
Nonlinear Dynamics and Systems Theory, 4(2) (2004) 195–216

Robust Active Control for Structural Systems

with Structured Uncertainties

Sheng-Guo Wang1, H.Y. Yeh2 and P.N. Roschke3

1Department of Engineering Technology and Department of ECE,

University of North Carolina at Charlotte, Charlotte, NC 28223-0001, USA
2Department of Civil Engineering, Prairie View A&M University,

Prairie View, TX 77446-0397, USA
3Department of Civil Engineering, Texas A&M University,

College Station, TX 77843-3136, USA

Received: April 23, 2003; Revised: March 4, 2004

Abstract: Although control theory has been widely applied to constrain mo-
tion response of tall, slender structures and long bridges undergoing large
forces from natural hazards such as earthquakes and strong wind, numerous
uncertainties in these structures such as model errors, stress calculations, ma-
terial properties, and load environments need to be included in design of the
control algorithm. This paper develops a robust active control approach to
treat structured uncertainties in the system, control input, and especially, dis-
turbance input matrices that have not been treated previously. Special SVD
decomposition is applied to all forms of the structured uncertainties. Robust
active control provides multi-objectives, including robust α-degree relative
stability, robust H∞ disturbance attenuation and robust H2 optimality. The
H∞ norm of the transfer function from the external disturbance forces (e.g.,
earthquake, wind, and etc.) to the observed system states is restricted by
a prescribed attenuation index δ. Settling time of the controlled structural
system is robustly less than 4/α. Preservation of robust H2 optimality of
uncertain structural systems is also discussed. Numerical simulations of a
four-story building under robust control are carried out for motion induced
by the 1940 El Centro earthquake. Evaluation of controller performance is
measured by application of six indices, including a comparison with an LQR
controller. Results of the proposed approach may be applied to robust control
design of structural systems.
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1 Introduction

Since the advance of new technologies and the advent of high strength materials, civil
engineering structures are becoming taller, longer, and more flexible. To warrant safety
and comfort of inhabitants, it is deemed necessary to limit the motion of these struc-
tures. Application of modern control theory to restrain the structural motion was first
proposed by Yao [18]. Since then, considerable progress has been made to reduce effects
of undesirable external forces such as earthquakes and strong winds. Among noteworthy
contributions to this field of research are those by Soong [9], Spencer, et al. [11], Fujino,
et al. [2], Yang, et al. [17], and many others. Housner, et al. [5] detailed recent develop-
ments in active control strategies for civil engineering structures. In 1997, Housner, et al.
provided a summary and general overview of structural control: past and present [4]. A
survey paper by Spencer and Sain [10] extensively summarizes recent research progress
and describes new efforts in feedback control of buildings.

Most control strategies of structural systems focus on application of linear models and
control laws. However, structural uncertainties occur from modeling errors, linearization
approximations, stress calculations, material properties, and external disturbances. Ef-
fects of these uncertainties on stability and robustness of structural control have been
previously examined [3, 11]. Consequently, one primary research issue is robustness of
control systems. In particular, numerous studies of this kind have focused on control of
buildings. In this regard the H∞ approach is advantageous in that it may consider both
attenuation of disturbance effects and perturbation of unstructured parameters. H∞

design methods may be found in many references such as [7, 19].

It is well known that dynamics of a civil engineering structure can be described by a
Lagrangian system of equations. Many physical problems, such as aeronautical systems,
mechanical systems, structural systems, and flexible structures can be described via La-
grange’s equation using a state-space model [14]. Since there are numerous uncertainties
in stresses, material properties, and loadings that pertain to descriptive numerical models,
unanticipated variations of these design parameters may cause instability or degradation
of a structural system. In such cases robustness of a control system for stability and its
performance toward attenuating disturbance from external hazards is important. Wang,
et al. [14] have discussed robust optimal pole clustering in a vertical strip and H∞-norm
disturbance rejection for uncertain Lagrangian systems. Considered uncertainties are in
both the system matrix and the control input matrix. Wang, et al. [12, 14] have also
discussed a state-feedback controller and an observer-based output-feedback controller
for robust pole clustering in a vertical strip and disturbance attenuation in general un-
certain systems with structured and unstructured uncertainties, respectively. They [12]
also show that this new method is more flexible and less conservative than the traditional
approaches. However, no uncertainties are considered in the disturbance input matrix.

Furthermore, there have been no recent treatments of uncertainties with regard to the
disturbance input matrix in the literature [7, 12, 14, 15, 19]. However, the disturbance
input matrix has uncertainties, e.g., in view of the uncertainties existing in mass, as well
as in the inverse mass matrix, and so on. Recently, Wang, et al. [13] discussed robust
control for structural systems via Lagrange’s model with unstructured uncertainties, in-
cluding those in the disturbance input matrix. In [16] they further discussed parametric
uncertainties in system and control input matrices, as well as unstructured uncertainties
in the disturbance input matrix. However, some uncertainties may be structured uncer-
tainties, such as from mass, spring constants, and damping ratios. Thus, it is meaningful
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to investigate robust control for structural systems with structured uncertainties in the
disturbance input matrix. Herein lies the motivation for research reported in this paper.

Therefore, the objective of this paper is to develop an approach for active control
of structural systems that includes robust stability and performance control with H∞-
norm disturbance attenuation that takes into account structured uncertainties in the
structural systems, including those in the disturbance input matrices, to reject/attenuate
disturbances such as earthquake and wind forces for a family of structural systems with
these uncertainties. Applicable uncertain structural systems include uncertainties among
system, control input, and disturbance input matrices. Robust state feedback control is
considered here, while robust output feedback control is considered in a future paper.
The proposed control algorithm provides a robust α-degree relative stability, i.e., the
closed-loop system poles robustly stay in the left-half plane with the real part less than
−α. It also guarantees a prescribed H∞-norm disturbance attenuation constraint δ from
the external hazard forces to the observed states of the structure. The approach is based
on the algebraic Riccati equation (ARE). A group of several flexible scalars is introduced
to enable solution of the ARE. Then, H2 optimality of the design controller is also proved.

