem (when 1 ≤ k < n). As can be seen in the following, these two filtering
problems are solved in a unified framework.

Augmenting the model of S to include the states of the filter F , we obtain the filtering
error system E :

E : ξt+1 =
[

Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt

]

+
[

Mξt + MdKξt−d

]

vt,

et = Cξt,

ξt = [ φT
t ϕT

t ]
T

, t ∈ [−d, 0],

(3)

where ξt = [ xT
t x̂T

t ]T , η(xt, xt−d) = [ fT(xt, xt−d) gT(xt, xt−d) ]T , et = zt − ẑt and

Ā =

[

A 0
BF C AF

]

, Ād =

[

Ad

BF Cd

]

, F =

[

F 0
0 BF G

]

, B =

[

B

BF D

]

,

M =

[

M 0
BF N 0

]

, Md =

[

Md

BF Nd

]

, C = [ L −CF ] , K = [ I 0 ] .

(4)

We first introduce the following definitions.
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Definition 1 The filtering error system E in (3) with ωt = 0 is said to be mean-
square stable if for any ǫ > 0, there is a δ(ǫ) > 0 such that E{|ξt|

2} < ǫ, t > 0 when
sup

−d≤s≤0
E{|ξs|

2} < δ(ǫ). In addition, if lim
t→∞

E{|ξt|
2} = 0 for any initial conditions, then

it is said to be mean-square asymptotically stable.

Definition 2 The filtering error system E in (3) is said to be mean-square asymptoti-
cally stable with an H∞ disturbance attenuation level γ if it is mean-square asymptotically
stable and under zero-initial conditions E{‖e‖2} < γ‖ω‖2 for all nonzero disturbances
ωt ∈ l2[0,∞), where

E{‖e‖2} , E

{( ∞
∑

t=0

eT
t et

)1/2}

, ‖ω‖2 ,

( ∞
∑

t=0

ωT
t ωt

)1/2

.

Throughout the paper, we make the following assumption.

Assumption 3 System S in (2) is mean-square asymptotically stable.

Remark 3 Assumption 3 is made based on the fact that there is no control in the
system model S in (1), therefore the original system S in (1) to be estimated has to be
mean-square asymptotically stable, which is a prerequisite for the filtering error system
E in (3) to be mean-square asymptotically stable.

Then the filtering problem to be addressed in this paper is expressed as follows.

Problem RHF (Robust H∞ Filtering): Given system S in (1), develop full-order
and reduced-order robust H∞ filters of the form F in (2) such that for all admissible
uncertainties, disturbances and time delays the filtering error system E in (3) is robustly
mean-square asymptotically stable with an H∞ disturbance attenuation level γ. Filters
satisfying this requirement are called robust H∞ filters.

Throughout the paper, (Āi, Ādi, F i, Bi, M i, Mdi, Ci) denotes matrices evaluated at
each of the vertices of the polytope R. The following lemma will be useful in our deriva-
tion.

Lemma 1 Let Φ1, Φ2, Φ3 and Π > 0 be given constant matrices with appropriate
dimensions. Then, for any scalar ǫ > 0 satisfying ǫI − ΦT

2 ΠΦ2 > 0 we have

[Φ1 + Φ2Φ3]
TΠ[Φ1 + Φ2Φ3] ≤ ΦT

1 [Π−1 − ǫ−1Φ2Φ
T
2 ]−1Φ1 + ǫΦT

3 Φ3

3 Filtering Analysis

This section is concerned with the filtering analysis problem. More specifically, assuming
that the matrices (AF , BF , CF ) of the filter F in (2) are already known, we shall study
the conditions under which the filtering error system E in (3) is mean-square asymptot-
ically stable with an H∞ disturbance attenuation level γ. To ease the exposition of our
results, we first consider the stationary case, i.e. Ω ∈ R is fixed. The following theorem
shows that the H∞ performance of the filtering error system can be guaranteed if there
exist some positive definite matrices satisfying certain LMIs. This theorem will play an
instrumental role in the filter design problems.
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Theorem 1 Consider system S in (1) with Ω ∈ R fixed, and suppose the filter
matrices (AF , BF , CF ) of F in (2) are given. Then the filtering error system E in (3) is
mean-square asymptotically stable with an H∞ disturbance attenuation level bound γ if
there exist matrices P > 0, Q > 0 and a scalar ǫ > 0 satisfying



















