A Modified \textit{LQ}-Optimal Control Problem for Causal Functional Differential Equations

C. Corduneanu

\textit{The University of Texas at Arlington, Box 19408 UTA, Arlington TX 760197, USA}

Received: October 10, 2003; Revised: June 9, 2004

\textbf{Abstract:} This paper continues some ideas from a preceding paper of the author, in which only point-wise initial data are considered. Here, the constraints on state variables and control involve functional initial data, leading to a modified control problem.

\textbf{Keywords:} \textit{LQ}-optimal control; modified problem; causal operators/equations.

\textbf{Mathematics Subject Classification (2000):} 49J10, 49J15.

1 Introduction

The following problem will be considered in this paper.

Given the functional differential equations, with causal operators A and B

$$\frac{dx}{dt} = (Ax)(t) + (Bu)(t), \quad t \in [t_0, T],$$

with $x: [t_0, T] \to \mathbb{R}^n$, $u: [t_0, T] \to \mathbb{R}^m$, $A: L^2([0, T], \mathbb{R}^n) \to L^2([t_0, T], \mathbb{R}^n)$ and $B: L^2([t_0, T], \mathbb{R}^m) \to L^2([t_0, T], \mathbb{R}^n)$, one attaches the initial value condition

$$x(t) = \varphi(t), \quad t \in [0, t_0), \quad x(t_0) = \theta,$$

and considers the minimization of the cost functional

$$C(x; \varphi, u) = \int_0^{t_0} \langle (P\varphi)(t), \varphi(t) \rangle \, dt + \int_{t_0}^T \left(\langle (Qx)(t), x(t) \rangle + \langle (Ru)(t), u(t) \rangle \right) \, dt,$$

under certain conditions to be specified below. Our main interest will be in proving the existence of an optimal triplet $(\bar{x}; \bar{\varphi}, \bar{u})$, such that

$$C(\bar{x}; \bar{\varphi}, \bar{u}) = \min C(x; \varphi, u),$$

© 2004 Informath Publishing Group. All rights reserved.