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Abstract: In this paper, based on the assumption that both the leading princi-
pal submatrix of r-order and its complementary submatrix in A(t) have eigen-
values with only negative real parts, we establish a criterion for the stability
of a class of nonlinear time-varying dynamic system dx/dt = A(t)x + f(t, x).
Also a feasible method for decomposition and aggregation of large-scale system
is provided. Moreover, we shall show the efficiency of the presented criterion
by a numerical example.
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1 Introduction

The problem of constructing Liapunov functions for non-autonomous systems in general
case still remains open. The concept of vector Liapunov functions (see [1, 2]) in terms of
differential inequalities (see Lakshmikantham, et al. [3]) allowed to express the existence
conditions for certain dynamical properties of the initial system via the existence of the
corresponding properties in the comparison system. This approach has been intensively
developed in the stability investigation of large-scale systems (see [4 – 6]). For recent
results of the direct Liapunov method development and some approaches to the problem
of Liapunov functions construction see [7 – 10].

In this paper, based on the assumption that both the leading principal submatrix of
matrix A(t) and its complementary submatrix have eigenvalues with only negative real
parts, we give a feasible method of constructing vector Liapunov function of dynamic
system (1), and establish sufficient conditions for stability of the system

dx

dt
= A(t)x + f(x, t), (1)
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where A(t) = aij(t)n×n, x = (x1, x2, . . . , xn)T, f(x, t) = (f1(t, x1, . . . , xn), . . . ,

fn(t, x1, . . . , xn))T, aij(t) is differentiable and bounded on [0, +∞), f(x, t) is conti-
nuous on field t ≥ 0, |x| ≤ h, i = 1, 2, . . . , n, and assume the system (1) have unique
solution for any initial condition on the field.

Moreover, we also extend the result [11], and show that it is a special case of this
paper for r = 1, m = n− 1. Finally, we give a numerical example to show the efficiency
of the presented criterion.

2 Notations and Definitions

Let A(t) = (aij)n×n, and partition A(t) into the following:

A(t) =

[

Ar Ar×m

Am×r Am

]

, m = n − r, 1 ≤ r < n, (2)

where Ar is a r × r matrix, which is called leading principal submatrix of order r and
Am is an m×m matrix, called complementary submatrix of Ar. The matrix B(s, n) of
order (n − s + 1)(n − s + 2)/2 is defined as

B(s, n) =














a(ss, ss) + δss . . . a(sn, ss) . . . a(nn, ss)
. . . . . . . . . . . . . . .

a(ss, sn) . . . a(sn, sn) + δsn . . . a(nn, sn)
a(ss, (s + 1)(s + 1)) . . . a(sn, (s + 1)(s + 1)) . . . a(nn, (s + 1)(s + 1))

. . . . . . . . . . . . . . .
a(ss, nn) . . . a(sn, nn) . . . a(nn, nn) + δnn















.
(3)

When s = 1 and n = r, let Br = B(1, r); when s = r + 1 and n = n, let
Bm = B(r +1, n). Thus, Br is a matrix of order r(r +1)/2, and Bm is a matrix of order
m(m+1)/2, where m = n− r. The elements a(ik, jl) in either matrix Br or Bm satisfy
the equalities a(ik, jl) = a(ki, jl) = a(ki, lj) and

a(ik, jl) =



















0, if i 6= j, k 6= l, k 6= j, j 6= l,

akl, if i = j, k 6= l,

aii + akk, if i = j, k = l, i 6= k,

aii, if i = j = k = l,

where aij is an element either in Ar for i, j = 1, 2, . . . , r, or in Am for i, j = r +1, . . . , n.
In matrix Br, δik = α/2 if i = k, and δik = α if i 6= k. In matrix Bm, δik =

δ/2 if i = k, and δik = δ if i 6= k. And α = min(inf |Re λ1|, . . . , inf |Re λr|) and
δ = min(inf |Re µ1|, . . . , inf |Re µs|), where λi and µj are eigenvalues of Ar and Am

(i = 1, . . . , r; j = 1, . . . , m), respectively.
Let p be an unknown variable, and p1, . . . , pr be r roots of the equation

∣

∣

∣

∣

(

p −
α

2

)

Er − Ar

∣

∣

∣

∣

= pr + a1p
r−1 + · · · + ar = 0, (4)
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and let

