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Abstract: In this work, a new approach is developed for dynamic analysis
of a composite beam with an inter-ply crack, in which a physically impos-
sible interpenetration of the crack faces is prevented by imposing a special
constraint, leading to nonlinearity of the formulated boundary value problem
and to taking account of a contact interaction of the crack faces. A variational
formulation of the problem and partial differential equations of motion with
boundary conditions are developed, and solutions of example problems for a
piezo-actuated cantilever beam are presented in a form of series in terms of
eigenfunctions of the associated non-self-adjoint eigenvalue problem. A no-
ticeable difference of forced vibrations of the delaminated and undelaminated
beams due to the contact interaction of the crack faces is predicted by the
developed model.
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1 Introduction

In this work, a new variational formulation and differential equations of motion with
boundary conditions for a beam with through-width delamination are developed, in which
a constraint is introduced that does not allow opposite faces of the crack to penetrate
each other, leading to a nonlinear formulation of the problem and to taking account of
contact interaction of the crack faces. An equation, which expresses this constraint, is
written with the use of the Heaviside function in one of its analytical forms, and the
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constraint is imposed by the penalty function method. The longitudinal force resultants
in the delaminated parts of the beam are taken into account, which are another source
of the nonlinearity.

Besides, a variational formulation and a differential equation of motion with boundary
conditions were developed for a beam without delamination and with a piezoelectric patch
(actuator) on its upper surface. The two kinds of developed formulations, for the beam
with the delamination and for the beam with the actuator, are combined to form a
variational formulation and a system of differential equations with boundary conditions
for a cantilever beam with the actuator and the delamination.

A solution for a transverse displacement as a function of time for the cantilever beam
with the actuator and the delamination crack is found in a form of series of eigenfunctions
of the differential eigenvalue problem, associated with the linearized differential equations
of motion with boundary conditions. The series solution is found for both linearized and
nonlinear formulations. The comparison of the two solutions is presented to emphasize
the importance of using the nonlinear formulation to prevent the physically impossible
interpenetration of the crack’s faces. However, under small amplitudes of vibration,
such interpenetration, as predicted by the solution based on the linearized formulation
(without account of the nonpenetration constraint), is shown to be small in the example
problem for the cantilever beam, excited by the piezoelectric actuator.

The rotary inertia terms in the differential equations of motion are taken into account
(to produce more accurate results for frequencies), leading to non-self-adjoint differential
operators for the linearized problem in case of clamped-free boundary conditions. The
partial differential equations with the non-self-adjoint differential operators are solved by
the Ritz method, with the use of the variational formulation of the problem. The solution
for the transverse displacement is sought in the form of series of eigenfunctions of these
non-self-adjoint differential operators, leading to the series solution of the linearized prob-
lem, which satisfies exactly both essential (displacement) and natural (force) boundary
conditions, and a series solution of the nonlinearly formulated problem, which satisfies
essential boundary conditions exactly and natural boundary conditions approximately.

In the example problems for the beam with the crack, excited by the piezoelectric
actuator, with a voltage distributed uniformly along the length of the actuator, the time-
dependent concentrated bending moment appears between the zones with the actuator
and without the actuator, leading to nonhomogeneous time-dependent boundary condi-
tion between these two zones. The difficulty of solving the partial differential equations of
motion with the time-dependent boundary condition is resolved by presenting the time-
dependent bending moment in terms of the second spacial derivative of the Heaviside
function and by including the bending moment into the equations of motion, as a forcing
function, rather than into the boundary conditions.

Several types of models of delaminated beams have been proposed in the literature.
In some models, for example, [1] and [2], the contact force between the delaminated
parts is not taken into account, and the physically impossible mutual penetration of the
delaminated parts is allowed. In other models, for example, [3], the delaminated parts
are constrained to have the same transverse displacement, excluding the possibility of
the delamination crack opening during the vibration. In the reference [4], the interaction
between the delaminated parts is modeled with the use of a nonlinear (piecewise-linear)
spring between the surfaces of the delaminated parts. Stiffness of the spring depends
on the difference of displacements of the lower and upper delaminated parts. If the
delamination crack is open, the stiffness of the spring is set equal to zero, making the
distributed contact force equal to zero. When the delamination crack is closed, the
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stiffness of the spring is set either to infinity, or to some finite constant value. The
authors set the spring stiffness equal to a constant (either zero, or 0.1, or infinity) before
solving the problem, thus assuming that the crack remains either open or closed all the
time during the vibration. So, the possibility for the crack to be open in some time
intervals and closed in other time intervals during the vibration is not foreseen in this
model.

In the paper [5], the contact force between the delaminated sublaminates is introduced
as a function of the relative transverse displacement of the sublaminates, in such a way
that the contact force automatically turns out to be zero, when the delamination crack is
open, and takes on a non-zero value, if the crack is closed. So, this model does not require
to specify in advance if the crack is open or closed, and allows for contact and separation of
the crack faces during the vibration. However, the physically impossible interpenetration
of the crack faces is not always prevented in this model. The interpenetration occurs
because a constraint, preventing this phenomenon, is not introduced.

In the model of the delaminated composite beam, presented below, the constraint,
preventing the mutual penetration (interpenetration, overlapping) of the delaminated
sublaminates (of the crack’s faces), is introduced with the use of the Heaviside function
and the penalty function method, which is the main novelty of the presented approach
to solving dynamic problems for beams with cracks. The longitudinal force resultants
in the delaminated sublaminates and rotary inertia terms are taken into account also.
The use of the constraint, which prevents the interpenetration of the crack faces, and
taking account of the longitudinal force resultants lead to nonlinear partial differential
equations of motion. Only thin beams are considered in this work, making it possible to
develop a beam theory, based on assumption of negligibly small shear strains.

2 Model of Composite Beam with Delamination

2.1 Assumptions and notations

The x-coordinates of the delamination crack tips are denoted as α and β (α ≤ β), and
z-coordinates of both crack tips are denoted as γ (Figure 2.1).

The transverse displacement of this beam is assumed to have the form

w(x, z, t) = W0(x, t) + Dα
β (x)Hγ(z)[W1(x, t) − W0(x, t)], (1)

where Dα
β (x) is a double-sided unit step-function, defined by the formula

Dα
β (x) ≡

{
1 for α < x < β,

0 for 0 ≤ x ≤ α and β ≤ x ≤ L,
(2)

and Hγ(z) is a Heaviside function (unit step-function), defined by the formula

Hγ(z) ≡

{
0 for −h/2 ≤ z ≤ γ,

1 for γ < z ≤ h/2,
(3)

W0(x, t) is a transverse displacement at the beam’s axis (at z = 0), and W1(x, t) is a
transverse displacement of the upper sublaminate in the delaminated region α < x < β.
Equation (1) implies that the transverse displacement w(x, z, t)

(i) is equal to W0 in the undelaminated regions, i.e. in the region 0 ≤ x ≤ α (where
it will be denoted as w1) and in the region β ≤ x ≤ L (where it will be denoted
as w4);
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Figure 2.1. Beam with delamination.

α is x-coordinate of the left crack tip; β is x-coordinate of the right crack tip;

γ is z-coordinate of the crack (distance from x-axis to crack); w1 is transverse

displacement of zone 1; w2 is transverse displacement of lower part of zone 2 (under

the crack); w3 is transverse displacement of upper part of zone 2 (above the crack);

w4 is transverse displacement of zone 3.

(ii) is equal to W0 in the lower sublaminate of the delaminated region (under the
crack) i.e. in the region α < x < β and −h/2 ≤ z ≤ γ (where it will be denoted
as w2);

(iii) is equal to W1 in the upper sublaminate of the delaminated region, i.e. in the
region α < x < β and γ < z ≤ h/2 (where it will be denoted as w3).

With the use of these notation, equation (1) can be written as follows (Figure 2.1):

w(x, z, t) =






w1(x, t) in 0 ≤ x ≤ α,

w2(x, t) in α < x < β and −h/2 ≤ z ≤ γ,

w3(x, t) in α ≤ x ≤ β and γ < z ≤ h/2,

w4(x, t) in β < x ≤ L.

(4)

In the simplest beam theory, based on Euler-Bernoulli assumptions and with no lon-
gitudinal displacement at the middle surface z = 0, the longitudinal displacement (in
the x-direction) can be assumed to have the form

u(x, z, t) = −
∂w

∂x
z = −

[
∂W0

∂x
+

(
∂W1

∂x
−

∂W0

∂x

)
DH

]
z. (5)

From here on, the functions Dα
β (x) and Hγ(z) are denoted as D and H , for brevity.