−P 0 0 PĀ PĀd PB PF

∗ −P 0 PM PMd 0 0
∗ ∗ −I C 0 0 0
∗ ∗ ∗ Θ1 0 0 0
∗ ∗ ∗ ∗ Θ2 0 0
∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ −ǫI



















< 0, (5)

where

Θ1 , −P + KTQK + 2ǫKT
(

ST
1 S1 + T T

1 T1

)

K,

Θ2 , −Q + 2ǫ
(

ST
2 S2 + T T

2 T2

)

.

Proof Let Xt , {ξt−d, ξt−d+1, . . . , ξt}, choose a Lyapunov functional candidate for
the filtering error system E

Wt(Xt) , W1 + W2,

W1 = ξT
t Pξt, W2 =

t−1
∑

i=t−d

ξT
i KTQKξi,

(6)

where P , Q are real symmetric positive definite matrices to be determined. Then, along
the solution of the filtering error system E we have

J , E{Wt+1(Xt+1) | Xt} − Wt(Xt) = E{[Wt+1(Xt+1) − Wt(Xt)] | Xt}

= E{∆W1 | Xt} + E{∆W2 | Xt}
(7)

where

E {∆W1 |Xt } = E
{(

ξT
t+1Pξt+1 − ξT

t Pξt

)∣

∣Xt

}

= E
{(

[

Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt

]T
P

×
[

Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt

]

+ 2
{[

Mξt + MdKξt−d

]

vt

}T
P

[

Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt

]

+
{[

Mξt + MdKξt−d

]

vt

}T
P

{[

Mξt + MdKξt−d

]

vt

}

− ξT
t Pξt

) ∣

∣

∣Xt

}

,

(8)

E {∆W2 |Xt } = E

{( t
∑

i=t+1−d

ξT
i KTQKξi −

t−1
∑

i=t−d

ξT
i KTQKξi

) ∣

∣

∣

∣

Xt

}

= E
{(

ξT
t KTQKξt − ξT

t−dK
TQKξt−d

) ∣

∣Xt

}

.

(9)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(3) (2004) 285–301 291

Then from (7)–(9), we obtain

J = [Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt]
TP [Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt]

+ [Mξt + MdKξt−d]
TP [Mξt + MdKξt−d] − ξT

t Pξt

+ ξT
t KTQKξt − ξT

t−dK
TQKξt−d. (10)

In addition, using Assumption 1, we have

‖f(xt, xt−d)‖ ≤ ‖S1xt‖ + ‖S2xt−d‖ ,

‖g(xt, xt−d)‖ ≤ ‖T1xt‖ + ‖T2xt−d‖ ,

which yields

‖f(xt, xt−d)‖
2 ≤ 2(‖S1xt‖

2 + ‖S2xt−d‖
2),

‖g(xt, xt−d)‖
2
≤ 2(‖T1xt‖

2
+ ‖T2xt−d‖

2
).

Then

ηT(xt, xt−d)η(xt, xt−d) = fT(xt, xt−d)f(xt, xt−d) + gT(xt, xt−d)g(xt, xt−d)

≤ 2
(

‖S1xt‖
2

+ ‖S2xt−d‖
2

+ ‖T1xt‖
2

+ ‖T2xt−d‖
2
)

= 2ξT
t KT

(

ST
1 S1 + T T

1 T1

)

Kξt + 2ξT
t−dK

T
(

ST
2 S2 + T T

2 T2

)

Kξt−d.

(11)

Since (5) implies ǫ > 0 and ǫI−F
T
PF > 0, by identifying Φ1 = Āξt+ĀdKξt−d+Bωt,

Φ2 = F , Φ3 = η(xt, xt−d) and Π = P in Lemma 1 , we have an upper bound for the
first term of J in (10)

[Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt]
TP [Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt]

≤ [Āξt + ĀdKξt−d + Bωt]
TΨ[Āξt + ĀdKξt−d + Bωt] + ǫηT(xt, xt−d)η(xt, xt−d),

(12)

where Ψ =
[

P−1 − ǫ−1FF
T
]−1

.