∆1 = a1, ∆2 =

∣

∣

∣

∣

a1 a3

a0 a2

∣

∣

∣

∣

, . . . , ∆r =

∣

∣

∣

∣

∣

∣

∣

a1 a3 . . . a2r−1

a0 a2 . . . a2r−2

. . . . . . . . . . . .
0 0 . . . ar

∣

∣

∣

∣

∣

∣

∣

,

where a0 = 1, and ak = 0 for k > r .
Let q be an unknown variable, and q1, . . . , qm be m roots of the equation

∣

∣

∣

∣

(

q −
δ

2

)

Em − Am

∣

∣

∣

∣

= qm + b1q
m−1 + · · · + bm = 0, (5)

and let

∆∗
1 = b1, ∆∗

2 =

∣

∣

∣

∣

b1 b3

b0 b2

∣

∣

∣

∣

, . . . , ∆∗
r =

∣

∣

∣

∣

∣

∣

∣

b1 b3 . . . b2m−1

b0 b2 . . . b2m−2

. . . . . . . . . . . .
0 0 . . . bm

∣

∣

∣

∣

∣

∣

∣

where b0 = 1, and bk = 0 for k > m.
The quadratic forms ω1 and v1 are respectively defined as

ω1 = −∆1∆2 . . . ∆r(x
2
1 + x2

2 + · · · = +x2
r), (6)

v1 =

r
∏

i=1

∆i

detBr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 x2
1 2x1x2 . . . 2x1xr x2

2 . . . 2xr−1xr x2
r

1
0
.
..

1 Br

0
...

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= c1

r
∑

i,j=1

vijxixj ,
(7)

where c1 = ∆1∆2 . . .∆r/ detBr, and for i, j = 1, 2, . . . , r, vij and vji are both half the
algebraic cofactor of the element 2xixj , while vii is the algebraic cofactor of x2

i .
The quadratic forms ω2 and v2 are respectively defined as

ω2 = −∆∗
1∆

∗
2 · · · = ∆∗

m(x2
r+1 + x2

r+2 + · · · + x2
n), (8)

v2 =

m
∏

i=1

∆∗
i

detBm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 x2
r+1 2xr+1xr+2 . . . 2xr+1xn x2

r+2 . . . 2xn−1xn x2
n

1
0
..
.

1 Bm

0
.
..

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(9)

= c2

n
∑

i,j=r+1

vijxixj ,
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where c2 = ∆∗
1∆

∗
2 . . .∆∗

m/ detBm and for i, j = r + 1, r + 2, . . . , n, vij and vji are both

half the algebraic cofactor of the element 2xixj , while vij is the algebraic cofactor of x2
i .

For all t ∈ [t0, +∞), the meanings of the letters v∗1 , v∗2 , ∆, ∆∗, br, bm, M1, M2, β, γ,
ε1 and ε2 are given by the following equalities, respectively:

v∗1 = inf
x2
1
+···+x2

r
=1

v1(t, x1, . . . , xr), v∗2 = inf
x2

r+1
+···+x2

n
=1

v2(t, xr+1, . . . , xn),

∆ = sup(∆1∆2 . . . ∆r), ∆∗ = sup(∆∗
1∆

∗
2 . . .∆∗

m),

br = inf | detBr|, bm = inf | detBm|,

M1 = sup(|vij |, i, j = 1, 2, . . . , r), M2 = sup(|vi=j |, i, j = r + 1, r + 2, . . . , n),

ε1 <
br

3r2M1
, ε2 <

br

3(n − r)2M2
, β = r(n − r)M1

(

∆rM1m
2
1

b2
r

+
∆ε1

br

)/

v∗2 ,

γ = r(n − r)M2

(

∆∗(n − r)M2m
2
2

b2
m

+
∆∗ε2

bm

)/

v∗1 ,

where m1 and m2 are positive numbers.

3 Main Results

In the sequel, we shall give main results of this paper, that is, a criterion for stability
of nonlinear time-varying dynamic system (1), and show the efficiency of the presented
criterion by a numerical example.