Primes will denote differentiation with respect to the x-coordinate, and dots — differen-
tiation with respect to time.
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We have the following constraints at locations of the tips of the delamination crack
(at x = α and at x = β):

w1(α) = w2(α), w1(α) = w3(α), w′

1(α) = w′

2(α), w′

1(α) = w′

3(α),

w4(β) = w2(β), w4(β) = w3(β), w′

4(β) = w′

2(β), w′

4(β) = w′

3(β).
(6)

These constraints allow one to introduce the following notations:

w(α) ≡ w1(α) = w2(α) = w3(α), w(β) ≡ w2(β) = w3(β) = w4(β),

w′(α) ≡ w′

1(α) = w′

2(α) = w′

3(α), w′(β) ≡ w′

2(β) = w′

3(β) = w′

4(β).
(7)

The constitutive equation for the stress σxx in a layer of the composite beam can be
taken in the form [6]

σxx =
1

S11

εxx, (8)

where

S11 =
1

E1
cos4 θ +

1

E2
sin4 θ +

(
1

G12
− 2

ν12

E1

)
sin2 θ cos2 θ, (9)

and θ is an angle between the fiber direction and the x-axis, measured counterclockwise,
and E1, E2, G12 and ν12 are engineering elastic constants in the principal material
coordinate system.

During the vibration of the delaminated beam, the upper and lower delaminated parts
touch each other, and the force of their interaction needs to be taken into account. This
force enters into the differential equations of motion as a reaction of constraint, which
prevents overlapping of the upper and lower delaminated parts. A constraint of this
nature can be expressed by a relationship between w2 and w3 (i.e. displacements of the
lower and upper delaminated parts) that prevents the difference w3 − w2 to take on
negative values:

f(w2, w3) ≡ (w3 − w2)[1 − H0(w3 − w2)] = 0. (10a)

If delaminated sublaminates “attempt” to overlap during the vibration (if w3 −w2 < 0),
or if the crack is closed (w3 − w2 = 0), then H0(w3 − w2) = 0, and, therefore, due to
equation (10a), the difference w3−w2 is set equal to zero. If the crack is open (w3−w2 >
0), then H0(w3 − w2) = 1, and no constraints are imposed on the difference w3 − w2.
With the use of the analytical representation of the Heaviside function (Appendix A,
equation (A-5)), the nonpenetration constraint, expressed by equation (10a), can be
written as follows:

f(w2, w3) ≡ (w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
= 0, (10b)

where ǫ is some small number.

2.2 Differential equations of motion for delaminated beam

It is implied that the beam is under external distributed load q (force per unit length),
applied on the upper surface of the beam, and the load does not depend on displace-
ments. To derive differential equations of motion with boundary conditions, we use the
Hamilton’s principle:

δ

t2∫

t1

J(t) dt = 0, (11)
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where J(t) is a modified Lagrangian function of the system, in which the nonpenetration
constraint f(w2, w3) = 0, defined by equation (10b), is taken into account with the use
of the method of Lagrange multipliers:

J(t) =

∫∫∫

(V )

(Û − T̂ )dV −

L∫

0

λ(x, t)f(w2, w3) dx −

L∫

0

qw
∣∣
z=h/2

dx

= b

α∫

0

h/2∫

−h/2

(Û − T̂ ) dzdx −

α∫

0

qw1 dx + b

β∫

α

γ∫

−h/2

(Û − T̂ ) dz

+ b

β∫

α

h/2∫

γ

(Û − T̂ ) dzdx −

β∫

α

qw3 dx −

β∫

α

λ(x, t)f(w2, w3) dx

+ b

L∫

β

h/2∫

−h/2

(Û − T̂ ) dzdx −

L∫

β

qw4 dx.

(12)

In equation (12), Û is strain energy density, T̂ is kinetic energy density and λ(x, t) is the
Lagrange multiplier. Expressions for the kinetic energy density and strain energy density
in terms of displacements are

T̂ =
1

2
ρ(u̇2 + ẇ2), (13)

Û =
1

2
σxxεxx =

1

2
σxx

[
u′ +

1

2
(w′)2

]
. (14)

In the last equation, the nonlinear term
1

2
(w′)2 is included in the strain-displacement

relation for the strain εxx to take account of longitudinal force resultants in the delami-
nated lower and upper sublaminates,

N (2)
x = b

γ∫

−h/2

σ(2)
xx dz, N (3)

x = b

h/2∫

γ

σ(3)
xx dz, (15)

which may not be negligibly small even if there are no external longitudinal forces ap-
plied to the beam. If external longitudinal forces are not applied to the beam, the term
1

2
σxx(w′)2 need not be included into expression for strain energy density of the zones

without delamination, 0 ≤ x ≤ α and β ≤ x ≤ L. With the use of the assumed
displacements (equations (1) and (5)), constitutive equation (8) and notations (4), the
kinetic energy and the strain energy can be expressed in terms of the unknown func-
tions w1(x, t), w2(x, t), w3(x, t) and w4(x, t), leading to the following expression for the
Lagrangian function of the system:

J(t) =

α∫

0

J̃1(x, t) dx +

β∫

α

[J̃2(x, t) + J̃3(x, t)]dx +

L∫

β

J̃4(x, t) dx, (16)
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where quantities J̃1, J̃2, J̃3 and J̃4 are linear densities of the Lagrangian in the corre-
sponding parts of the beam,

J̃1(x, t) =
1

2
A1(w

′′

1 )2 −
1

2
B1(ẇ1)

2 −
1

2
C1(ẇ

′

1)
2 − q1w1, (17)

J̃2(x, t) =
1

2
A2(w

′′

2 )2 −
1

2
B2(ẇ2)

2 −
1

2
C2(ẇ

′

2)
2 +

1

4
N (2)

x (w′

2)
2 − λ(x, t)f(w2, w3),

(18)

J̃3(x, t) =
1

2
A3(w

′′

3 )2 −
1

2
B2(ẇ3)

2 −
1

2
C3(ẇ

′

3)
2 +

1

4
N (3)

x (w′

3)
2 − q3w3, (19)

J̃4(x, t) =
1

2
A4(w

′′

4 )2 −
1

2
B4(ẇ4)

2 1

2
C4(ẇ

′

4)
2 − q4w4, (20)

where q1, q3 and q4 are external loads on the upper surface of the beam, acting on part
1 (0 ≤ x ≤ α), part 3

(
α ≤ x ≤ β, γ < x ≤ h

2

)
and part 4 (β ≤ x ≤ L) of the beam.

Constants Ak, Bk, Ck (k = 1, 2, 3, 4) in equations (17) – (20) are defined as follows:

A1 = b

h/2∫

−h/2

1

S
(1)

11

z2 dz, B1 = b

h/2∫

−h/2

ρ(1)dz, C1 = b

h/2∫

−h/2

ρ(1)z2 dz,

A2 = b

γ∫

−h/2

1

S
(2)

11

z2 dz, B2 = b

γ∫

−h/2

ρ(2)dz, C2 = b

γ∫

−h/2

ρ(2)z2 dz,

A3 = b

h/2∫

γ

1

S
(3)

11

z2 dz, B3 = b

h/2∫

γ

ρ(3)dz, C3 = b

h/2∫

γ

ρ(3)z2 dz,

A4 = b

h/2∫

−h/2

1

S
(4)

11

z2 dz, B4 = b

h/2∫

−h/2

ρ(4)dz, C4 = b

h/2∫

−h/2

ρ(4)z2 dz.

(21)

Upper index k in the notations S
(k)

11 and ρ(k) (k = 1, 2, 3, 4) denotes that the material
property is associated with the k-th part of the beam. Further we will consider beams

for which S
(1)

11 = S
(2)

11 = S
(3)

11 = S
(4)

11 , ρ(1) = ρ(2) = ρ(3) = ρ(4), and, therefore, A1 = A4,
B1 = B4 and C1 = C4. But distinguishing between these last quantities will still be
made to keep consistent index notations that allow for brief representation of subsequent
equations.

