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Corrigendum

Set Differential Equations and Monotone Flows
V. Lakshmikantham and A.S. Vatsala
Nonlinear Dynamics and Systems Theory, 3(2) (2003) 151–161.

Remark 3.1

(1) In Theorem 3.1, if G(t, Y ) ≡ 0, then we get a result when F is nondecreasing.
(2) In (1) above, suppose that F is not nondecreasing but F̃ (t, X) = F (t, X)+ MX

is nondecreasing in X for each t ∈ J , for some M > 0. Then one can consider
the IVP DHU + MU = F̃ (t, U), U(0) = U0, to obtain the same conclusion as in
(1). To see this, use the transformation Ũ = UeMt. Assuming that DH Ũ exists,
we have

DH Ũ = [DHU + MU ]eMt = F̃ (t, Ũe−Mt)eMt ≡ F0(t, Ũ).

Thus the IVP is
DHŨ = F0(t, Ũ), Ũ(0) = U0. (3.17)

Then Ṽ = V eMt is a lower solution and W̃ = WeMt is an upper solution for
(3.17) and now we have the same conclusion as in (1).

(3) If F (t, X) = 0 in Theorem 3.1, then we obtain the result for G nonincreasing.
(4) If in (3) above, G is not monotone but there exists two functions MU and G̃(t, U)

such that the Hukuhara difference G(t, U) = MU + G̃(t, U) exists and G̃(t, U)
is nonincreasing in U for each t ∈ J . Then setting U = ŨeMt, we obtain

DH Ũ = G0(t, Ũ), Ũ(0) = U0, (3.18)

where G0(t, Ũ) = G̃(t, ŨeMt)e−Mt. In this case, we need to assume that (3.18)
has coupled lower and upper solutions to get the same conclusion as in (3).

(5) Suppose that in Theorem 3.1, G(t, Y ) is nonincreasing in Y and F (t, X) is not
monotone but F̃ (t, X) = F (t, X) + MX , M > 0 is nondecreasing in X . Then
we consider the IVP

DHU + MU = F̃ (t, U) + G(t, U), U(0) = U0. (3.19)

The transformation in (2) yields the conclusion by Theorem 3.1 in this case as
well.
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(6) If in Theorem 3.1, F is nondecreasing and G is not monotone then we suppose
that there exists two functions MU and G̃(t, U) as in (4) and consider the IVP

DH Ũ = F0(t, Ũ) + G0(t, Ũ), U(0) = U0, (3.20)

where F0(t, Ũ) = F (t, ŨeMt)e−Mt and G0(t, Ũ) = G̃(t, ŨeMt)e−Mt.
(7) If both F and G are not monotone in Theorem 3.1, then suppose that there

are functions F̃ (t, U), G̃(t, U) and MU for some constant M > 0 such that
the Hukuhara difference F (t, U) + G(t, U) = F̃ (t, U) + G̃(t, U) + MU exists
and F̃ (t, U) is nondecreasing in U and G̃(t, U) is nonincreasing in U . Now the
transformation U = ŨeMt gives,

DH Ũ = F0(t, Ũ) + G0(t, Ũ), U(0) = U0, (3.20*)

where F0(t, Ũ) = F̃ (t, ŨeMt)e−Mt, G0(t, Ũ) = G̃(t, ŨeMt)e−Mt. Assuming that
(3.20*) has coupled lower and upper solutions of type I, one gets the same con-
clusion by Theorem 3.1.

Also note that assumption (A2) in Theorem 3.1 is modified as follows:
(A2) F, G ∈ C[J × Kc(Rn), Kc(Rn)], F (t, X) is nondecreasing in X and G(t, Y ) is

nonincreasing in Y , for each t ≥ 0, and F , G map bounded sets to bounded sets
in Kc(Rn).