3.1 A criterion for stability of nonlinear time-varying dynamic system

Theorem 3.1 The trivial solution of (1) is asymptotically stable if

(i) Re λi ≤ −α < 0, Re µj ≤ −δ < 0, i = 1, . . . , r, j = 1, . . . , m;

(ii) every aij (i, j = 1, . . . , n) is differentiable and bounded on [t0, +∞), especially,
when aij is an element of Ar×m, |aij | ≤ m1, when aij is that of Am×r, |aij | ≤
m2;

(iii) αδ − βγ > 0, |fi(t, x1, t2, . . . , xn)| ≤ ε(|x1| + |x2| + · · · + |xn|), i = 1, . . . , n;

(iv) λ̃i <

(

1 −
3r2M1ε

br

)

∆1 . . . ∆r, µ̃j <

(

1 −
3(n − r)2M2ε

bm

)

∆∗
1 . . .∆∗

s , where ε =

min(ε1, ε2), λ̃i and µ̃j are eigenvalues of the matrixes Ãr and Ãm respectively,
where

Ãr = ((c1vij)
′)r×r, Ãm = ((c2vi=j)

′)m×m.

Proof Partition (1) into two correlative subsystems

dζ1

dt
= A11(t)ζ1 + A12(t)ζ2 + f∗(x, t), (10)

dζ2

dt
= A21(t)ζ1 + A22(t)ζ2 + f∗∗(x, t), (11)
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where

A(t) = [aij(t)|n×n =

[

A11(t) A12(t)
A21(t) A22(t)

]

, i, j = 1, 2, . . . , n,

A11 =





a11(t) . . . a1r(t)
. . . . . . . . .

ar1(t) . . . arr(t)



 , A22 =





ar+1,r+1(t) . . . ar+1,n(t)
. . . . . . . . .

an,r+1(t) . . . an,n(t)



 ,

f∗ = [f1(x, t), . . . , fr(x, t)]T, f∗∗ = [fr+1(x, t), . . . , fn(x, t)]T,

ζ1 = (x1, . . . , xr)
T, ζ2 = (xr+1, . . . , xn)T.

Taking v1 and v2 as components of Liapunov function of systems (10) and (11) re-
spectively, we have the following results:

dv1

dt

∣

∣

∣

∣

(10)

= ∇xv1(x, t)A11(t)ζ1 + ∇xv1(x, t)A12(t)ζ2 +
∂v1

∂t
+ ∇xf∗, (12)

dv2

dt

∣

∣

∣

∣

(11)

= ∇xv2(x, t)A21(t)ζ1 + ∇xv2(x, t)A22(t)ζ2 +
∂v2

∂t
+ ∇xf∗∗. (13)

Obviously, the eigenvalue λi of Ar , and the root pi of (4) are related by expression
pi = λi + α/2, which shows Re pi ≤ −α/2 when Re λi ≤ −α for i = 1, . . . , r. Hence,
∆1 > 0, ∆2 > 0, . . . , ∆r > 0. Moreover, ∆2 . . .∆r > k, where k is such a positive as is
decided by α, and not dependent on t.

Based on [12], we can prove that v1 is positively definite function, and obtain the
following result

r
∑

i=1

∂v1

∂xi

[

ai1x1 + · · · +

(

aii +
α

2

)

xi + · · · + airxr

]

= 2ω1. (14)

According to Barbashin formula [13], the v1 is unique quadratic form that satisfies the
equality (14). Therefore, v1 should be in accordance with Liapunov function constructed
in [12], that is,

v1 = ∆2(t) . . . ∆r(t)

r
∑

j=1

x2
j +

r−1
∑

σ=1

r
∑

j=1

r
∏

s=1( 6=σ±1)

∆s(t)∆
2
σj(t)(x1 . . . xr), (15)

where the meaning of ∆σj is the same as in [12], if aii + α/2 is substituted for aii in
∆σj from [12] for i = 1, . . . , r. Consequently, the following inequality holds

v1 ≥ ∆2 . . . ∆r

r
∑

j=1

x2
j ≥ k

r
∑

j=1

x2
j

which means that v1 is positive definite with respect to t, x1, . . . , xr . It can be proved
similarly that quadratic form v2 is positive definite with respect to t, xr+1, . . . , xn.
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By means of Euler theorem on homogeneous function we can change (14) into

r
∑

i=1

∂v1

∂xi

[ai1x1 + · · ·+ aiixi + · · ·+ airxr] = −
α

2

r
∑

i=1

xi

∂v1

∂ = xi

+ 2ω1 = −αv1 + 2ω1, (16)

namely,
∇xv1(x, t)A11(t)ζ1 = −αv1 + 2ω1.