Then from (10)–(12) we have

J ≤
[

Āξt + ĀdKξt−d + Bωt

]T
Ψ

[

Āξt + ĀdKξt−d + Bωt

]

+ 2ǫξT
t KT

(

ST
1 S1 + T T

1 T1

)

Kξt + 2ǫξT
t−dK

T
(

ST
2 S2 + T T

2 T2

)

Kξt−d

+
[

Mξt + MdKξt−d

]T
P

[

Mξt + MdKξt−d

]

− ξT
t Pξt

+ ξT
t KTQKξt − ξT

t−dK
TQKξt−d

= σT
t Ξσt,

(13)

where

σt = [ ξT
t ξT

t−dK
T ωT

t ]
T

,

Ξ =













(

ĀTΨĀ − P + KTQK + M
T
PM

+2ǫKT
(

ST
1 S1 + T T

1 T1

)

K

)

ĀTΨĀd + M
T
PMd ĀTΨB

∗

(

−Q + ĀT
d ΨĀd + M

T

d PMd

+2ǫ
(

ST
2 S2 + T T

2 T2

)

)

ĀT
d ΨB

∗ ∗ B
T
ΨB













.
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Therefore, when assuming zero disturbance input ωt = 0, it follows that

J ≤ [ ξT
t ξT

t−dK
T ] Ξ̄ [ ξT

t ξT
t−dK

T ]
T

where

Ξ̄ =









(

ĀTΨĀ − P + KTQK+

2ǫKT
(

ST
1 S1 + T T

1 T1

)

K + M
T
PM

)

ĀTΨĀd + M
T
PMd

∗

(

−Q + ĀT
d ΨĀd + 2ǫ

(

ST
2 S2 + T T

2 T2

)

+M
T

d PMd

)









.

By Schur complement [4], LMI (5) implies the negative definiteness of Ξ̄, therefore, for
Xt 6= 0 we have J < 0, that is,

E {Wt+1(Xt+1) | Xt} < Wt(Xt)

which means that there exists 0 < βt < 1 satisfying

E {Wt+1(Xt+1)| Xt} < βtWt(Xt).

It is easy to obtain by using this relationship recursively that

E {Wt(Xt)| X0} <

t−1
∏

i=0

βiW0(X0) ≤ αtW0(X0)

where α = max
t

βt. Thus 0 < α < 1 and we have

E

{ N
∑

t=0

[Wt(Xt)| X0]

}

< (1 + α + · · · + αN )W0(X0) =
1 − αN+1

1 − α
W0(X0).

Since Q > 0, then

lim
N→∞

E

{ N
∑

t=0

[

xT
t Pxt

∣

∣

∣
X0

]

}

<
1

1 − α
W0(X0).

Using the Rayleigh quotient inequality, we have

lim
N→∞

E

{ N
∑

t=0

[

xT
t xt

∣

∣X0

]

}

<
1

(1 − α)λmin(P )
W0(X0)

which means E{|xt|
2
} → 0 as t → ∞, then from Definition 1, we know that the filtering

error system E in (3) with ωt = 0 is mean-square asymptotically stable.
To establish the H∞ performance, assume zero initial condition, we have W0(X0) = 0.

Now consider the following index

I , E

{ ∞
∑

t=0

(

eT
t et − γ2ωT

t ωt

)

}

. (14)
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Then, with (13) for all nonzero ωt we have

I = E

{ ∞
∑

t=0

(

eT
t et − γ2ωT

t ωt + E {Wt+1(Xt+1)| Xt} − Wt(Xt)
)

}

− E {W∞(X∞)}

≤ E

{ ∞
∑

t=0

(

eT
t et − γ2ωT

t ωt + J
)

}

= E

{ ∞
∑

t=0

σT
t Ξ̃σt

}

where

Ξ̃ =





















ĀTΨĀ − P + KTQK

+M
T
PM + C

T
C

+2ǫKT
(

ST
1 S1 + T T

1 T1

)

K



 ĀTΨĀd + M
T
PMd ĀTΨB

∗

(

−Q + ĀT
d ΨĀd + M

T

d PMd

+2ǫ
(

ST
2 S2 + T T

2 T2

)

)

ĀT
d ΨB

∗ ∗ −γ2I + B
T
ΨB

















.