It is noted that there are many publications concerning robust H∞ control and multi-
objective control in the literature [19]. For structured uncertainties, the µ-theory [19]
makes a breakthrough. However, calculation and design based on µ theory is an NP-hard
problem. Therefore, this paper uses a new method to deal with structured uncertainties,
extended from Wang, et al. [12] to include structured uncertainties in the disturbance
input matrix. It uses special SVD-type decomposition and introduces a group of ad-
justable design parameters to control design to enable control with robust performance,
including robust relative stability, robust H∞ disturbance attenuation and robust H2

optimal control for the whole uncertain system family. It is noticed that the treatment
may be taken into some conventional framework from H∞-control view point. However,
Wang, et al. [12] have shown that the conventional framework will not be as flexible and
is more-conservative than the proposed method that renders conventional treatment of
this problem as a special case of their approach as shown by theoretical proof and an
example. Therefore, this paper develops an approach that extends work presented by
Wang, et al. [12, 14].

Salient contributions of this paper are as follows:

1) an uncertain Lagrangian system with uncertainties not only in system and control
input matrices but also in disturbance input matrix is treated;

2) structured uncertainties in the disturbance input matrix are taken into account;
3) a special weighted SVD-type decomposition for all structured uncertainties is

described;
4) a group of tuning scalars is used;
5) discussion of robust H2 optimality together with robust H∞ disturbance attenu-

ation and robust relative stability is included;
6) numerical simulation of control for an uncertain building model, including a nom-

inal model and a worst case model, excited by the 1940 El Centro, California,
earthquake data is demonstrated; and

7) finally, six performance indices are used for evaluation and comparison with the
traditional LQR control.

The paper is organized as follows. Section 2 formulates an analytical approach to
control of uncertain structural systems with structured uncertainties. Section 3 provides
robust control algorithms with robust relative stability and H∞-norm disturbance atten-
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uation for uncertain structural systems. Furthermore, in Section 4 preservation of H2

optimality of the design controller with respect to a special performance index is derived.
In Section 5, a numerical example of robust control design is presented that illustrates
robust controller design. Section 6 provides six indices for performance evaluation and
Section 7 demonstrates simulations excited by the 1940 El Centro earthquake data and
compares results from three robust controllers and an LQR controller. Finally, Section 8
concludes the paper.

2 Control System Formulation

It is well known that motion of a structural system can be described by Lagrange’s
equations in state-space as follows:

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
+

∂Df

∂q̇i
= Qi, (1)

where L = T − V , T is the system kinetic energy, V is the system potential energy,
Df is the system dissipation function, Qi represents the generalized force, and qi is the
partial state. For example, dynamic motion of a structural system may be described by

Mq̈ + Cdq̇ + Ksq = f (2)

where q is a displacement vector, M is a mass matrix, Cd is a damping coefficient matrix,
Ks is a stiffness coefficient matrix, and f is an external force vector that includes both
undesired forces from an external hazard and desired control forces. Mass matrix M is
a full rank matrix, i.e., its inverse exists. Sometimes, it is simply considered to be a
diagonal matrix. The dynamic system (2) may be rewritten as

q̈ + M−1Cdq̇ + M−1Ksq = M−1f . (3)

However, uncertainties in structural parameters that are derived from modeling errors,
linearized approximation, stress calculations, variation in materials properties, and ex-
ternal disturbances are inevitable. If uncertainties, perturbations, and disturbances are
taken into account, equations (1) – (3) can be reformulated as a monic vector differential
equation with parametric perturbations and external disturbances as follows:

q̈ + (Dc + ∆Dc)q̇ + (Dk + ∆Dk)q = (Bu + ∆Bu)u + (Fw + ∆Fw)w, (4a)

z = C1q + C2q̇, (4b)

where q ∈ Rn, u ∈ Rm, w ∈ Rω, and z ∈ Rp are the partial state, input, disturbance,
and output (vibration specification signals), respectively; Dc, Dk, Bu, Fw, C1, and C2

are nominal structural system parameter matrices with appropriate dimensions; ∆Dc,
∆Dk, ∆Bu and ∆Fw are perturbation matrices that can be time-varying with appropri-
ate dimensions. The considered disturbance vector w(t) may include an earthquake force
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vector we(t) and/or a wind force vector ww(t). Thus, the uncertain structural system
can be described by the following specific state-space block companion form:

ẋ(t) = (A + ∆A)x(t) + (B + ∆B)u(t) + (F + ∆F)w(t), (5a)

z(t) = Cx(t) (5b)

A =

[

0 I

−Dk −Dc

]

, ∆A =

[

0 0

−∆Dk −∆Dc

]

, B =

[

0

Bu

]

,

∆B =

[

0

∆Bu

]

, F =

[

0

Fw

]

, ∆F =

[

0

∆Fw

]

,

and C = [C1 C2 ] , (5c)

where the state x =
[

qT q̇T
]T

∈ R2n, all matrices have appropriate dimensions, and

(A,B) is assumed to be controllable.
Based on the form of block matrices given in equation (5), results are directly derived

with respect to the low dimensional uncertainties ∆Dc, ∆Dk, ∆Bu, and ∆Fw for simple
and less conservative constraints to robust active structural control problems. In light
of perturbations of physical parameters, structured or unstructured uncertainties, espe-
cially structured ones, usually exist in A(Dk,Dc), Bu, and Fw, and are described as
∆A(∆Dk, ∆Dc), ∆Bu, and ∆Fw, respectively. The case of unstructured uncertainties
is considered in [13]. Here, structured uncertainties are treated.

Structured uncertainties can be described as:

∆Dk =

lk
∑

j=1

akjAkj , ∆Dc =

lc
∑

j=1

acjAcj,

∆Bu =

lb
∑

j=1

bjBj , ∆Fw =

lf
∑

j=1

fjFj ,

(6)

where ∆Dc, ∆Dk, ∆Bu, and ∆Fw are the uncertain stiffness matrix, uncertain damping
matrix, uncertain control input matrix, and uncertain disturbance input matrix, respec-
tively. They are described as structured uncertainties, i.e., matrices Akj , Acj , Bj , and
Fj represent the structures of uncertainties, while scalars akj , acj , bj , and fj represent
the uncertain values of uncertainties on their corresponding structures, respectively, and
are bounded by ±1 without loss of generality.