For the same reason, it can be done that

∇xv2(x, t)A22(t)ζ2 = −
δ

2

n
∑

i=r+1

xi

∂v2

∂xi

+ 2ω2 = −δv2 + 2ω2. (17)

Calculating the second terms on the right-hand side of (12), we have

∇xv1(x, t)A12(t)ζ2

=

(

a1,r+1
∂v1

∂x1
+ a2,r+1

∂v1

∂x2
+ · · · + ar,r+1

∂v1

∂xr

)

xr+1 + . . .

+

(

a1,n

∂v1

∂x1
+ a2,n

∂v1

∂x2
+ · · · + ar,n

∂v1

∂xr

)

xn

= 2c1

(

a1,r+1

r
∑

j=1

v1jxj + a2,r+1

r
∑

j=1

v2jxj + . . .

+ ar,r+1

r
∑

j=1

vrjxj

)

xr+1 + . . .

+ 2c1

(

a1,n

r
∑

j=1

v1jxj + a2,n

r
∑

j=1

v2jxj + · · · + ar,n

r
∑

j=1

vrjxj

)

xn

= 2c1x1

(

xr+1

r
∑

i=1

ai,r+1vi1 + · · · + xn

r
∑

i=1

ai,nvi1

)

+ 2c1x2

(

xr+1

r
∑

i=1

ai,r+1vi2 + · · · + xn

r
∑

i=1

ai,nvi2

)

+ . . .

+ 2c1xr

(

xr+1

r
∑

i=1

ai,r+1vir + · · · + xn

r
∑

i=1

ai,nvir

)

. (18)

In order to reduce the sum on the right-hand side of (12) into the form of linear
combination of v1 and v2, we set up the estimation, with the aid of condition (ii) and
inequality −az2 + bz ≤ −az2/2 + b2/2a (a > 0), as follows:

−2c1x
2
1 det Br + 2c1x1

(

xr+1

r
∑

i=1

ai,r+1vi1 + · · · + xn

r
∑

i=1

ai,nvi1

)

≤ −c1x
2
1 detBr +

c1

detBr

(

xr+1

r
∑

i=1

ai,r+1vi1 + · · · + xn

r
∑

i=1

ai,nvi1

)2
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≤ −c1x
2
1 detBr +

c1m
2
1

detBr

( r
∑

i=1

|vi1|

)2

(|xr+1| + · · · + |xn|)
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− 2c1x
2
r detBr + 2c1xr

(

xr+1

r
∑

i=1

ai,r+1vir + · · · + xn

r
∑

i=1

ai,nvir

)

≤ −c1x
2
r detBr +

c1

detBr

(

xr+1

r
∑

i=1

ai,r+1vir + · · · + xn

r
∑

i=1

ai,nvir

)2

≤ −c1x
2
r detBr +

c1m
2
1

detBr

( r
∑

i=1

|vir |

)2

(|xr+1| + · · · + |xn|)
2.

The inequality obtained by adding corresponding terms on both sides of r inequalities
above shows that

dv1

dt

∣

∣

∣

∣

(10)

≤ −αv1 + ω1 +
c1m

2
1

detBr

(|xr+1| + · · · + |xn|)
2

×

[( r
∑

i=1

|vi1|

)2

+

( r
∑

i=1

|vi2|

)2

+ · · · +

( r
∑

i=1

|vir|

)2]

+
∂v1

∂t
+ |∇xv1f

∗|

≤ −αv1 + ω1 +
c1m

2
1

detBr

(|xr+1| + · · · + |xn|)
2

r
∑

i,j=1

v2
ij +

∂v1

∂t
+ |∇xv1f

∗|.

(19)

We estimate the last sum expression on the right-hand side of (19)

|∇xv1f
∗| =

∣

∣

∣

∣

2c1

r
∑

i=1

r
∑

j=1

vijxjfi(t, x1, . . . , xn)

∣

∣

∣

∣

≤ 2ε|c1|(|x1| + |x2| + · · · + |xn|)

( r
∑

i=1

r
∑

j=1

|vij | |xj |

)

≤ 2ε|c1| rM1(|x1| + |x2| + · · · + |xn|)(|x1| + |x2| + · · · + |xr|)

≤ 3r2|c1|M1ε(x
2
1 + · · · + x2

r) + r(n − r)|c1|M1ε(x
2
r+1 + · · · + x2

n).