In equations (18) and (19), the longitudinal force resultants are expressed in terms of
displacements as follows:

N (2)
x = b

γ∫

−h/2

σ(2)
xx dz = b

γ∫

−h/2

1

S
(2)

11 (z)
ε(2)

xx dz = −H2w
′′

2 +
1

2
Q2(w

′

2)
2,

(22a)

N (3)
x = b

h/2∫

γ

σ(3)
xx dz = b

h/2∫

γ

1

S
(3)

11 (z)
ε(3)

xx dz = −H3w
′′

3 +
1

2
Q3(w

′

3)
2, (22b)
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where H2, Q2, H3 and Q3 are constants, defined as

H2 = b

γ∫

−h/2

1

S
(2)

11 (z)
z dz, Q2 = b

γ∫

−h/2

1

S
(2)

11 (z)
dz,

H3 = b

h/2∫

γ

1

S
(3)

11 (z)
z dz, Q3 = b

h/2∫

γ

1

S
(3)

11 (z)
dz.

(23)

From the Hamilton’s principle (11) with constraints (7), with account of expressions
(16) – (20) and (22), and with the use of standard methods of calculus of variations,
one can obtain the following differential equations, equation of constraint and boundary
conditions.

Differential equations:

A1w
′′′′

1 + B1ẅ1 − C1ẅ
′′

1 = q1 in 0 ≤ x ≤ α, (24)

A2w
′′′′

2 + B2ẅ2 − C2ẅ
′′

2 − 3Q2(w
′

2)
2w′′

2

= λ(x, t)

(
1

π
arctan

w3 − w2

ǫ
−

1

2

)
in α ≤ x ≤ β, −h/2 ≤ z ≤ γ,

(25)

A3w
′′′′

3 + B3ẅ3 − C3ẅ
′′

3 − 3Q3(w
′

3)
2w′′

3

= q3 − λ(x, t)

(
1

π
arctan

w3 − w2

ǫ
−

1

2

)
in α ≤ x ≤ β, γ < z ≤ h/2,

(26)

A4w
′′′′

4 + B4ẅ4 − C4ẅ
′′

4 = q3 in β ≤ x ≤ L. (27)

Equation of constraint:

(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
= 0 (28)

(equation (28) is the same as equation (10b)).

Boundary conditions:
At x = 0:

either A1w
′′′

1 − C1ẅ
′

1 = 0 or w1 is constrained; (29a)

either w′′

1 = 0 or w′

1 is constrained. (29b)

At x = α:

either
(
A2w

′′′

2 − C2ẅ
′

2 − Q2(w
′

2)
3
)

+
(
A3w

′′′

3 − C3ẅ
′

3 − Q3(w
′

3)
3
)

− (A1w
′′′

1 − C1ẅ
′

1) = 0 or w is constrained; (30a)

either A1w
′′

1 −

(
A2w

′′

2 −
1

2
H2(w

′

2)
2

)
−

(
A3w

′′

3 −
1

2
H3(w

′

3)
2

)
= 0

or w′ is constrained. (30b)
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At x = β:

either
(
A2w

′′′

2 − C2ẅ
′

2 − Q2(w
′

2)
3
)

+
(
A3w

′′′

3 − C3ẅ
′

3 − Q3(w
′

3)
3
)

− (A4w
′′′

4 − C4ẅ
′

4) = 0 or w is constrained; (31a)

either

(
A2w

′′

2 −
1

2
H2(w

′

2)
2

)
+

(
A3w

′′

3 −
1

2
H3(w

′

3)
2

)
− A4w

′′

4 = 0

or w′ is constrained. (31b)

At x = L:

either A4w
′′′

4 − C4ẅ
′

4 = 0 or w is constrained, (32a)

either w′′

4 = 0 or w′ is constrained. (32b)

So, we obtained four differential equations (24) – (27) and one equation of constraint (28)
for five unknown functions w1(x, t), w2(x, t), w3(x, t), w4(x, t) and λ(x, t). The total
order of these equations is 16. The number of boundary conditions is also 16. These
boundary conditions are represented by equations (29) – (32) and (6).

3 Model of Composite Beam with Piezoelectric Actuator and Without
Delamination

3.1 Assumptions and notations

In experiments and in structural health monitoring, it is convenient to excite and control
vibrations of beams with the use of piezoelectric actuators, attached to them. Modeling
such beams requires development of a differential equation of motion with boundary
conditions for the beam’s segment, covered with the piezoelectric actuator. This is the
subject of the present paragraph. For simplicity, it is considered here that such a segment
does not contain delaminations.

So, let us consider a thin beam without delamination and with a piezoelectric layer, at-
tached to the beam’s upper surface (Figure 3.1). In the subsequent text, the superscript
(0) will denote quantities associated with the beam’s composite layers without piezo-
electric properties, and the superscript (p) will denote quantities associated with the
piezoelectric patch (actuator). The distributed transverse load (force per unit length) on
the surface of the beam, covered with the actuator, will be denoted as q0.

The transverse and longitudinal displacements will be assumed to have the form of
the Euler-Bernoulli theory:

w(x, z, t) = w0(x, t), (33)

u(x, z, t) = −
∂w0(x, t)

∂x
z. (34)

In equation (34), the axial longitudinal displacement u
∣∣
z=0

is assumed to be negligibly
small, because we consider the case of no longitudinal external forces, applied to the
beam, and small amplitudes of vibration. It is assumed that an electric field is applied to
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Figure 3.1. Composite beam with a layer of piezoelectric material attached to

the upper surface.

the piezoelectric actuator in the direction of the beam’s transverse direction, i.e. in the
direction of the z-axis. It can be assumed that in a thin piezoelectric actuator, to which
the external voltage V (x, t) is applied, the electric potential ϕ(x, z, t) varies linearly in
the z-direction, therefore

∂ϕ

∂z
≈ −

V

τ
, (35)

where τ is a thickness of the piezoelectric actuator. Then, from constitutive equations for
the piezoelectric layer of the composite beam, with orthorhombic mm2 symmetry, such
as polyvinylidene or lead-zirconate [6], we obtain the following constitutive equation for

the stress σ
(p)
xx in the piezoelectric layer

σ(p)
xx =

1

S
(p)

11

εxx −
d31

S
(p)

11

V

τ
. (36)

To derive the equation of motion and boundary conditions for the laminated composite
beam with the piezoelectric actuator layer, we will use the virtual work principle for a
piezoelectric deformable body [7],

∫∫∫

(V )

(σijδεij + Diδϕ,i) dV =

∫∫∫

(V )

(F i − ρüi) δui +

∫∫

(S)

(tkδuk − Qδϕ) dS, (37)

where Q is a surface electric charge, F i are components of body forces and tk are com-
ponents of surface forces. According to the assumption of equation (35), variations of
the electric potential ϕ and the voltage V are related as

δϕ = −
δV

τ
z. (38)

If the piezoelectric layer is used as the actuator, then the voltage V (x, t), applied to
this layer, is a known function of the coordinate x and time, and, therefore its variation
δV is equal to zero. Then, according to equation (38), δϕ should be set to zero in the
virtual work principle equation (37). So, if the piezoelectric layer is used as the actuator,
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then the electric field characteristics enter the virtual work principle only through the
constitutive equations, and, therefore, equation (37) takes the form

∫∫∫

(V )

σijδεij dV =

∫∫∫

(V )

(F i − ρüi) δui +

∫∫

(S)

tkδuk dS. (39)

Equation (39), applied to the beam with a rectangular cross-section and a piezoelectric
layer of thickness τ, attached to the beam’s upper surface, has the form

b

a∫

0

h/2+τ∫

−h/2

σxxδεxx dz dx = b

a∫

0

h/2+τ∫

−h/2

[(F x − ρü)δu + (F z − ρẅ0) δw0] dz dx +

a∫

0

q0 δw0 dx.

(40)
The body force, acting on the beam, is the gravity force. Therefore,

Fx = 0, F z = −ρg, (41)

where ρ is mass density, and g = 9.81 m/s2 is intensity of the gravity field. With account
of the constitutive equations (36), equations (41) and strain-displacement relation εxx =
u′ (nonlinear terms are excluded), the virtual work principle (40) can be written in
terms of the unknown displacements, material constants and voltage, applied to the
piezoelectric actuator:

b

a∫

0

h/2∫

−h/2

1

S
(0)

11 (z)
u′ δu′ dz dx + b

a∫

0

h/2+τ∫

h/2

1

S
(p)

11 (z)

(
u′ − d31

V

τ

)
δu′ dz dx

+ b

a∫

0

h/2∫

−h/2

ρ(0)(g + ẅ) δw0 dz dx + b

a∫

0

h/2+τ∫

h/2

ρ(p)(g + ẅ0) δw0 dz dx

+ b

a∫

0

h/2∫

−h/2

ρ(0)ü δu dz dx + b

a∫

0

h/2+τ∫

h/2

ρ(p)ü δu dz dx −

a∫

0

q0 δw0 dx = 0.