Here, weighted SVD (singular value decomposition) is applied to the uncertainty struc-
ture matrices Akj , Acj , Bj , and Fj . Then, it follows that

Akj = TkjU
T

kj , Acj = TcjU
T

cj , Bj = TbjU
T

bj , and Fj = TfjU
T

fj , (7)

respectively. Next, the following definitions are made:

Tk =

lk
∑

j=1

TkjT
T

kj , Uk =

lk
∑

j=1

UkjU
T

kj , Tc =

lc
∑

j=1

TcjT
T

cj , Uc =

lc
∑

j=1

UcjU
T

cj ,

Tb =

lb
∑

j=1

TbjT
T

bj , Ub =

lb
∑

j=1

UbjU
T

bj , Tf =

lf
∑

j=1

TfjT
T

fj , Uf =

lf
∑

j=1

UfjU
T

fj

(8)
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Furthermore, it is defined that

TA =

[

0 0
0 Tk + Tc

]

, UA =

[

Uk 0
0 Uc

]

, TB =

[

0 0
0 Tb

]

,

UB = Ub, TF =

[

0 0
0 Tf

]

, UF = Uf , F∆ =

lf
∑

j=1

FjF
T

j .

(9)

Notice that some Lagrangian representations of structures with the block companion
form in (5) may be formulated as matched uncertain systems (extended from [8]). That
is, the matched uncertainties are within the range of the nominal control-input matrix
B. This implies that all uncertainties can be reached by suitable control signals through
the control-input matrix B. Thus, a system with matched uncertainties can be com-
pensated if a suitable designed robust controller is applied. In other words, a robust
controller is guaranteed to exist and there exists a robust controller that can overcome
all these matched uncertainties. In this case these structured matched uncertainties can
be described as follows:

∆A = B · ∆AB, ∆B = B · ∆BB, F = B · FB, ∆F = B · ∆FB, i.e.,
(10a)

∆AB = [−∆DBk − ∆DBc], ∆DBk =

lk
∑

j=1

abkjAbkj , ∆DBc =

lc
∑

j=1

abcjAbcj ;

∆BB = ∆BBu =

lb
∑

j=1

bbjBbj , ∆Fw = Bu∆FBw, ∆FB = ∆FBw =

lf
∑

j=1

fbjFbj ;
(10b)

with ∆BBu + ∆BT

Bu + 2I > 0. (10c)

This uncertain system can be called a matched uncertain system, i.e., with matched
uncertainties. Applying weighted SVD for all of the above uncertainty structures similar
to the above (7) – (9) leads to the following:

Abkj = TbkjU
T

bkj , Abcj = TbcjU
T

bcj , Bbj = TbbjU
T

bbj , Fbj = TbfjU
T

bfj , (11)

Finally, it is defined that

Tbk =

lk
∑

j=1

TbkjT
T

bkj , Ubk =

lk
∑

j=1

UbkjU
T

bkj , Tbc =

lc
∑

j=1

TbcjT
T

bcj , Ubc =

lc
∑

j=1

UbcjU
T

bcj ,
(12a)

Tbb =

lb
∑

j=1

TbbjT
T

bbj , Ubb =

lb
∑

j=1

UbbjU
T

bbj , Tbf =

lf
∑

j=1

TbfjT
T

bfj , Ubf =

lf
∑

j=1

UbfjU
T

bfj ,
(12b)

TbA = Tbk + Tbc, UbA =

[

Ubk 0
0 Ubc

]

, TbB = Tbb, UbB = Ubb, TbF = Tbf ,

UbF = Ubf , Fb∆ =

lf
∑

j=1

FbjF
T

bj . (12c)
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The objective is to find a linear state-feedback control law such that it can accomplish
the above-mentioned robust active control that is valid for the whole family of uncertain
structural systems in (5) in face of disturbances and perturbations in (6) – (12). Thus,
the goal is to design a state feedback controller

u(t) = −Kx(t) (13)

such that the closed loop uncertain linear system

ẋ(t) = (A + ∆A − BK− ∆BK)x(t) + (F + ∆F)w(t), (14a)

z(t) = Cx(t), (14b)

has a robust disturbance attenuation with a prescribed H∞-norm constraint δ (a specified
disturbance attenuation index) that satisfies the following:

‖Tzw(s)‖
∞

=
∥

∥C(sI− Ac)
−1(F + ∆F)

∥

∥

∞
≤ δ (15)

and a robust α-degree relative stability, i.e.,

Re {λ(Ac)} < −α, (16)

where Ac = A + ∆A − BK − ∆BK, and Tzw(s) is a transfer function matrix from
the disturbance vector w to the observation vector z of the structural system. The dis-
turbance vector w may include a wind and/or earthquake disturbance. The observation
vector z may include a vibration vector, i.e., displacement vector, velocity vector, and
other salient observation states. This indicates that the gain of the structural system
from the disturbance energy ‖w‖2 to the structural vibration energy ‖z‖2 is bounded by
δ even in the worst case in view of the H∞-norm property. The control law also provides
robust relative stability with an index α to the structural system. In the case of matched
uncertainties in (10) – (14), the existence of this desired controller is guaranteed. Also,
the optimality of the controller is proved in an H2 sense.

3 Robust Feedback Control

In this section, a state feedback controller is developed in (13) that provides robust α-
degree relative stability in (16) and an H∞ disturbance attenuation with a prescribed
index δ in (15) for the uncertain structural system given in (5) and (14). The controller
(13) is obtained by solving a Riccati equation as derived in this section. A set of tuning
parameters is introduced to enhance flexibility in defining the controller.

Before deriving the main result, the following lemmas are cited to provide a basis for
the derivation. As a preliminary statement, a matrix Q that is > 0, ≥ 0, and < 0 is said
to be positive definite, positive semi-definite, and negative definite, respectively.