(20)

Based on the deduction above, for (19) there is following estimation:

dv1

dt

∣

∣

∣

∣

(10)

= −αv1 + (3r2|c1|M1ε − ∆1∆2 . . . ∆r)(x
2
1 + · · · + x2

r)

+ (x2
r+1 + · · · + x2

n)βv∗2 +
∂v1

∂t

≤ −αv1 + βv2 + [(x2
r+1 + · · · + x2

n)βv∗2 − βv2]

+

[

∆1∆2 . . .∆r

(

3r2M1ε

br

− 1

)

(x2
1 + · · · + x2

r) +
∂v1

∂t

]

.

(21)

In the same way, taking (17) into consideration, we can obtain

dv2

dt

∣

∣

∣

∣

(11)

= −δv2 + 2ω2 + 2c2xr+1

(

x1

n
∑

i=r+1

ai1vi,r+1 + · · · + xr

n
∑

i=r+1

airvi,r+1

)
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+ 2c2xr+2

(

x1

n
∑

i=r+1

ai1vi,r+2 + · · · + xr

n
∑

i=r+1

airvi,r+2

)

+ . . .

+ 2c2xn

(

x1

n
∑

i=r+1

ai1vi,n + · · · + xr

n
∑

i=r+1

airvi,n

)

+
∂v2

∂t
+ |∇xv2f

∗∗|.

Similarly to the way of getting (21), we can estimate (13) as follows

dv2

dt

∣

∣

∣

∣

(11)

= −δv2 + 2ω2 +
c2m

2
2

detBm

(|x1| + · · · + |xr|)
2

×

[( n
∑

i=r+1

|vi,r+1|

)2

+ · · · +

( n
∑

i=r+1

|vin|

)2]

+
∂v2

∂t
+ ∇xv2f

∗∗

≤ −δv2 + ω2 +
c2m

2
2

detBm

(|x1| + · · · + |xr|)
2

n
∑

i,j=r+1

v2
ij +

∂v2

∂t
+ ∇xv2f

∗∗

≤ −δv2 + γv1 + [γv∗1(x2
1 + · · · + x2

n) − γv1]

+

[

∆∗
1∆

∗
2 . . .∆∗

m

(

3(n − r)2M2ε

bm

− 1

)

(x2
r+1 + · · · + x2

n) +
∂v2

∂t

]

.

(22)

The simultaneous existence of (21) and (22) leads to the inequality system

dv1

dt
≤− αv1 + βv2 + [(x2

1 + · · · + x2
n)βv∗2 − βv2] +

[

1 −
3r2M1ε

br

]

ω1 +
∂v1

∂t
,

dv2

dt
≤γv1 − δv2 + [(x2

1 + · · · + x2
r)γv∗1 − γv1] +

[

1 −
3(n − r)2M2ε

bm

]

ω2 +
∂v2

∂t
.

(23)

Let xi = ρ1αi, where i = r + 1, r + 2, . . . , n, ρ1 =
√

x2
r+1 + · · · + x2

n, then α2
r+1 +

· · · + α2
n = 1. It follows for arbitrary t ∈ [t0, +∞) that

v∗2 = inf
x2

r+1
+···+x2

n
=1

v2(t, xr+1, . . . , xn) = inf v2(t, αr+1, . . . , αn) > 0.

The sum of the first expression in the system of inequalities (23) is

(x2
r+1 + · · · + x2

n)βv∗2 − v2(t, xr+1, . . . , xn)β ≤ [v∗2 − v2(t, αr+1, . . . , αn)]βρ2
1 = 0. (24)

For the same reason, it follows that

(x2
1 + · · · + x2

r)γv∗1 − v1(t, x1, . . . , xr)γ ≤ [v∗1 − v1(t, α1, . . . , αr)]γρ2
2 = 0, (25)

where ρ2 =
√

x2
1 + · · · + x2

n.

Since Ãr and Ãm are real symmetric matrices, there exist orthogonal transformations

ζ = Prη and ζ1 = Pmη1
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to make the following equations to hold.