(42)

3.2 Differential equation of motion for beam with piezoelectric actuator and
without delamination

The virtual work principle (42) in conjunction with the simplifying assumptions (33)
and (34), after applying standard methods of variational calculus, leads to the following
differential equation of motion and boundary conditions:

A0w
′′′′

0 + B0ẅ0 − C0ẅ
′′

0 = q0 − IpV
′′ − B0g for 0 ≤ x ≤ a; (43)

either A0w
′′

0 + IpV = 0 or w0 constrained at x = 0 and x = a; (44)

either A0w
′′′

0 − C0ẅ
′

0 + IpV
′ = 0 or w0 constrained at x = 0 and x = a, (45)
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where

A0 = b

( h/2∫

−h/2

1

S
(0)

11

z2 dz +

h/2+τ∫

h/2

1

S
(p)

11

z2 dz

)
, Ip =

1

τ
b

h/2+τ∫

h/2

d31

S
(p)

11

z dz,

B0 = b

( h/2∫

−h/2

ρ(0) dz +

h/2+τ∫

h/2

ρ(p) dz

)
, C0 = b

( h/2∫

−h/2

ρ(0)z2 dz

h/2+τ∫

h/2

ρ(p)z2 dz

)
.

(46)

The differential equation (43) and the boundary conditions (44) and (45) imply that
the voltage V (x, t), applied to the piezoelectric actuator, produces the bending moment
IpV (x, t) in a cross section of the beam.

If the voltage, applied to the piezoelectric actuator, is distributed uniformly along a
region x1 ≤ x ≤ x2, i.e. if

V (x, t) =

{
V (t) in x1 ≤ x ≤ x2,

0 for all other x,
(47)

then this voltage can be presented as

V (x, t) = Dx1

x2
(x)V (t) = (Hx1

(x) − Hx2
(x))V (t), (48)

and the quantity IpV
′′(x, t) in the right side of the differential equation of motion (43),

takes the form
IpV

′′(x, t) = IpV (t)H ′′

x1
(x) − IpV (t)H ′′

x2
(x). (49)

If a concentrated external bending moment M is applied at a point x = x1 of the
beam, then this bending moment can be represented by an equivalent distributed load
MH ′′

x1
(x) in the differential equation of motion of the beam [8], where H ′′

x1
(x) is the

second derivative with respect to x of the Heaviside function, defined by equation (A–5)
in Appendix A. Therefore, equation (49) implies that concentrated bending moments
IpV (t) are applied at points x = x1 and x = x2, if the voltage, applied to the piezo-
electric actuator, is distributed uniformly along the region x1 ≤ x ≤ x2. This fact will
be used in the next paragraph to substitute the time-dependent bending moment in a
boundary condition with the equivalent distributed load, entering into the differential
equation of motion, thus allowing for elimination of nonhomogeneous time-dependent
boundary condition and simplification of the problem.

4 Forced Vibration of Cantilever Beam with Delamination, under Effect of
Voltage, Applied to Piezoelectric Actuator. Solution in the Form of
Series in Terms Eigenfunctions. Linear Model

In this paragraph, we study solutions of vibration problems for a cantilever composite
beam with the crack between its plies (Figure 4.1), with the nonlinear terms being dis-
carded in the formulation, i.e. the non-penetration constraint and the longitudinal force
resultants being not taken into account. Effects of neglecting the nonlinear terms are
studied in the paragraph 5, by comparing results of linear and nonlinear analysis. The
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Figure 4.1. Cantilever beam with delamination and piezoelectric actuator.

a is length of the actuator; α is x-coordinate of the left crack tip; β is x-coordinate of

the right crack tip; γ is z-coordinate of the crack (distance from x-axis to crack); τ
is thickness of the actuator; w0 is transverse displacement of zone 0; w1 is transverse

displacement of zone 1; w2 is transverse displacement of lower part of zone 2 (under

the crack); w3 is transverse displacement of upper part of zone 2 (above the crack);

w4 is transverse displacement of zone 3.

voltage, applied to the piezoelectric actuator, is considered to be distributed uniformly
along the length of the actuator. The partial differential equations of motion with bound-
ary conditions, derived earlier in the general form, for this particular problem take the
form presented below.

4.1 Formulation in terms of partial differential equations with boundary and
initial conditions

Motion of the beam is described by the following system of five partial differential equa-

tions

A0w
′′′′

0 + B0ẅ0 − C0ẅ
′′

0 = IpV (t)H ′′

a (x), (50)

Akw′′′′

k + Bkẅk − Ckẅ′′

k = 0, k = 1, 2, 3, 4 (no summation with respect to k).(51)

The function V (t) in equation (50) is the voltage, applied to the piezoelectric actuator
and distributed uniformly along the region 0 ≤ x < a, which does not include the
point x = a:

V (x, t) = V (t) in 0 ≤ x < a.



174 V.Y. PEREL AND A.N. PALAZOTTO

The exclusion of the point x = a from the region, where the voltage is applied, does not
change the physics of the problem and allows to avoid having non-homogeneous time-
dependent boundary condition at x = a, as in equation (44). The differential equation
of motion (43) and the boundary condition (44) imply that the voltage V (x, t), applied
to the piezoelectric actuator, produces the bending moment IpV (x, t). If V (x, t) = V (t)
over an interval 0 ≤ x ≤ (a − ǫ), where ǫ is some very small number, and if the beam’s
end x = 0 is clamped, then the external concentrated bending moment IpV (t) is applied
at the point x = a − ǫ, and this is taken into account by the term IpV (t)H ′′

a (x) in the
right-hand side of the equation (50). The same result can be obtained from equation (43)
directly. Indeed, the voltage V (x, t) = V (t) in the interval 0 ≤ x < a can be written as

V (x, t) = V (t)(1 − Ha(x)).

Substitution of this expression into the expression IpV
′′(x, t) in the right side of equa-

tion (43) produces the result IpV (t)H ′′

a (x), i.e. the forcing function in the right side of
equation (50).

The constants, entering into the differential equations (50) and (51), are defined by
formulas (46) and (21).

Boundary conditions for the partial differential equations (50) and (51) are the fol-
lowing (see equations (29) – (32), (44) and (45)):

displacement boundary conditions:

w0(0) = 0, w′

0(0) = 0,

w0(a) − w1(a) = 0, w′

0(a) − w′

1(a) = 0,

w1(α) − w2(α) = 0, w′

1(α) − w′

2(α) = 0, w2(α) − w3(α) = 0,

w′

2(α) − w′

3(α) = 0, w2(β) − w4(β) = 0, w′

2(β) − w′

4(β) = 0,
(52)

w2(β) − w3(β) = 0, w′

2(β) − w′

3(β) = 0,

force boundary conditions:

A0w
′′

0 (a) − A1w
′′

1 (a) = 0,

A0w
′′′

0 (a) − C0ẅ
′

0(a) − [A1w
′′′

1 (a) − C1ẅ
′

1(a)] = 0,

A1w
′′

1 (α) − A2w
′′

2 (α) − A3w
′′

3 (α) = 0,

[A1w
′′′

1 (α) − C1ẅ
′

1(α)] − [A2w
′′′

2 (α) − C2ẅ
′

2(α)] − [A3w
′′′

3 (α) − C3ẅ
′

3(α)] = 0,

A2w
′′

2 (β) + A3w
′′

3 (β) − A4w
′′

4 (β) = 0,

[A2w
′′′

2 (β) − C2ẅ
′

2(β)] + [A3w
′′′

3 (β) − C3ẅ
′

3(β)] − [A4w
′′′

4 (β) − C4ẅ
′

4(β)] = 0,

A4w
′′

4 (L) = 0,

A4w
′′′

4 (L) − C4ẅ
′

4(L) = 0.

(53)

So, this problem is formulated in terms of five partial differential equations (50) and
(51) and twenty boundary conditions (52) and (53). Each of the five partial differential
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equations is of the fourth order. So, the total order of the differential equations (twenty)
is equal to the number of the boundary conditions.