Lemma 1 ([1]) Matrix A is robust α-degree relatively stable if and only if there exists
a unique positive matrix P for any positive definite matrix Q such that

(A + αI)TP + P(A + αI) = −Q, (17)

i.e., all eigenvalues of matrix A lie in the left plane of the line −α, Re {λ(A)} < −α.
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Lemma 2 ([14]) For any n × m matrices X and Y, and any scalar ξ > 0,

ξXX∗ +
1

ξ
YY∗ ± (XY∗ + YX∗) ≥ 0. (18)

Lemma 3 For given scalars α ≥ 0 and δ > 0, if there exist a positive definite matrix
P and positive adjustable scalars ε and ε3 such that

(Ac +αI)TP+P(Ac +αI)+
ε

δ
P[F(I+ε3UF )FT +

1

ε3

TF + lfF∆]P+
1

εδ
CTC < 0, (19)

then the closed-loop system (14) with structured uncertainties in (6) – (9) is of the α-
degree relatively stable as (16) and δ-degree disturbance attenuated as (15).

Proof By Lemma 1, it is obvious that system Ac is of α-degree relatively stable.
By extension of Lemma 2 in [14], it is known that the closed-loop system (14) with
structured uncertainties in (6) – (9) is of α-degree relatively stable as (16) and there is
δ-degree disturbance attenuation in (15) if

(Ac + αI)TP + P(Ac + αI) +
ξ

δ
P(F + ∆F)(F + ∆F)

T
P +

1

ξδ
CTC < 0. (20a)

In view of Lemma 2, it follows that

P(F + ∆F)(F + ∆F)
T
P ≤ P

[

F(I + ε3UF )FT +
1

ε3

TF + lfF∆

]

P. (20b)

Then, it is obvious that this Lemma holds.

Now, a primary concept for this paper is described as follows.

Theorem 3.1 Let the disturbance attenuation index δ > 0 and the robust relative
stability index α > 0, where δ and α are prescribed scalars that are determined according
to performance requirements of the structure. Consider a given uncertain structural sys-
tem (5) with structured uncertainties in (6) – (9). Then, if there exist positive adjustable
scalars ε1, ε2, ε3, and ε, an adjustable matrix Q > 0, and a solution matrix P > 0
satisfying the following Riccati equation:

(A + αI)TP + P(A + αI) − P

{

B(I −
ε2

2
UB)BT

−ε1TA −
1

2ε2

TB −
ε

δ

[

F(I + ε3UF )FT +
1

ε3

TF + lfF∆

]}

P

+
1

ε1

UA +
1

εδ
CTC + Q = 0, 0 < ε2 <

2

σ̄(UB)

(21)

where TA, UA, TB , UB, TF , UF and F∆ are as in (9), then the state-feedback controller

u(t) = −Kx(t) = −rBTPx(t), (22)

1

ε2σ̄(UB)
− 0.5 ≥ r ≥ 0.5 or 0.5 ≥ r ≥

1

ε2σ(UB)
− 0.5, (23)
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guarantees a robust α-degree relative stability (16) and a δ-degree H∞ disturbance atten-
uation (15) for the uncertain structural system (5) with all admissible structured uncer-
tainties as shown in (6) – (9).

Proof To prove this theorem, equation (19) is investigated for the uncertain system
(5) with uncertainties in (6) – (9). Control vector u(t) is given by equation (22), and

Ac = A + ∆A − BK− ∆BK = A + ∆A− rBBTP− r∆BBTP.

Thus, by using the Riccati equation (21), Lemmas 2 and 3, and conditions in (21) and
(23), we have

(Ac+αI)TP + P(Ac + αI) +
ε

δ
P

[

F(I + ε3UF )FT +
1

ε3

TF + lfF∆

]

P +
1

εδ
CTC

= (A + αI)TP + P(A + αI) +
ε

δ
P

[

F(I + ε3UF )FT +
1

ε3

TF + lfF∆

]

P

+
1

εδ
CTC + (∆A − rBBTP − r∆BBTP)TP

+ P(∆A − rBBTP − r∆BBTP) = P

[

B(I −
ε2

2
UB)BT − ε1TA −

1

2ε2

TB

]

P

−
1

ε1

UA − Q + ∆ATP + P∆A − rP(2BBT + ∆BBT + B∆BT)P

≤ P

[

− 2r2ε2BUBBT −
1

2ε2

TB − r(∆BBT + B∆BT)

]

P − ε1PTAP

−
1

ε1

UA + P(∆AT + ∆A)P − Q ≤ −Q < 0.

Thus, controller (22) makes inequality (19) hold. Then, by Lemma 3, Theorem 3.1 is
proved.

The proposed controller (22) in Theorem 3.1 is not only a robust controller with H∞

disturbance attenuation and robust relative stability, but also an optimal controller in
the H2 optimal sense under a certain meaning as discussed in the next section.

Now, consider matched uncertain systems with matched uncertainties in (10) – (12).

Theorem 3.2 Consider a matched uncertain system (5) with the matched structured
uncertainties in (10) – (12), a specified relative stability degree α, and a disturbance at-
tenuation index δ. Select an assigned matrix Q > 0, and positive adjustable scalars ε1,
ε2, ε3, ε, and r within the following regions

σ
(

I− 0.5ε2UbB − 0.5
1

ε2

TbB

)

σ̄(TbA)
> ε1 > 0,

σ
[(

I − 0.5ε2UbB − 0.5
1

ε2

TbB

)

− ε1TbA

]

δ

σ̄
[ 1

ε3

TbF + FB(I + ε3UbF )FT
B + lfFb∆

]
> ε > 0, r ≥ 0.5,

(24)
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where σ̄ and σ denote the maximum and minimum singular values of a matrix, respec-
tively. Then, there always exists a solution matrix P > 0 that satisfies the following
Riccati equation

(A + αI)TP + P(A + αI) − PB

{

I−
ε2

2
UbB −

1

2ε2

TbB − ε1TbA

−
ε

δ

[

FB(I + ε3UbF )FT

B +
1

ε3

TbF + lfFb∆

]}

BTP +
1

ε1

UbA +
1

εδ
CTC + Q = 0

(25)

The robust active state-feedback controller in (22) guarantees a robust α-degree relative
stability (16) and a δ-degree disturbance attenuation (15) for the uncertain structural
system (5) with all admissible matched structured uncertainties as shown in (10) – (12).