∂v1

∂t
= ζTÃrζ = ηTPT

r ÃrPrη = λ̃1y
2
1 + · · · + λ̃ry

2
r ,

∂v2

∂t
= ζT

1 Ãmζ1 = ηT
1 PT

mÃmPmη1 = µ̃1y
2
r+1 + · · · + µ̃my2

n,

where

η = (y1, . . . , yr)
T, η1 = (yr+1, . . . , yn)T,

Pr and Pm are orthogonal matrices in correspondence with order r and m (m = n− r),
respectively. By using the orthogonal transformations above, we can change ω1 and ω2

into:

−ω1 = ∆1∆2 . . . ∆rζ
TErζ = ∆1∆2 . . .∆rη

TPT
r Prη

= ∆1∆2 . . . ∆r(y
2
1 + · · · + y2

r),
(26)

−ω2 = ∆∗
1∆

∗
2 . . . ∆∗

mζT
1 Emζ1 = ∆∗

1∆
∗
2 . . . ∆∗

mηT
1 PT

mPmη1

= ∆∗
1∆

∗
2 . . . ∆∗

m(y2
r+1 + · · · + y2

n).
(27)

Taking (iv) into consideration, we can obtain

(

1 −
3r2M1ε

br

)

ω1 +
∂v1

∂t
=

[

λ̃1 −

(

1 −
3r2M1ε

br

)

∆1 . . . ∆r

]

y2
1 + . . .

+

[

λ̃r −

(

1 −
3r2M1ε

br

)

∆1 . . .∆r

]

y2
r ≤ 0;

(

1 −
3(n − r)

2
M2ε

bm

)

ω1 +
∂v2

∂t
=

[

µ̃1 −

(

1 −
3(n − r)

2
M2ε

bm

)

∆∗
1 . . .∆∗

m

]

y2
r+1 + . . .

+

[

µ̃m −

(

1 −
3(n − r)

2
M2ε

bm

)

∆∗
1 . . . ∆∗

m

]

y2
n ≤ 0.

The discussion above shows that (23) can take the form

dv1

dt
≤ −αv1 + βv2,

dv2

dt
≤ γv1 − δv2,

(28)

where α, β, γ, δ are all positive number. Define vector Liapunov function v = (v1, v2)
T,

we rewrite inequality (28) as follows:

dv

vt
≤ Dv, (29)

and establish differential equation system as

dX

dt
= DX, (30)
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where D is a 2 × 2 order aggregation matrix

D =

[

−α β
γ −δ

]

.

Let v(t, v0, t0) and X(t, X0, t0) be solution of (29) and (30), respectively. For v0 = X0,
based on the result of [4], the following inequality holds for all t ∈ [t0, +∞).

v(t, v0, t0) ≤ X(t, v0, t0). (31)

Because αδ − βγ > 0, −α < 0, −δ > 0, we can conclude that zero solution of (30)
is asymptotically stable, this means lim

t→+∞
X(t, v0, t0) = 0. By (31) and the positive

definite character of v1 and v2, we have t → +∞, v = (v1, v2)
T → (0, 0)T, and the zero

solution of the system (1) is asymptotically stable.

Remark 1 It should be noted that Theorem 3.1 is different from the approach proposed
by Razumikhin (see, e.g., [14]). Especially, one can see this from the following numerical
example.

3.2 Numerical example

Next, we give a numerical example to show the efficiency of the presented criterion.
Consider the following nonlinear time-varying dynamic system:

dx

dt
= A(t)x + f(x, t),

where

A(t) =





















−10 0 0 −
1

20
cos t

0 −8
1

20
sin t

1

50
e−t

1

60
e−t

1

40
−6 0

−
1

40
cos2 t 0 0 −10





















, f(x, t) =









εx2
3

εx2
4

εx2
1

εx2
2









.

According to (2), A(t) can be partitioned into as follows:

Ar =

[

−10 0
0 −8

]

, Ar×m =





0 −
1

20
cos t

1

20
sin t

1

50
e−t



 ,

Am =

[

−6 0
0 −10

]

, Am×r =





1

60
e−t 1

40

−
1

40
cos2 t 0



 .