Then, by Schur complement, (5) guarantees Ξ̃ < 0, which further implies I < 0 and
E{‖e‖2} < γ‖ω‖2, then the filtering error system E in (3) is mean-square asymptotically
stable with an H∞ noise attenuation level bound γ, and the proof is completed.

Remark 4 Theorem 1 presents a sufficient condition for the H∞ performance of
discrete-time stochastic time-delay systems with nonlinear disturbances. It is worth
pointing out that the condition presented in Theorem 1 is an LMI condition and there-
fore can be easily tested by standard numerical software [11]. In the case when we assume
vt = 0, that is, no stochastic uncertainty is present in system S, LMI (5) becomes















−P 0 PĀ PĀd PB PF

∗ −I C 0 0 0
∗ ∗ Θ1 0 0 0
∗ ∗ ∗ Θ2 0 0
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −ǫI















< 0. (15)

LMI (15) is an H∞ performance condition for linear discrete time-delay systems with non-
linear disturbances. In addition, if we further assume f(xt, xt−d) = 0 and g(xt, xt−d) =
0, then LMI (5) becomes











−P 0 PĀ PĀd PB

∗ −I C 0 0
∗ ∗ −P + KTQK 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −γ2I











< 0. (16)

LMI (16) is an H∞ performance condition for linear discrete time-delay systems.

Then, the following theorem provides a sufficient condition of robust H∞ performance
for the filtering error system E in (3).
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Theorem 2 Consider system S in (1) with Ω ∈ R representing uncertain matrices,
and suppose the filter matrices (AF , BF , CF ) of F in (2) are given. Then the filtering
error system E in (3) is robustly mean-square asymptotically stable with an H∞ distur-
bance attenuation level bound γ if there exist matrices Pi > 0, Qi > 0, V and scalars
ǫi > 0 satisfying



















Pi − V − V T 0 0 V TĀi V TĀdi V TBi V TF i

∗ Pi − V − V T 0 V TM i V TMdi 0 0
∗ ∗ −I Ci 0 0 0
∗ ∗ ∗ Π1 0 0 0
∗ ∗ ∗ ∗ Π2 0 0
∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ −ǫiI



















< 0

∀ i = 1, . . . , s,

(17)

where

Π1 = −Pi + KTQiK + 2ǫiK
T

(

ST
1 S1 + T T

1 T1

)

K,

Π2 = −Qi + 2ǫi

(

ST
2 S2 + T T

2 T2

)

.

Proof LMIs (17) guarantee that for any fixed Ω ∈ R, there exist matrices P > 0,
Q > 0, V and a scalar ǫ > 0 satisfying



















P − V − V T 0 0 V TĀ V TĀd V TB V TF

∗ P − V − V T 0 V TM V TMd 0 0
∗ ∗ −I C 0 0 0
∗ ∗ ∗ Θ1 0 0 0
∗ ∗ ∗ ∗ Θ2 0 0
∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ −ǫI



















< 0. (18)

In the following we will show that (18) is equivalent to (5). On one hand, if (5) holds,
(18) is readily established by choosing V = V T = P . On the other hand, if (18) holds, we

can explore the fact that V is nonsingular. In addition, we have (P − V )
T

P−1 (P − V ) ≥
0, which implies that −V TP−1V ≤ P − V T − V . Therefore we can conclude from (18)
that



















−V TP−1V 0 0 V TĀ V TĀd V TB V TF

∗ −V TP−1V 0 V TM V TMd 0 0
∗ ∗ −I C 0 0 0
∗ ∗ ∗ Θ1 0 0 0
∗ ∗ ∗ ∗ Θ2 0 0
∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ −ǫI



















< 0. (19)

Performing a congruence transformation to (19) by diag
{

I, V −1P, V −1P, I, I, I, I
}

yields (5), then the proof is completed.
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Remark 5 Instead of directly extending Theorem 1 to polytopic uncertain systems
based on the notion of quadratic stability, here we incorporate a new result of parameter-
dependent stability [6] to reduce the conservatism of filter designs in the quadratic frame-
work. Through the introduction of the slack variable V, the sufficient robust H∞ per-
formance condition resulting from Theorem 2 entails different positive definite matrices
Pi and Qi for each vertex of the polytope R, thus enabling us to obtain a parameter-
dependent performance criteria. To illustrate the benefit of such performance conditions,
let Ω̄(λ) denotes any given point of the polytope R. If we can find feasible solutions in
the light of (17), then it is not difficult to show that the Lyapunov matrices defined in
(6) for any fixed point Ω̄(λ) can be recovered by