Initial conditions for this problem are assumed to be

w0(0) = w1(0) = w2(0) = w3(0) = w4(0) = 0,

ẇ0(0) = ẇ1(0) = ẇ2(0) = ẇ3(0) = ẇ4(0) = 0.
(54)

4.2 Variational formulation of the problem

The partial differential equations (50) and (51) with boundary conditions (52) and (53)
are equivalent to the condition of extremum of the functional

J =
1

2

t2∫

t1

a∫

0

[
A0(w

′′

0 )2 − B0ẇ
2
0 − C0(ẇ

′

0)
2 − 2IpV (t)H ′′

a (x)w0

]
dx dt

+
1

2

t2∫

t1

α∫

a

[
A1(w

′′

1 )2 − B1ẇ
2
1 − C1(ẇ

′

1)
2
]
dx dt

+
1

2

t2∫

t1

β∫

α

[
A2(w

′′

2 )2 − B2ẇ
2
2 − C2(ẇ

′

2)
2 + A3(w

′′

3 )2 − B3ẇ
2
3 − C3(ẇ

′

3)
2
]
dx dt

+
1

2

t2∫

t1

L∫

β

[
A4(w

′′

4 )2 − B4ẇ
2
4 − C4(ẇ

′

4)
2
]
dx dt

(55)

with subsidiary conditions being the displacement boundary conditions (52).
With the use of standard methods of the calculus of variations, the partial differential

equations (50) and (51) and natural (force) boundary conditions (53) follow from the
condition of extremum of the functional J ,

δJ = 0, (56)

with account of essential (displacement) boundary conditions (52). The same initial
conditions (54) apply for the variational formulation.

4.3 Eigenvalue problem, associated with the partial differential equations and
boundary conditions

To formulate the eigenvalue problem, we set the right side of equation (50) to zero and
separate the variables:

wk(x, t) = Xk(x)T (t) (k = 0, 1, 2, 3, 4). (57)

In the notation Xk(x), the subscript k is a number of the beam’s part, with which
the function Xk(x) are associated. A number of the eigenfunction, associated with a
frequency ωn, will be denoted by the second subscript n:

ωn → Xkn (k = 0, 1, 2, 3, 4; n = 1, 2, . . . ). (58)
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The separation of the variables leads to equations

T̈ (t) + ω2T (t) = 0, (59)

Ak
d4Xk

dx4
+ ω2Ck

d2Xk

dx2
= ω2BkXk (k = 0, 1, 2, 3, 4), (60)

where ω is a circular frequency (so far, the notation for frequency does not have an
index).

General solution of the ordinary differential equations (60) has the form:

X0(x) = a1 sin µ0x + a2 cosµ0x + a3 sinh η0x + a4 cosh η0x, (61a)

X1(x) = a5 sin µ1x + a6 cosµ1x + a7 sinh η1x + a8 cosh η1x, (61b)

X2(x) = a9 sin µ2x + a10 cosµ2x + a11 sinh η2x + a12 cosh η2x, (61c)

X3(x) = a13 sinµ3x + a14 cosµ3x + a15 sinh η3x + a16 cosh η3x, (61d)

X4(x) = a17 sinµ4x + a18 cosµ4x + a19 sinh η4x + a20 cosh η4x, (61e)

where

µk =

√
ω

2Ak

(
ωCk +

√
ω2C2

k + 4AkBk

)
, (62a)

ηk =

√
ω

2Ak

(
− ωCk +

√
ω2C2

k + 4AkBk

)
(k = 0, 1, 2, 3, 4). (62b)

When equations (57), with account of equations (61), are substituted into the boun-
dary conditions (52) and (53), one obtains a system of linear homogeneous algebraic
equations, which can be written in the matrix form as

[D](20×20){a}(20×1) = {0}(20×1), (63)

where the column-matrix {a} consists of the coefficients a1, a2, . . . , a20 of the expressions
(61), and components of the matrix [D] depend on the unknown frequencies ω. Expres-
sions for components of the matrix [D] are written explicitly in reference [9]. Approximate
values of frequencies ω ≡ ωn are computed numerically from equation

det[D](20×20) = 0. (64)

with the use of the bisection method. More accurate values of frequencies and the
associated column-matrices {a}n of the dimensions (20 × 1) are computed by solving a
nonlinear eigenvalue problem (63) by an iterative method described below, with initial
approximations for the frequencies being the frequencies, computed from equation (64),
by the bisection method.

4.4 Iterative solution of nonlinear eigenvalue problem

Let us consider a nonlinear eigenvalue problem of the type, represented by equations (63):

D(ω)a = 0. (65)
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Let ω
(0)
n , ω

(1)
n , ω

(2)
n , . . . denote successive approximations of a frequency ωn, which is

one of the solutions of the nonlinear eigenvalue problem (65), the zeroth approximation,

ω
(0)
n , being an approximate value of the frequency ωn, obtained by some other method. In

the following presentation of the iterative procedure, the lower index, denoting a number
of a frequency, will be omitted for simplicity of notation. Besides, let

ǫ(k+1) ≡ ω(k+1) − ω(k) (66)

be a difference between successive approximations of the frequency ω. Then

ω(k+1) = ω(k) + ǫ(k+1). (67)

Assuming that the approximation with number k+1, i.e. ω(k+1), satisfies equation (65)
approximately, one can write

D
(
ω(k+1)

)
a(k+1) ≈ 0, (68)

where a(k+1) is an approximation with number (k +1) of an eigenvector a. With the use
of the Taylor series expansion with two terms, we obtain

D
(
ω(k+1)

)
≈ D

(
ω(k) + ǫ(k+1)

)
≈ D

(
ω(k)

)
− ǫ(k+1)B

(
ω(k)

)
, (69)

where

B(ω) ≡ −
dD

dω
. (70)

Substitution of equation (69) into equation (68) yields

(
D
(
ω(k)

)
− ǫ(k+1)B

(
ω(k)

))
a(k+1) = 0, (71)

which is an algebraic linear eigenvalue problem for computation of quantities ǫ(k+1) as
eigenvalues and vectors a(k+1) as eigenvectors. In order for the Taylor series expansion
in equation (69) to be as accurate as possible, the eigenvalue ǫ(k+1) with the smallest

absolute value should be chosen. The corresponding eigenvector a(k+1) of the linear
eigenvalue problem (71) is an approximation with number (k + 1) of the eigenvector
a of the nonlinear eigenvalue problem (65). The updated (k + 1)-st approximation for
the frequency ω is computed by the formula (67). The iteration process continues until

ǫ(k+1) ≡ ω(k+1) − ω(k) becomes smaller than some chosen small number.

4.5 Forced vibration of delaminated beam with actuator (linear model)

The forced response is sought in the form

wk(x, t) =

N∑

n=1

Xkn(x)Θn(t) (k = 0, 1, 2, 3, 4), (72)

where Xkn are eigenfunctions (61), the subscript k denotes a number of a zone, and
the subscript n denotes a number of an eigenfunction, corresponding to the frequency
ωn. Due to the fact that the shape functions in the series (72) are chosen to be the
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eigenfunctions Xkn(x) of the differential operators of the problem, the series (72) satisfies
not only essential (displacement) boundary conditions (52), as it is required by the Ritz
method, but also the natural (force) boundary conditions (53). Therefore, the series (72)
converges to the exact solution, if the unknown functions Θ(t) are computed from the
condition of extremum of the functional J , defined by equation (55).

Substitution of equations (72) into the expression (55) for the functional J leads to
the following result:

J =

t2∫

t1

L(Θ1(t), . . . , ΘN (t); Θ̇1(t), . . . , Θ̇N(t)) dt, (73)

where

L(Θ1(t), . . . , ΘN(t); Θ̇1(t), . . . , Θ̇N (t)) =
1

2

N∑

i,j=1

KijΘi(t)Θj(t)

−
1

2

N∑

i,j=1

MijΘ̇i(t)Θ̇j(t) −

N∑

i=1

Fi(t)Θi(t),

(74)

and

Kij = A0

a∫

0

X ′′

0iX
′′

0j dx + A1

α∫

a

X ′′

1iX
′′

1j dx + A2

β∫

α

X ′′

2iX
′′

2j dx

+ A3

β∫

α

X ′′

3iX
′′

3j dx + A4

L∫

β

X ′′

4iX
′′

4j dx,

(75)

Mij = B0

a∫

0

X0iX0j dx + B1

α∫

a

X1iX1j dx + B2

β∫

α

X2iX2j dx

+ B3

β∫

α

X3iX3j dx + B4

L∫

β

X4iX4j dx + C0

a∫

0

X ′

0iX
′

0j dx

+ C1

α∫

a

X ′

1iX
′

1j dx + C2

β∫

α

X ′

2iX
′

2j dx + C3

β∫

α

X ′

3iX
′

3j dx + C4

L∫

β

X ′

4iX
′

4j dx,

(76)

Fi(t) = −IpX
′

0i(a)V (t). (77)

The necessary condition of extremum of the functional J =
t2∫
t1

L dt (equation 73),

∂L

∂Θi
−

d

dt

∂L

∂Θ̇i

= 0, (78)
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produces the following system of ordinary differential equations

N∑

j=1

MijΘ̈j(t) +

N∑

j=1

KijΘj(t) = Fi(t), (79)

or, in matrix form,

[M ](N×N){Θ̈}(N×1) + [K](N×N){Θ}(N×1) = {F}(N×1). (80)

Matrices [K] and [M ] in equation (80) are symmetric, as follows from equations (75)
and (76).