Proof Because of matched uncertainty conditions, I − 0.5ε2UbB − 0.5 1

ε2

TbB > 0

for some ε2. Based on optimal control theory [1] it is obvious that selection of ε1 and ε
in (24) guarantees that the Riccati equation (25) has a solution matrix P > 0 for any
selected positive semi-definite matrix Q. Following a line of proof similar to that used
in Theorem 3.1 and using Lemma 2 lead to the following:

(Ac + αI)TP + P(Ac + αI) +
ε

δ
P

[

F(I + ε3UF )FT +
1

ε3

TF + lfF∆

]

P +
1

εδ
CTC

= PB

[

I −
ε2

2
UbB −

1

2ε2

TbB − ε1TbA

]

BTP−
1

ε1

UbA + ∆AT

BBTP + PB∆AB

− rPB(2I + ∆BB + ∆BT

B)BTP − Q ≤ −Q < 0

Thus, by Lemma 3, the proof is complete.

Remark 3.1 The disturbance attenuation index δ > 0 and the robust relative stability
index α > 0 are prescribed based on engineering requirements. Riccati equations (21)
or (25) are solved for matrix P after selection of a set of adjustable parameters. Q is
a small positive definite matrix. Then, the robust active control law in equation (22) is
used with P from Riccati equation (21) or (25).

Remark 3.2 For tuning the adjustable scalars in Theorem 3.2, ε2 is usually selected
such that σ(I−0.5ε2UbB−0.5 1

ε2

TbB) is large, and ε3 is selected such that σ̄(ε3FBUbF FT
B

+ 1

ε3

TbF ) is small.

It is noticed that for uncertain structural systems ∆F = 0 is a special case of what
was discussed above. The following remark addresses this case.

Remark 3.3 Theorems 3.1 – 3.2 are valid for the case in which disturbance input un-
certainties are not considered, i.e., ∆F = 0. For this special case, we simply let TF = 0,
UF = 0, and F∆ = 0 for Theorem 3.1 and TbF = 0, UbF = 0, and Fb∆ = 0 for
Theorem 3.2. Therefore, for the case of ∆F = 0, Riccati equations (21) and (25) in
Theorems 3.1 and 3.2 are reduced to

(A + αI)TP + P(A + αI) − P

[

B(I −
ε2

2
UB)BT − ε1TA −

1

2ε2

TB −
ε

δ
FFT

]

P

+
1

ε1

UA +
1

εδ
CTC + Q = 0,

(26)
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(A + αI)TP + P(A + αI) − PB

{

I −
ε2

2
UbB −

1

2ε2

TbB − ε1TbA −
ε

δ
FBFT

B

}

BTP

+
1

ε1

UbA +
1

εδ
CTC + Q = 0, (27)

respectively. These equations coincide with the results in [14], in which no uncertainty
is considered for the disturbance input matrix, i.e., ∆F = 0 and also ε2 = 1.

Selection of the set of adjustable scalars εi (i = 1, 2, 3), ε, gain parameter r, and
adjustable positive definite matrix Q requires some experience. However, these adjustable
scalars, parameter, and matrix provide flexibility for obtaining a desired robust active
controller for an uncertain structural system. Some general guidance for selection of this
adjustable set is summarized in the following remarks.

Remark 3.4 The set of adjustable scalars εi (i = 1, 2, 3), and ε is usually chosen in
(21) or (25) of Theorems 3.1 – 3.2, such that

B

(

I −
ε2

2
UB

)

BT − ε1TA −
1

2ε2

TB −
ε

δ

[

F(I + ε3UF )FT +
1

ε3

TF + lfF∆

]

(28a)

or I −
ε2

2
UbB −

1

2ε2

TbB − ε1TbA −
ε

δ

[

1

ε3

TbF + FB(I + ε3UbF )FT

B + lfFb∆

]

(28b)

is semi-positive definite if possible. Positive definite matrix Q is usually assigned as a
small matrix. Then, matrix P is solved from Riccati equations (21) and (25), respec-
tively. Gain parameter r is selected to satisfy Riccati equations. A small r means a small
energy requirement for the controller. However, a large r provides a fast decay response
to disturbances (earthquake and wind disturbances, etc.). Also, another consideration
for selection of gain r is to let conditions in Section 4 hold for H2 optimality in Theo-
rems 4.1 – 4.2. Therefore, selection of gain parameter r depends on physical conditions
and requirements. Due to the special block companion form of structural systems, and
even the special block diagonal structure, selection of appropriate adjustable scalars is
accomplished easily.

Remark 3.5 For a matched uncertain structural system, selection of adjustable scalars
ε and εi (i = 1, 2, 3), is very easy from (24) since solution of the Riccati equation (25)
always exists from (24).

4 Preservation of H2 Optimality

The proposed controllers (22) in Theorems 3.1 – 3.2 are not only robust with H∞ dis-
turbance attenuation and robust relatively stability, but also optimal in the H2 optimal
sense as discussed in this section. Thus, many H2 optimal properties [1] hold for these
robust controlled uncertain structural systems via the designed controller. The following
theorems provide these results with H2 optimality.

Theorem 4.1 Under conditions in Theorem 3.1, if

2αP + P

{

r

[

B(I − ε2UB)BT −
1

ε2

TB

]

−

[

B(I −
ε2

2
UB)BT −

1

2ε2

TB

]

+
ε

δ

[

F(I + ε3UF )FT +
1

ε3

TF + lfF∆

]}

P +
1

εδ
CTC + Q ≥ 0,

(29)
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then the robust active controller (24) is also H2 optimal for the uncertain structural
system (5) regarding a specific performance index

J =

∫

[xT(t)Q̃x(t) + uT(t)R̃u(t)] dt (30)

with

Q̃ = −ÃTP − PÃ + PBR̃
−1

BTP ≥ 0, R̃ =
1

r
I, (31)

where
Ã = A + ∆A − r∆BBTP. (32)

Proof To show that the designed controller (22) is optimal, matrix Q̃ is expanded as
follows:

Q̃ = −ÃTP − PÃ + PBR̃−1BTP

= −(A + ∆A − r∆BBTP)TP− P(A + ∆A− r∆BBTP) + rPBBTP.