P (λ) =

s
∑

i=1

λiPi, Q(λ) =

s
∑

i=1

λiQi,

which implies that there are different Lyapunov functionals for different points in the
polytope. Then, the Lyapunov functional defined in (6) for the whole uncertainty domain
R can be expressed as

Wt(Xt, λ) = ξT
t P (λ)ξt +

t−1
∑

i=t−d

ξT
i KTQ(λ)Kξi (20)

which is dependent of the parameter λ.

4 Filter Design

In this section we will focus on the design of full-order and reduced-order H∞ filters of
the form F based on Theorem 2. That is, to determine the filter matrices (AF , BF , CF )
which will guarantee the filtering error system E to be mean-square asymptotically stable
with an H∞ performance. The following theorem provides sufficient conditions for the
existence of such H∞ filters for system S.

Theorem 3 Consider system S in (1) with Ω ∈ R representing uncertain matrices.
Then an admissible robust H∞ filter of the form F in (2) exists if there exist matrices

X, Y , Z, ĀF , BF , CF , P1i, P2i, P3i, Qi and scalar ǫi > 0 for i = 1, . . . , s satisfying



















Υ2 0 0 Υ4 Υ8 Υ10 Υ1

∗ Υ2 0 Υ5 Υ9 0 0
∗ ∗ −I Υ6 0 0 0
∗ ∗ ∗ Υ7 0 0 0
∗ ∗ ∗ ∗ Π2 0 0
∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ −ǫiI



















< 0, (21)

[

P1i P2i

∗ P3i

]

> 0, (22)

where

Υ1 =

[

XFi ETBF Gi

Y TFi BF Gi

]

,
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Υ2 =

[

P1i − X − XT P2i − Y − ETZ

∗ P3i − ZT − Z

]

,

Υ4 =

[

XTAi + ETBF Ci ETĀF

Y TAi + BF Ci ĀF

]

,

Υ5 =

[

XTMi + ETBF Ni 0

Y TMi + BF Ni 0

]

,

Υ6 = [Li −CF ] ,

Υ7 =

[

−P1i + Qi + 2ǫi

(

ST
1 S1 + T T

1 T1

)

−P2i

−PT
2i −P3i

]

,

Υ8 =

[

XTAdi + ETBF Cdi

Y TAdi + BF Cdi

]

,

Υ9 =

[

XTMdi + ETBF Ndi

Y TMdi + BF Ndi

]

,

Υ10 =

[

XTBi + ETBF Di

Y TBi + BF Di

]

,

E = [ Ik×k 0k×(n−k) ] .

Moreover, if the above condition has a set of feasible solution (X, Y, Z, ĀF , BF , CF , P1i,
P2i, P3i, Qi, ǫi), the matrices for an admissible robust H∞ filter in the form of F in (2)

can be calculated by the following steps:

(1) find square and nonsingular matrices S ∈ Rk×k and T ∈ Rk×k satisfying Z =
STT−1S;

(2) calculate the matrices for desired filter matrices by

[

AF BF

CF 0

]

=

[

S−T 0
0 I

] [

ĀF BF

CF 0

] [

S−1T 0
0 I

]

. (23)

Proof Since LMIs (21) and (22) implies P3i − Z − ZT < 0 and P3i > 0, we can
infer that Z + ZT > 0, therefore Z is nonsingular. Then we can always find square and
nonsingular k × k matrices S and T satisfying Z = STT−1S. Therefore, the matrices

(AF , BF , CF ) are uniquely defined in (23). Now introduce the following matrix variables:

J =

[

I 0
0 T−1S

]

, V =

[

X Y S−1T

SE T

]

, Pi = J−T

[

P1i P2i

PT
2i P3i

]

J−1. (24)

Then, it is easy to see that the matrix J defined above is nonsingular and we have
Pi > 0. In the following we will prove that the filter F in (2) with state-space realization
(AF , BF , CF ) defined in (23) is an admissible robust H∞ filter such that the filtering error

system E in (3) is mean-square asymptotically stable with a guaranteed H∞ performance.