Example 4.1 As an example problem, we considered a clamped-free wooden beam with
the following characteristics (Figure 4.1): length L = 20 × 10−2 m, width b = 2.76 ×

10−2 m, thickness h = 0.99×10−2 m, wood density ρ(0) = 418.02
kg

m3
, Young’s modulus

of the wood in the direction of fibers E
(0)
1 = 1.0897×1010 N

m2
. The piezoelectric actuator

is QP10W (Active Control Experts). Thickness of the actuator is τ = 3.81×10−4 m, its
length is a = 5.08 × 10−2 m, the piezoelectric constant in the range of applied voltage

(from 0 V to 200 V ) is d31 ≈ −1.05×10−9 m

V
, the Young’s modulus of the actuator with

its packaging is

E
(p)
1 = 2.57 × 1010 N

m2
,

mass density of the actuator with its packaging is

ρ(p) = 6151.1
kg

m3
.

The voltage V (t), applied to the piezoelectric actuator, is distributed uniformly along
the length of the actuator and varies with time as

V (t) = Va sin(Ωt + φ0), (81a)

where

Va = 200 V, Ω = 600
1

s
, φ0 = 0. (81b)

The wooden beam is cut along its fibers, so that the angle θ in the formula (9) is equal

to zero, and, therefore, the elastic compliance coefficient S11 for the wood is equal to

S
(0)

11 =
1

E
(0)
1

= 9.1768× 10−11 m2

N
.

For the piezoelectric actuator, the material coordinate system coincides with the prob-
lem coordinate system, so that the elastic compliance coefficient S11 for the material of
the piezo-actuator is

S
(p)

11 =
1

E
(p)
1

= 3.8911× 10−11 m2

N
.
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Results of calculation of circular frequencies for the undelaminated beam with the
actuator are presented in the table below.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

without

rotary

inertia

1398.17 8249.5 22180. 42844.6 71127.6 1.06542 × 105 1.48245 × 105

with

rotary

inertia

1397.435 8217.9 21985.6 42205.0 69331 1.02371 × 105 1.40641 × 105

Now, let us consider frequencies of the same beam with the delamination and
with the actuator.

In the next table, the results are presented for the coordinates of the crack tips α =
10 × 10−2 m, β = 11 × 10−2 m, γ = 1.65 × 10−3 m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

with

rotary

inertia

1397.433 8217.909 21986.1 42204.9 69331.2 1.02371 × 105 1.40641 × 105

In the next table the results are presented for the coordinates of the crack tips α =
10 × 10−2 m, β = 12 × 10−2 m, γ = 1.65 × 10−3 m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

with

rotary

inertia

1397.433 8217.90 21986.0 42200 69330 1.02368 × 105 1.40625 × 105

In the next table the results are presented for the coordinates of the crack tips α =
10 × 10−2 m, β = 15 × 10−2 m, γ = 1.65 × 10−3 m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

with

rotary

inertia

1397.432 8217.62 21980. 42198 69094 1.01932 × 105 1.33019 × 105

Next, we will compare frequencies of the same cantilever beam without the actua-
tor, obtained by different methods.

No delamination, no actuator:

ω1 ω2 ω3 ω4 ω5 ω6 ω7

without

rotary

inertia

1282.6 8037.9 22506. 44103. 72906. 1.08909 × 105 1.52113 × 105

with

rotary

inertia

1282. 8011.5 22330.9 43474. 71265.6 1.05385 × 105 1.51609 × 105
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In the last table, the frequencies without account of rotary inertia were computed by
a formula [10]

ωn = c2
n

h

L2

√
E

(0)
1

12ρ(0)
,

where cn are solutions of equation

cos cn cosh cn + 1 = 0.

With delamination, no actuator:

α = 10 × 10−2 m, β = 11 × 10−2 m, γ = 1.65 × 10−3 m

ω1 ω2 ω3 ω4 ω5 ω6 ω7

with

rotary

inertia

1282.0 8011.5 22330.9 43473.9 71265.6 1.05385 × 105 1.45467 × 105

α = 10 × 10−2 m, β = 15 × 10−2 m, γ = 1.65 × 10−3 m

ω1 ω2 ω3 ω4 ω5 ω6 ω7

with

rotary

inertia

1282.0 8011.2 22325.5 43468.0 70999.6 1.04969 × 105 1.33239 × 105

So, with the increase of the crack length, the frequencies decrease. This effect is more
pronounced for higher frequencies.

4.6 Comparison of transverse displacements of cantilever beams with and
without delamination at their free edges (linear analysis)

Plots of the transverse displacement as a function of time at the free end of the cantilever
beam with delamination and of the same beam without delamination are presented in
Figures 4.2a and 4.2b. The properties of the beams are the same as in the previous
example problems (Figure 4.1 and the previous section of the text), coordinates of the
crack tips are α = 10 × 10−2 m, β = 15 × 10−2 m, γ = 1.65 × 10−3 m. The beams are
excited by the voltage, applied to the piezoelectric actuator. The difference in dynamic
responses of the beams with and without delamination is not noticeable on the graphs,
but this difference can be seen in the numerical data, used to plot the graph. This
numerical data is presented below.
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Figure 4.2a. Transverse displacement of free end of delaminated cantilever

beam, excited by piezoelectric actuator. Beam length is L = 0.2m, x-coordinates

of the crack tips are α = 0.1m and β = 0.15m, z-coordinate of the crack tips is

γ = 0.00165m. Linear analysis.

Figure 4.2b. Transverse displacement of free end of cantilever beam without

delamination. Beam length is L = 0.2m. Linear analysis.
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Displacement w(0.2, t) = w(t)
∣∣
x=0.2

for beams with delamination and without

delamination (time is measured in seconds)

with delamination without delamination

ω(0.2, 0) = 0 0

ω(0.2, 0.001) = 4.089× 10−5 4.088 1× 10−5

ω(0.2, 0.002) = 2.268 1× 10−4 2.267 8× 10−4

ω(0.2, 0.003) = 3.884 6× 10−4 3.884 8× 10−4

ω(0.2, 0.004) = 2.740 8× 10−4 2.741 9× 10−4

ω(0.2, 0.005) = −3.944 8× 10−5 −3.937× 10−5

ω(0.2, 0.006) = −2.345 3× 10−4 −2.346 5× 10−4

ω(0.2, 0.007) = −2.081 7× 10−4 −2.083 5× 10−4

ω(0.2, 0.008) = −1.656 2× 10−4 −1.655 8× 10−4

ω(0.2, 0.009) = −2.242 2× 10−4 −2.240 2× 10−4

ω(0.2, 0.010) = −2.028 5× 10−4 −2.028 5× 10−4

ω(0.2, 0.011) = 4.897 5× 10−5 4.871 8× 10−5

ω(0.2, 0.012) = 3.3710× 10−4 3.370 1× 10−4

ω(0.2, 0.013) = 3.663 1× 10−4 3.666 1× 10−4

ω(0.2, 0.014) = 1.654 4× 10−4 1.657 1× 10−4

ω(0.2, 0.015) = 1.269 5× 10−5 1.248 9× 10−5

ω(0.2, 0.016) = −5.818 4× 10−6 −6.182 6× 10−6

ω(0.2, 0.017) = −8.037× 10−5 −8.028× 10−5

ω(0.2, 0.018) = −2.855 5× 10−4 −2.851 4× 10−4

ω(0.2, 0.020) = −1.945 2× 10−4 −1.950 2× 10−4

4.7 Crack opening, crack closure and interpenetration of crack faces in linear
analysis

For α = 10 × 10−2 m, β = 15 × 10−2 m, γ = 1.65 × 10−3 m at x = 12.5 × 10−2 m
(at the middle of the crack’s span), the difference of displacements of the upper and

lower delaminated parts, w3(0.125, t) = w3(t)
∣∣
x=0.125

and w2(0.125, t) = w2(t)
∣∣
x=0.125

,
depends on time as shown in Figure 4.3a.
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Figure 4.3a. Difference of transverse displacement of the upper and lower delam-

inated parts, at the middle of the crack’s length, versus time, if the anti-overlapping

constraint and the longitudinal force resultants are not taken into account. Linear

analysis.