It follows from the proof of Theorem 3.1 and equation (21) that

Q̃ ≥ 2αP + P

{

r

[

B(I − ε2UB)BT −
1

ε2

TB

]

−

[

B

(

I −
ε2

2
UB

)

BT −
1

2ε2

TB

]

+
ε

δ

[

F(I + ε3UF )FT +
1

ε3

TF + lfF∆

]}

P +
1

εδ
CTC + Q.

Therefore, if (29) holds, Q̃ ≥ 0, and equation (31) is true. Since R̃ > 0 and Q̃ ≥ 0,
the perturbed uncertain system (14) is optimal with respect to the specific performance
index (30) by the active robust controller (22) based on well-known H2 optimal control
theory. Thus, this theorem is proved.

For other cases, the following theorem for H2 optimality is listed. Due to the similarity
of proofs, details are omitted here.

Theorem 4.2 Under conditions in Theorem 3.2, if

2αP + PB

{

r

(

I− ε2UbB −
1

ε2

TbB

)

−

(

I −
ε2

2
UbB −

1

2ε2

TbB

)

+
ε

δ

[

FB(I + ε3UbF )FT

B +
1

ε3

TbF + lfFb∆

]}

BTP +
1

εδ
CTC + Q ≥ 0,

(33)

then the robust active controller (22) is also H2 optimal for the uncertain structural

system (5) regarding a specific performance index J in (30) with Q̃ and R̃ in (31).

Remark 4.1 Notice that H2 optimality is for the uncertain structural system (5)

regarding a specific performance index J in (30) with Q̃ and R̃ in (31), where Q̃ is
uncertain. Also, it is noticed that uncertainties in the uncertain system are unknown but
only their bound and structures are known. The importance of the above theorems is that
when the respective condition of (29) or (33) holds, the robust controller (22) provides H2

optimality in face of any admissible uncertainties as described in the respective theorems
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Figure 5.1. Building model for numerical example.

in Section 3 even though their exact values are not known. This means that the robust
controller (22) provides a gain margin of infinity and at least a 60◦-phase margin for
whole uncertain structural systems with all admissible uncertainties even though the
exact performance due to unknown uncertainties is not known.

5 Numerical Example

In order to illustrate effectiveness of the proposed approach for robust control, a nu-
merical example of a four-degree-of-freedom system is taken and extended from [6] (see
Figure 5.1). For this model of a tall building, stiffness, mass, and damping values of
k = 350 × 106N/m, m = 1.05 × 106kg, and c = 1.575 × 106N-s/m, respectively, are
assumed. Total weight of the building is 61.74MN. In order to design a robust controller
that is valid for both earthquake and wind disturbances, the considered external distur-
bance force applied to each floor level is fdi(t) = fwi(t) + fei(t), i = 1, . . . , 4, where
fwi(t) is from a strong wind event and fei(t) is from an earthquake event. The total
external force for each floor level is fi(t) = fui(t) + fdi(t), where fui(t) is the control
force. The system is described as

Mq̈ + Cdq̇ + Ksq = f or q̈ + M−1Cdq̇ + M−1Ksq = M−1f , (34)

where M only has elements on the diagonal, q is a relative displacement vector to the
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ground,

Ks =







4k −2k 0 0
−2k 3k −k 0
0 −k 2k −k
0 0 −k k






= 175 · 106







8 −4 0 0
−4 6 −2 0
0 −2 4 −2
0 0 −2 2






,

Cd =







2c −c 0 0
−c 2c −c 0
0 −c 2c −c
0 0 −c c






= 1.575 · 106







2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1






,

M = 1.05 · 106







2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1






, f =







f1(t)
f2(t)
f3(t)
f4(t)






.

(35)

From equations (34) and (35), we have

Dk0 =







2000/3 −1000/3 0 0
−1000/3 500 −500/3 0

0 −1000/3 2000/3 −1000/3
0 0 −1000/3 1000/3






,

Dc0 =







1.5 −0.75 0 0
−0.75 1.5 −0.75 0

0 −1.5 3.0 −1.5
0 0 −1.5 1.5






, A0 =

[

0 I

−Dk0 −Dc0

]

(36)

If it is assumed that each story has a controller and is connected to a Chevron brace,
then

Bch =







1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1






, B0 =

[

0

M−1Bch

]

, and Bu0 = M−1Bch. (37)

State variables are chosen to be the displacement and velocity of each level (relative

to the ground), z(t) = x(t), i.e., C = I. Consider w(t) = [ wT
w(t) we(t) ]

T
, where ww(t)

and we(t) are wind and earthquake forces, respectively. Then,

Fw0 = M−1F0,

where

F0 =






I4

2
2
1
1






, ww(t) =







fw1(t)
fw2(t)
fw3(t)
fw4(t)







and we(t) is an earthquake force for a mass m. For simplicity, only an earthquake loading
is considered here and it follows that Fw0 and w(t) reduce to

Fw0 = M−1







2
2
1
1






=

1

m







1
1
1
1






=

1

m
FwI ,

FwI = [ 1, 1, 1, 1 ]T, and w(t) = we(t).