Now, by some algebraic matrix manipulations, it can be established that (21) is equiv-
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alent to


























JT(Pi −
V − V T)J

0 0 JTV TĀiJ JTV TĀdi JTV TBi JTV TF i

∗
JT(Pi −
V − V T)J

0 JTV TM iJ JTV TMdi 0 0

∗ ∗ −I CiJ 0 0 0
∗ ∗ ∗ JTΠ1J 0 0 0
∗ ∗ ∗ ∗ Π2 0 0
∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ −ǫiI



























< 0.

(25)
The equivalence between (21) and (25) can be verified in a reverse order by the follow-
ing steps. First, by substituting (AF , BF , CF ) defined in (23) into (4), the matrices
(

Ā, Ād, F , B, M, Md, C
)

of the filtering error system E in (3) can be obtained as

Ā =

[

A 0

S−T BF C S−T ĀF S−1T

]

, Ād =

[

Ad

S−T BF Cd

]

,

F =

[

F 0

0 S−T BF G

]

, B =

[

B

S−T BF D

]

, M =

[

M 0

S−T BF N 0

]

,

Md =

[

Md

S−T BF Nd

]

, C = [ L −CF S−1T ] .

(26)

Then by substituting the matrices J , Pi, V defined in (24) and the matrices (Ā, Ād, F ,

B, M, Md, C) given by (26) into (25), and by considering the relationship Z = STT−1S,
we obtain inequality (21) after some straightforward matrix manipulations.

Now, performing a congruence transformation to (25) by diag{J−1, J−1, I, J−1, I, I, I}
yields (17). Therefore, we conclude from Theorem 2 that the filter F in (2) with state-
space realization (AF , BF , CF ) defined in (24) is an admissible robust H∞ filter such that
the filtering error system E in (3) is mean-square asymptotically stable with a guaranteed
H∞ performance, and the proof is completed.

Remark 6 To obtain certain LMI conditions for the existence of desired filters, usually
linearization procedures have to be adopted. Since the standard linearization methods
adopted in [25, 27] assume the off-diagonal entry of certain matrix (the matrix to be
partitioned, in this paper it is V in Theorem 2) to be square and nonsingular, they can
only be used to deal with the full-order filtering problem. To keep the reduced-order filter
design tractable, here we have sought a different linearization procedure, which solves
both the full-order and reduced-order filtering synthesis problems in a unified framework.
It is worth noting that the matrix E defined in Theorem 3 plays an instrumental role.
For the full-order filtering, the matrix E becomes an identity matrix of dimension n, and
for the reduced-order case, we have imposed certain structural restriction on the (2, 1)
block entry of the matrix V , which introduces some overdesign into the filter design.

Remark 7 Theorem 3 casts the robust H∞ filtering problem into an LMI feasibility
test, and any feasible solution to the conditions presented in Theorem 3 will yield a
suitable filter, which can be obtained by following the two steps presented in Theorem 3.
Another formulation of suitable filters upon these feasible solution can be given by

[

AF BF

CF 0

]

=

[

Z−1 0
0 I

] [

ĀF BF

CF 0

]

. (27)
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To prove (27), let us denote the filter z transfer function from y(t) to ẑ(t) by Tẑy(z) =
CF (zI −AF )−1BF . By substituting the filter matrices with (23) and by considering the
relationship Z = STT−1S, we have

Tẑy(s) = CF S−1T (zI − S−T ĀF S−1T )−1S−T BF

= CF (zI − Z−1ĀF )−1Z−1BF .

Therefore, an admissible filter can also be given by (27).

Remark 8 Note that (21) and (22) are LMIs not only over the matrix variables, but
also over the scalar γ2. This implies that the scalar γ2 can be included as an optimization
variable to obtain the minimum noise attenuation level bound. Then the minimum (in
terms of the feasibility of (21) and (22)) guaranteed cost of robust H∞ filters can be
readily found by solving the following convex optimization problems

Problem RHFD (Robust H∞ filter design): Minimize γ subject to (21) and (22)

over (X, Y, Z, ĀF , BF , CF , P1i, P2i, P3i, Qi, ǫi).