Figure 4.3b. Difference of transverse displacement of the upper and lower delam-

inated parts, at the middle of the crack’s length, versus time, if the anti-overlapping

constraint and the longitudinal force resultants are taken into account. Linear

analysis.

Some of the numerical data, used for plotting this graph, is shown below:

w3(0.125, 0) = w2(0.125, 0) = 0;

w3(0.125, 0.001) = 1.9560× 10−5

w2(0.125, 0.001) = 1.9564× 10−5

}
→ overlapping;
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w3(0.125, 0.003) = 1.8582× 10−4

w2(0.125, 0.003) = 1.858, 6× 10−4

}
→ overlapping;

w3(0.125, 0.005) = −1.8870× 10−5

w2(0.125, 0.005) = −1.8874× 10−5

}
→ crack is open;

w3(0.125, 0.007) = −9.9578× 10−5

w2(0.125, 0.007) = −9.9599× 10−5

}
→ crack is open;

w3(0.125, 0.009) = −1.0726× 10−4

w2(0.125, 0.009) = −1.0728× 10−4

}
→ crack is open;

w3(0.125, 0.011) = 2.3427× 10−5

w2(0.125, 0.011) = 2.3432× 10−5

}
→ overlapping;

w3(0.125, 0.013) = 1.7522× 10−4

w2(0.125, 0.013) = 1.7526× 10−4

}
→ overlapping;

w3(0.125, 0.015) = 6.0726× 10−6

w2(0.125, 0.015) = 6.0738× 10−6

}
→ overlapping;

So, in the dynamic response of the delaminated beam, computed from the linearly for-
mulated problem, the overlapping of the upper and lower delaminated parts is present,
which, of course, is physically impossible. However, the relative difference of displace-
ments of the crack faces in the example problem is small, less than 0.01% of the transverse
displacement.

5 Forced Vibration of Cantilever Beam with Delamination, under Effect of
Voltage, Applied to Piezoelectric Actuator. Solution in the Form of
Series in Terms of Eigenfunctions. Nonlinear Model

Analysis, based on the linear formulation, allows for interpenetration of the crack faces.
A constraint, preventing such interpenetration, leads to the nonlinear formulation of the
problem, as discussed previously. The additional source of nonlinearity is due to taking
account of longitudinal force resultants in the delaminated parts of the beam.

In this chapter, a comparison is made between numerical results obtained without
the constraint preventing the interpenetration of the crack faces (linear model) and with
such constraint (nonlinear model). It is shown that the physically impossible interpene-
tration of the crack faces is prevented in the nonlinear model. Besides, the effect of the
longitudinal force resultants on the solution for the transverse displacement is studied

In the example problem considered below, the same problem as in the previous para-
graph is considered (Figure 4.1), but in nonlinear formulation, i.e. with account of the
nonpenetration constraint and longitudinal force resultants in the delaminated parts.

5.1 Variational formulation of the problem

In the following text, the function λ(t) will denote a Lagrange multiplier, used to impose
the constraint that prevents interpenetration of the crack faces in the middle of the
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crack’s span, i.e. at x0 = (α + β)/2. This constraint is expressed by the formulas

f(t) ≡ (w3(x0, t) − w2(x0, t))

(
1

2
− lim

ǫ→0

1

π
arctan

w3(x0, t) − w2(x0, t)

ǫ

)
= 0, (82)

or

f(t) ≡ (w3(x0, t) − w2(x0, t))

(
1

2
−

1

π
arctan

w3(x0, t) − w2(x0, t)

ǫ

)
= 0, (83)

where ǫ is some small number. In our calculations, this number was chosen as ǫ =
5 × 10−12. For explanation of formulas (82) and (83), see comments to formulas (10a)
and (10b). It is assumed that if the interpenetration of the crack faces does not occur at
the point x0 = (β + α)/2, then it does not occur anywhere along the crack, α < x < β.
This assumption is confirmed later by numerical data, obtained from the solution of the
problem. The voltage V (t), applied to the piezoelectric actuator, has the form

V (t) = Va sin(Ωt + φ0). (84)

The problem can be formulated in the form of the Hamilton’s principle, i.e. in the form
of the condition of extremum of the functional (see formulas (12) – (23) and comments
to them)

J =
1

2

t2∫

t1

a∫

0

[
A0(w

′′

0 )2 − B0(ẇ0)
2 − C0(ẇ

′

0)
2
]
dx dt −

t2∫

t1

a∫

0

IpV (t)H ′′

a (x)w0 dx dt

+
1

2

t2∫

t1

α∫

a

[
A1(w

′′

1 )2 − B1(ẇ1)
2 − C1(ẇ

′

1)
2
]
dx dt

+
1

2

t2∫

t1

β∫

α

[
A2(w

′′

2 )2 − B2(ẇ2)
2 − C2(ẇ

′

2)
2 +

1

2
N (2)

x (w′

2)
2 − 2λ(t) f(t)

+ A3(w
′′

3 )2 − B2(ẇ3)
2 − C3(ẇ

′

3)
2 +

1

2
N (3)

x (w′

3)
2

]
dx dt

+
1

2

t2∫

t1

L∫

β

[
A4(w

′′

4 )2 − B4(ẇ4)
2 − C4(ẇ

′

4)
2
]
dx dt

(85)

with subsidiary conditions, represented by the following displacement (essential) boun-
dary conditions:

w0(0) = 0, w′

0(0) = 0,

w0(a) − w1(a) = 0, w′

0(a) − w′

1(a) = 0,

w1(α) − w2(α) = 0, w1(α) − w3(α) = 0, w′

1(α) − w′

2(α) = 0,

w′

1(α) − w′

3(α) = 0, w2(β) − w4(β) = 0, w3(β) − w4(β) = 0,
(86)

w′

2(β) − w′

4(β) = 0, w′

3(β) − w′

4(β) = 0.
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5.2 Forced vibration of delaminated beam with actuator (nonlinear model)

The forced dynamic response of the beam is sought in the form

wk(x, t) =
N∑

n=1

Xkn(x)Θn(t), k = 0, 1, 2, 3, 4, (87)

where Xkn(x) is an eigenfunction of the linearly formulated problem (equations (61)), in
which the index k denotes a number of a beam’s part (Figure 4.1), and the index n denotes

a number of a natural frequency ωn to which the eigenfunction Xkn(x) corresponds.

Substitution of the series (87) into the expression for the functional (85) produces a
result

J =

t2∫

t1

L(Θ1(t), . . . , ΘN (t); Θ̇1(t), . . . , Θ̇N (t))dt

+

t2∫

t1

S(Θ1(t), . . . , ΘN (t)) dt +

t2∫

t1

λ̃(t)f(Θ1(t), . . . , ΘN(t)) dt,

(88)

where

λ̃(t) = (β − α)λ(t), (89)

L(Θ1(t), . . . , ΘN(t); Θ̇1(t), . . . , Θ̇N(t)) =
1

2

N∑

m,n=1

KmnΘmΘn

−
1

2

N∑

m,n=1

MmnΘ̇mΘ̇n −

N∑

n=1

Fn(t)Θn(t),

(90)

S(Θ1(t), . . . , ΘN(t)) =
1

4

N∑

k,l,m,n=1

AklmnΘkΘlΘmΘn −
1

4

N∑

l,m,n=1

BlmnΘlΘmΘn, (91)

f(Θ1(t), . . . , ΘN (t)) =

[
N∑

n=1

(X3n(x0) − X2n(x0))Θn

]

×

[
1

π
arctan

N∑

n=1

1

ǫ
(X3n(x0) − X2n(x0))Θn −

1

2

]
= 0.