(38)
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Uncertainties are taken to be as follows: ∆m = ±10% · m, ∆k = ±10% · k, and
∆c = ±10% · c . Thus, ∆Ks = ak · 0.1Ks, ∆Cd = ac · 0.1Cd, and ∆M = am · 0.1M,
where |ak| ≤ 1, |ac| ≤ 1, and |am| ≤ 1. Then, (M+∆M)−1 = (0.90909 ∼ 1.11111)M−1.
These are parametric perturbations, i.e., structured uncertainties. Also, it is obvious
that the disturbance input matrix Fw has uncertainties when parameter m changes with
uncertainties. Dk is perturbed by a factor (0.818181 ∼ 1.22222), as is Dc. The central

matrix 1.0101M−1 is taken as a nominal M−1

0
and ∆M−1

0
= am1 · 0.10101M−1 =

am1 · 0.1M−1

0
, where |am1| ≤ 1. Further, take central matrices as nominal models for

new Dk and Dc for design, i.e.,

Dk = 1.0202Dk0, Dc = 1.0202Dc0, A =

[

0 I

−Dk −Dc

]

, Bu = M−1

0
Bch,

then

∆Dk = ak10.198Dk, ∆Dc = ac10.198Dc, ∆A =

[

0 0

−∆Dk −∆Dc

]

,

and ∆Bu = 0.1am1M
−1

0
Bch,

(39)

where |ak1| ≤ 1, and |ac1| ≤ 1. These matrices are actually structured uncertain-
ties. Similarly, a new central disturbance input matrix is taken as follows: Fw =
M−1

0
[2, 2, 1, 1]T, ∆Fw = 0.1f1Fw and |f1| ≤ 1. This case is obviously a matched

uncertainty model, so that ∆BBu, ∆DBk, ∆DBc, FBw and ∆FBw are available and can
be obtained by a left multiplication of Bw with the respective uncertainties and matrices.

Next, the SVD decomposition is applied to all of the above uncertainty structures to
obtain Tbk, Ubk, Tbc, Ubc, Tbb, Ubb, Tbf , Ubf , and Fb∆. The final step is to design a
robust controller for this uncertain structure system with all above structured uncertain-
ties in ∆A, ∆B, and ∆F. A relative degree of stability and a disturbance attenuation
index are taken to be α = 1.5 and δ = 0.01, respectively. Based on Theorem 3.2 and
Remarks 3.2, 3.4, and 3.5, Q = 0.05I, ε1 = 3.9 · 10−9, ε2 = 1, ε3 = 1, and ε = 10−7.
From Theorem 3.2, Riccati equation (25) has the solution matrix P. For optimality, we
choose r = 1.04. Also, equation (33) satisfies Theorem 4.2. Then, the robust control law
(22) is u(t) = −Kx(t) = −rBTPx(t) with

K = rBTP = r · 108

×







0.1611 1.1376 −0.7897 0.7668 0.4093 0.0358 0.0693 0.0949
−0.8795 −0.7291 2.1767 −0.4508 −0.3735 0.4524 0.1012 0.0631

3.2609 −2.8101 −0.0195 0.7873 0.1028 −0.1471 0.2127 0.1394
−2.4035 1.7595 −0.7564 0.4764 0.0511 −0.0252 −0.0859 0.1903






.

(40)

6 Evaluation Indices

In order to evaluate the controller, special consideration is given to absolute accelera-
tions aa(t), interstory drifts dx(t), and control forces u(t). Maximum peak values and
maximum RMS values for all four floors and over the entire simulation period are moni-
tored and recorded. Elements of the relative acceleration vector a(t) are determined by
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numerical differentiation of the output velocities. Then, the absolute accelerations aa(t)
are computed as follows:

aa(t) =







aa1(t)
aa2(t)
aa3(t)
aa4(t)






= a(t) + (1 + ∆f)ae(t)







1
1
1
1






=







a1(t)
a2(t)
a3(t)
a4(t)






+ (1 + ∆f)ae(t)







1
1
1
1







=







ẋ5(t)
ẋ6(t)
ẋ7(t)
ẋ8(t)






+ (1 + ∆f)ae(t)







1
1
1
1






,

(41)

where ae(t) is the acceleration time-history of the earthquake, and ∆f is the enlarged
ratio of earthquake acceleration (for the nominal model ∆f = 0). The interstory drift
vector is

dx = [dx1, dx2, dx3, dx4]
T = [x1, x2 − x1, x3 − x2, x4 − x3]

T. (42)

In order to facilitate an evaluation of the merits of the proposed approach for control,
six performance indices are defined as listed in Tables 7.1 and 7.2. The maximum peak
value of absolute acceleration is defined as follows:

J1 = max
i,t

{|aai(t)|}. (43)

The second evaluation criterion, J2, is the maximum RMS value of absolute accelera-
tion and is given by:

J2 = max
i

[

1

Tf

Tf
∫

0

a2

ai(t) dt

]1/2

. (44)

The third and fourth indices, J3 and J4, are the maximum peak value and the maxi-
mum RMS value of the interstory drifts, respectively:

J3 = max
i,t

{|dxi(t)|}, J4 = max
i

[

1

Tf

Tf
∫

0

d2

xi(t) dt

]1/2

. (45)

Finally, J5 and J6 are the maximum peak value and the maximum RMS value of the
control forces, respectively,

J5 = max
i,t

{|ui(t)|}, J6 = max
i

[

1

Tf

Tf
∫

0

u2

i (t) dt

]1/2

.

7 Simulations

Numerical simulations are carried out for both a nominal case without perturbations and
a worst case where ∆M = 0.1M, ∆Ks = 0.1Ks, and ∆Cd = −0.1Cd (i.e., ∆m = 0.1m,
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∆k = 0.1k, ∆c = −0.1c). The basic concept is to take the worst case for Dc + ∆Dc,
i.e., the smallest one from ∆c = −0.1c and ∆m = 0.1m, and the largest Ks + ∆Ks

from ∆k = 0.1k when ∆m = 0.1m. It follows that ∆Dk = 0, ∆Dc = −0.1818Dc0,
∆BB = [0 −0.1I ]T, and ∆Fw = 0.1Fw0. Thus, one simulated uncertain system model
in the worst case is taken as

ẋ(t) =

{[

0 I

−Dk0 −0.81818Dc0

]

−

[

0

0.9Bu0

]

K

}

x(t) + 1.1

[

0

Fw0

]

w(t)

=

{[

0 I

−Dk0 −0.81818Dc0

]

−

[

0

0.9Bu0

]

K

}

x(t) − 1.1ae(t)

[

0

FwI

]

,

z(t) = x(t),

(47)

where Dk0 and Dc0 are given by (36), K is from (40), w(t) = we(t), and ae(t) is the
earthquake acceleration time-history. The simulated nominal system model is

ẋ(t) =

{[

0 I

−Dk0 −Dc0

]

−

[

0

Bu0

]

K

}

x(t) +

[

0

Fw0

]

w(t)

=

{[

0 I

−Dk0 −Dc0

]

−

[

0

Bu0

]

K

}

x(t) − ae(t)

[

0

FwI

]

,

z(t) = x(t).