Remark 9 Theorem 3 presents a sufficient condition for the existence of robust H∞

filters for discrete-time stochastic time-delay systems with nonlinear disturbance. In the
case when we assume vt = 0, that is, no stochastic uncertainty is present in system S,
LMI (21) becomes















Υ2 0 Υ4 Υ8 Υ10 Υ1

∗ −I Υ6 0 0 0
∗ ∗ Υ7 0 0 0
∗ ∗ ∗ Θ2 0 0
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −ǫiI















< 0.

In addition, if we further assume f(xt, xt−d) = 0 and g(xt, xt−d) = 0, then LMI (21)
becomes















Υ2 0 Υ4 Υ8 Υ10

∗ −I Υ6 0 0

∗ ∗

[

−P1i + Qi −P2i

−PT
2i −P3i

]

0 0

∗ ∗ ∗ −Qi 0
∗ ∗ ∗ ∗ −γ2I















< 0.

5 Illustrative Example

In this section, we will provide an example to illustrate the applicability of the above
filter design method. Consider the following system:

xt+1 =





0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747 + 0.01α

0 0.8187 0



xt +





0
0

0.1



ωt

+





0.01 0 0
0 0.03 0
0 0 0.02



xtvt,

yt = [ 0.2 0.1 0.1 + 0.01α ] xt + [ 0.1 0.1 + 0.01α 0 ] xt−d

+ 0.2 sin ([ 0 0 0.2 ] xt + [ 0 0.1 0 ] xt−d) + 0.1ωt,

zt = [ 0 0.1 0.2 ]xt,

(28)
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where α is an unknown parameter satisfying −1 ≤ α ≤ 1. It is easy to see that system
(28) has the structure of system S in (1) with the following parameters:

A =





0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747 + 0.01α

0 0.8187 0



 ,

M =





0.1 0 0.2
0 0.03 0
0 0 0.02



 , B =





0
0

0.1



 ,

Ad = 03×3, F = 03×1, Md = 03×3,

C = [ 0.2 0.1 0.1 + 0.01α ] ,

Cd = [ 0.1 0.1 + 0.01α 0 ] ,

G = 0.2, D = 0.1, N = 01×3, Nd = 01×3,

L = [ 0 0.1 0.2 ] ,

f(xt, xt−d) = 0

g(xt, xt−d) = 0.2 sin ([ 0 0 0.2 ] xt + [ 0 0.1 0 ] xt−d) .

In addition, the nonlinear functions f(xt, xt−d) and g(xt, xt−d) satisfy Assumption 1
with

S1 = S2 = 01×3, T1 = [ 0 0 0.2 ] , T2 = [ 0 0.1 0 ] .

By solving Problem RHFD, the obtained minimum feasible γ∗ and the associated
matrices for different cases are as follows:

Third-order Filtering: (γ∗ = 0.0200)

[

AF BF

CF 0

]

=



















0.1864 1.3287 0.1981
... −3.5599

−0.0268 0.9945 0.0077
... −0.1232

−0.0132 0.2543 0.0391
... −0.1472

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.0001 −0.0999 −0.2048
... 0



















. (29)

Second-order Filtering: (γ∗ = 0.0226)

[

AF BF

CF 0

]

=













0.9669 0.1947
... −0.0624

0.0002 0.9353
... −0.0084

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.0011 −0.1400
... 0













. (30)

First-order Filtering: (γ∗ = 0.0228)

[

AF BF

CF 0

]

=







0.9589
... −0.1801

. . . . . . . . . . . . . . . . . . . . .

−0.0031
... 0






. (40)
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6 Concluding Remarks

The problem of robust H∞ filtering for a class of stochastic nonlinear time-delay systems
in discrete time has been investigated in this paper. Sufficient conditions are obtained in
terms of linear matrix inequality for the existence of desired filters which guarantee the
filtering error system to be mean-square asymptotically stable with an H∞ disturbance
attenuation level. A parametrization of the filter matrices can be readily obtained if
these conditions have feasible solutions. A numerical example is provided to show the
applicability of the developed filter design methods.
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