(92)

The constants Kmn and Mmn and components of the force vector Fn(t), entering into

equations (90), are defined by formulas (75) – (77). The constants Aklmn and Blmn in

equation (91) are defined as follows:
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Aklmn = Q2

β∫

α

X ′

2kX ′

2lX
′

2mX ′

2n dx + Q3

β∫

α

X ′

3kX ′

3lX
′

3mX ′

3n dx,

Blmn = H2

β∫

α

X ′′

2lX
′

2mX ′

2n dx + H3

β∫

α

X ′′

3lX
′

3mX ′

3n dx.

(93)

In the equation (88), the last two terms,
t2∫
t1

S dt and
t2∫
t1

λ̃f dt, are due to the nonlinearity

of the formulation of the problem. The term
t2∫
t1

S dt is due to taking into account the

longitudinal force resultants in the delaminated parts, and the term
t2∫
t1

λ̃f dt is due to

taking account of the constraint that prevents the interpenetration of the crack faces.
The condition of extremum of the functional (88), δJ = 0, leads to the following

differential equations

∂L

∂Θi
−

d

dt

(
∂L

∂Θ̇i

)
+

∂S

∂Θi
+ λ̃(t)

∂f

∂Θi
= 0, i = 1, 2, . . .N, (94)

and the equation of constraint

f(Θ1, . . . , ΘN ) = 0. (95)

The equation of constraint (95) is the same as the equation (92).
Following the penalty function method [11], the equation of constraint (95) can be

written in the form

f(t) −
1

µ
λ̃(t) = 0, (96)

where µ is some large number, or

λ̃(t) = µf(t). (97)

Then, substituting equation (97) into equation (94), we receive

∂L

∂Θi
−

d

dt

(
∂L

∂Θ̇i

)
+

∂S

∂Θi
+ µf

∂f

∂Θi
= 0, i = 1, 2, . . .N. (98)

The substitution of equations (90) – (92) into equation (98) leads to the following ordinary
differential equations

N∑

m=1

MimΘ̈m +
N∑

m=1

KimΘm + Ri(Θ1, . . . , ΘN) = Fi, i = 1, . . . , N, (99)
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where

Ri(Θ1, . . . , ΘN) =

N∑

k,l,m=1

AiklmΘkΘlΘm +

N∑

l,m=1

CilmΘlΘm + µGi(Θ1, . . . , ΘN), (100)

where

Cilm = −
1

4
(Bilm + Blim + Bmli),

quantities Aklmn and Blmn are defined by equations (93), and

Gi(Θ1, . . . , ΘN ) =
(
X3i(x0) − X2i(x0)

)




1

π
arctan

N∑
m=1

(X3m(x0) − X2m(x0))Θm

ǫ
−

1

2




2

×

N∑

n=1

(
X3n(x0) − X2n(x0)

)
Θn, i = 1, . . . , N. (101)

Equations (99) are a system of nonlinear ordinary differential equations, which can be
written in matrix form as follows:

[M ](N×N){Θ̈}(N×1) + [K](N×N){Θ}(N×1) + {R}(N×1) = {F}(N×1). (102)

In computation of the example problems, equations (102) were reduced to the system
of first-order differential equations and solved by an implicit Adams method with direct
iteration [12]. Some details on the method of the solution are presented in reference [9].

For the cantilever beam, excited by the piezoelectric actuator (Figure 4.1), with the
same numerical values of material and geometric characteristics as in the previous para-
graph, and with coordinates of the crack tips α = 10 × 10−2 m, β = 15 × 10−2 m and
γ = 1.65 × 10−3 m, the difference of the transverse displacements of the crack’s faces at
x = 0.125 m, computed as the solution of the nonlinearly formulated problem, is pre-
sented in Figure 4.3b. The graph in this figure shows that interpenetration of the crack
faces is prevented in the nonlinear analysis.

For the same beam, the transverse displacements of the free end of the delaminated
beam, obtained from the linear and nonlinear analysis, are presented on graphs in Fig-
ure 5.1. As can be seen form these graphs, the results of the linear and nonlinear analysis
are slightly different.

In the case of small amplitudes of vibration, neglecting the longitudinal force resultants
in the delaminated parts (i.e. neglecting the nonlinear terms in the strain-displacement
relations) does not produce a significant effect on results of the nonlinear analysis. This
can be seen from graphs in Figure 5.2, obtained for the same beam as considered above.

At the free end of the beam, the transverse displacements of the delaminated and
undelaminated beams, obtained from the nonlinear analysis, are presented by graphs in
Figure 5.3. These graphs are noticeably different.
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Figure 5.1a. Transverse displacement of free end of delaminated cantilever

beam, excited by piezoelectric actuator. Beam length is L = 0.2m, x-coordinates

of the crack tips are α = 0.1m and β = 0.15m, z-coordinate of the crack tips is

γ = 0.00165m. Linear analysis.

Figure 5.1b. Transverse displacement of free end of delaminated cantilever

beam, excited by piezoelectric actuator. Beam length is L = 0.2m, x-coordinates

of the crack tips are α = 0.1m and β = 0.15m, z-coordinate of the crack tips is

γ = 0.00165m. Nonlinear analysis.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(2) (2004) 161–194 191

Figure 5.2a. Transverse displacement of free end of delaminated cantilever

beam, excited by piezoelectric actuator. Beam length is L = 0.2m, x-coordinates

of the crack tips are α = 0.1m and β = 0.15m, z-coordinate of the crack tips

is γ = 0.00165m. Linear analysis. Both types of nonlinearity are taken into

account: due to non-penetration constraint and due to longitudinal force resultants.

Figure 5.2b. Transverse displacement of free end of delaminated cantilever

beam, excited by piezoelectric actuator. Beam length is L = 0.2m, x-coordinates

of the crack tips are α = 0.1m and β = 0.15m, z-coordinate of the crack tips is

γ = 0.00165m. Nonlinear analysis. Only one types of nonlinearity is take into

account: due to non-penetration constraint.
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Figure 5.3a. Transverse displacement of free end of delaminated cantilever

beam, excited by piezoelectric actuator. Beam length is L = 0.2m, x-coordinates

of the crack tips are α = 0.1m and β = 0.15m, z-coordinate of the crack tips is

γ = 0.001165m. Nonlinear analysis.

Figure 5.3b. Transverse displacement of free end of undelaminated cantilever

beam, excited by piezoelectric actuator. Beam length is L = 0.2m, x-coordinates

of the crack tips are α = 0.1m and β = 0.15m, z-coordinate of the crack tips is

γ = 0.001165m. Nonlinear analysis.
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Appendix A. Properties of the Heaviside function

It can be shown [13] that the Heaviside function (unit step-function) Hα(x), defined by
formula (3), has the following property

dHα(x)

dx
= δα(x), (A-1)

where δα(x) is the Dirac’s delta-function, defined as a function that has the following
properties:

δα(x) =

{
0 for x 6= α,

∞ for x = α
(A-2)

and
x2∫

x1

f(x)δα(x) dx =

{
f(α) for x1 < α < x2,

0 for α < x1 and for α > x2.
(A-3)

The delta-function has several analytical representations, one of which has the form [14]:

δα(x) = lim
ǫ→0

1

π

ǫ

ǫ2 + (x − α)2
. (A-4)

According to formula (A-1), the analytical representation of the Heaviside function, cor-
responding to the analytical representation (A-4) of the delta-function is

Hα(x) = lim
ǫ→0

1

π
arctan

x − α

ǫ
+

1

2
=





0 for x < α,
1

2
for x = α,

1 for x > α.

(A-5)

We see that at the point x = α the Heaviside function, defined by the formula (A-5), is

equal to
1

2
, while the Heaviside function, defined by the formula (3), is equal to 0. Such

a change of the definition of the Heaviside function does not change a physical meaning
and numerical solution of differential equations of motion, which contain the Heaviside
function.

Carrying out the Heaviside function Hα(x) beyond the integral sign in an indefinite
integral is done with the use of the formula

∫
Hα(x) f(x) dx = Hα(x)

x∫

α

f(η) dη. (A-6)

With the use of properties (A-1) and (A-3), it can be shown that

x2∫

x1

f(x)
d2Hα(x)

dx2
dx =

{
−

df

dx
(α) for x1 < α < x2,

0 for α < x1 and for α > x2.
(A-7)



194 V.Y. PEREL AND A.N. PALAZOTTO

The double-sided unit step-function Dβ
α(x), defined by formula (2), can be expressed

in terms of the Heaviside function Hα(x) as follows:

Dα
β (x) = Hα(x) − Hβ(x). (A-8)
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