The eigenpolynomial of Ar can be obtained as

[

λ + 10 0
0 λ + 8

]

= 0,
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and consequently, the eigenvalues of Ar can be obtained as λ1 = −10, λ2 = −8. Make
α = min(inf |Reλ1|, inf |Reλ2|) = 8, and substitute it into (3), we have

Br =





−6 0 0
0 −10 − 8 + 8 0
0 0 −8 + 4



 =





−6 0 0
0 −10 0
0 0 −4



 ,

and, one obtains detBr = −240.
By using (4), we have

|(p − α/2)Er − Ar| = |(p − 4)Er − Ar|

=

[

p − 4 + 10 0
0 p − 4 + 8

]

= p2 + 10p + 24 = 0,

and, one obtains α0 = 1, α1 = 10, α2 = 24.
Therefore, we have the following results

∆1 = α1 = 10, ∆2 =

[

α1 α3

α0 α2

]

=

[

10 0
1 24

]

= 240,

and substitute them into (6), one obtains

v1 =
∆1∆2

det Br







0 x2
1 2x1x2 x2

2

1
0 Br

1







=
∆1∆2

det Br







0 x2
1 2x1x2 x2

2

1 −6 0 0
0 0 −10 0
1 0 0 −4






= 400x2

1 + 600x2
2,

v∗1 = inf
x2
1
+x2

2
=1

v1 = 400, ∆ = sup(∆1∆2) = 2400, br = inf | detBr| = 240,

M1 = sup(|vij |, i, j = 1, 2) = 600,

ε1 <
br

3r2M1
=

240

3 · 4 · 600
=

1

30
, m1 =

1

40
,

the eigenpolynomial of Am can be obtained as

[

µ + 6 0
0 µ + 10

]

= 0,

and consequently, the eigenvalues of Am can be obtained as µ1 = −10, µ2 = −6. Make
δ = min(inf |Re µ1|, inf |Reµ2|) = 6, and substitute it into (3), we have

Bm =









−6 +
6

2
0 0

0 −6 − 10 + 6 0

0 0 −10 +
6

2









=





−3 0 0
0 −10 0
0 0 −7



 ,
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and, one obtains detBm = −210.
From (5), we have

|(q − δ/2)Em − Am| = |(q − 3)Em − Am|

=

[

q − 3 + 6 0
0 q − 3 + 10

]

= q2 + 10q + 21 = 0,

and, one obtains b0 = 1, b1 = 10, b2 = 21.
Therefore, we have the following results

∆∗
1 = b1 = 10, ∆∗

2 =

[

b1 b3

b0 b2

]

=

[

10 0
1 21

]

= 210,

and substitute them into (7), we have

v2 =
∆∗

1∆
∗
2

detBm







0 x2
3 2x3x4 x2

4

1
0 Bm

1






=

∆∗
1∆

∗
2

detBm







0 x2
3 2x3x4 x2

4

1 −3 0 0
0 0 −10 0
1 0 0 −7






= 700x2

3 + 300x2
4,

v∗2 = inf
x2
3
+x2

4
=1

v2 = 300, ∆∗ = sup(∆∗
1∆

∗
2) = 2100, bm = inf | detBm| = 210,

M2 = sup(|vij |, i, j = 3, 4) = 700, m2 =
1

40
,

ε2 <
bm

3(n − r)2M2
=

210

3 · 4 · 700
=

1

40
,

γ = r(n − r)M2

(

∆∗(n − r)M2m
2
2

b2
m

+
∆∗ε2

bm

)/

v∗1 =
49

24
,

β = r(n − r)M2

(

∆∗M2m
2
2

b2
m

+
∆∗ε2

bm

)/

v∗2 =
35

12
.

One can see that it satisfies the conditions (i) – (iv) of Theorem 3.1, that is, the
zero solution of the system (1) is asymptotically stable, which shows that the proposed
criterion is efficient for the stability of a class of nonlinear time-varying dynamic system.

4 Conclusions

In this paper, we have given a feasible method to construct Liapunov function of a
dynamic system (1), and established some of sufficient conditions for stability of the
system. It is shown that for any differentiable matrix A(t), if there exist submatrices
Ar and Am in A(t) such that their eigenvalues all have negative real parts, then it
is always available to take v = (v1, v2)

T as a vector Liapunov function of the system
dx/dt = A(t)x+f(x, t), and based on this, the conditions to ensure stability of the system
can be established. Also, the efficiency of the presented criterion has been confirmed by
means of a numerical example.
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