(48)

A time history of acceleration ae(t) from the 1940 El Centro, California, earthquake
is applied to the base of the structure.

It is noted that numerical simulations for the perturbed building apply the disturbance
earthquake forces and corresponding accelerations enlarged by 10%.

For comparison, the numerical simulations are also conducted on the same structure
using an LQR controller. Weighting matrices for the LQR design, Q = 1012 × I and
R = I, are selected by a trial and error procedure in order to produce an allowable
maximum peak control force that is physically realizable. Under these conditions, the
maximum control force for the LQR controller is 811kN. Likewise, the robust control force
is limited to 810 kN for comparison. Then, a small gain robust controller is included with
an adjustable gain of r = 1.637× 10−2 which requires a maximum force 810kN. Finally,
a clipped robust controller with an 810 kN force limit is simulated as well, which is also
physically realizable. However, by contrast, the robust controller provides information
about how much force is required for a very high level of performance, without a trial
and error procedure.

Output of numerical simulations for the uncontrolled, LQR controlled, and clipped
robust controlled cases is shown in Figures 7.1 – 7.4. These graphs show fourth floor in-
terstory drift and absolute acceleration for 30-sec of motion. Figures 7.1 and 7.2 illustrate
results for the nominal model. Figures 7.3 and 7.4 show the corresponding information
for the perturbed model. Results indicate that reduction in response of the structure
is very good for both interstory drift and absolute acceleration. Note that the robust
controller requires a much larger maximum control force if it is not clipped.
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Figure 7.1. Nominal model: Uncontrolled and controlled interstory drift of the

4-th floor.

Figure 7.2. Nominal model: Uncontrolled and controlled absolute acceleration

of the 4-th floor.
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Figure 7.3. Perturbed model: Uncontrolled and controlled interstory drift of the

4-th floor.

Figure 7.4. Perturbed model: Uncontrolled and controlled absolute acceleration

of the 4-th floor.
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Quantitative results from numerical simulations for the nominal and perturbed struc-
ture are listed in Tables 7.1 and 7.2, respectively. Cases presented include uncon-
trolled, LQR-controlled, robust controlled (r = 1.04), small gain robust controlled
(r = 1.637×10−2), and clipped robust controlled (r = 1.04, umax = 810kN). Simulation
results in this paper and [13] appear to bode well for experimental implementation.

Table 7.1 Comparison of simulation performance: Nominal model.

Performance
Index

Uncontrolled
Model

LQR
Control

Q = 1×1012I,

R = I

Robust
Control
r = 1.04

Small Gain
Robust Control
r = 1.637×10−2

Clipped
Robust
Control
r = 1.06

Max Peak Absolute
Accel. (m/s2)

13.72 11.79 3.58 11.72 10.18

Max RMS Absolute
Accel. (m/s2)

5.84 3.82 0.68 3.81 2.15

Max Peak Interstory
Drift. (mm)

73.0 63.1 1.2 62.8 49.9

Max RMS Interstory
Drift. (mm)

31.8 20.6 0.3 20.5 11.2

Max Peak Force
(kN)

— 711 12,274 706 810

Max RMS Force
(kN)

— 251.7 2,194.4 247.6 720.7

Table 7.2 Comparison of simulation performance: Perturbed model.

Performance
Index

Uncontrolled
Model

LQR
Control

Q = 1×1012I,

R = I

Robust
Control
r = 1.04

Small Gain
Robust Control
r = 1.637×10−2

Clipped
Robust
Control

r = 1.06

Max Peak Absolute
Accel. (m/s2)

15.90 13.70 3.98 13.61 12.47

Max RMS Absolute
Accel. (m/s2)

7.13 4.63 0.75 4.61 2.77

Max Peak Interstory
Drift. (mm)

82.8 72.5 1.4 72.0 61.4

Max RMS Interstory
Drift. (mm)

38.9 25.0 0.3 24.9 14.5

Max Peak Force
(kN)

— 811 14,398 810 810

Max RMS Force
(kN)

— 305.4 2,559.8 300.4 734.9
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8 Conclusions

In this paper, a general structural system model based on Lagrange’s equation has been
introduced. Its form is that of a special structural block companion matrix form, and an
active robust controller for the uncertain structural system is described. General struc-
tured uncertainties and matched structured uncertainties are described and considered
for uncertain structural systems. Considered structured uncertainties include those in
the system, control input, and especially disturbance input matrices. In addition, special
weighted SVD decomposition is applied to all structured uncertainties. An approach
to design robust state-feedback algorithms for matched and general uncertain structural
systems has been proposed. The active robust controller has robust α-degree relative
stability, robust H∞ δ-degree disturbance rejection, and robust H2 optimality for a fam-
ily of uncertain systems. Settling time of the controlled system is always less than 4/α.
Moreover, the H∞-norm of the transfer function from the disturbance vector w to the
observed output vector z is not greater than δ, i.e., ‖Tzw(s)‖∞ ≤ δ. Thus, hazardous
effects of disturbances such as earthquakes and strong winds to the structural system are
controlled and attenuated due to robust H∞ δ-degree disturbance rejection. In addition,
response to the disturbance is quickly reduced due to robust α-degree relative stability
and a judicious selection of the gain parameter r. The proposed controller is also H2

optimal with a special performance index that is shown in Section 4. Thus, the designed
robust controller provides infinity gain margin and at least a 60◦-phase margin for entire
uncertain structural system with all admissible uncertainties. A set of adjustable param-
eters provides flexibility in design of the robust controller. An example of an uncertain
four-story building is used to illustrate results. Numerical simulations are carried on the
building excited by the 1940 El Centro earthquake data and compared with the LQR
controller by the six performance evaluation indices. Results show that the performance
of the robust controller is very good.
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