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Abstract: This paper continues some ideas from a preceding paper of the
author, in which only point-wise initial data are considered. Here, the con-
straints on state variables and control involve functional initial data, leading
to a modified control problem.
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1 Introduction

The following problem will be considered in this paper.
Given the functional differential equations, with causal operators A and B

dx

dt
= (Ax)(t) + (Bu)(t), t ∈ [t0, T ], (1)

with x : [t0, T ] → Rn, u : [t0, T ] → Rm, A : L2([0, T ], Rn) → L2([t0, T ], Rn) and
B : L2([t0, T ], Rm) → L2([t0, T ], Rn), one attaches the initial value condition

x(t) = ϕ(t), t ∈ [0, t0), x(t0) = θ, (2)

and considers the minimization of the cost functional

C(x;ϕ, u) =

t0∫

0

〈(Pϕ)(t), ϕ(t)〉 dt +

T∫

t0

(
〈(Qx)(t), x(t)〉 + 〈(Ru)(t), u(t)〉

)
dt, (3)

under certain conditions to be specified below. Our main interest will be in proving the
existence of an optimal triplet (x̄; ϕ̄, ū), such that

C(x̄; ϕ̄, ū) = minC(x;ϕ, u), (4)
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the minimum being taken with respect to ϕ ∈ Φ ⊂ L2([0, t0], R
n) and u ∈ U ⊂

L2([t0, T [, Rm), where Φ and U are the admissible sets for ϕ and u, respectively.

Remark 1 The case of the point data initial value problem has been discussed in our
preceding paper [1], as well as in our book [2]. In that case, the first integral in the
right-hand side of (3) is missing, since the only initial condition was x(t0) = θ. This
particular case of the initial value is not restrictive. Indeed, if we substitute to x(t0) = θ
the more general condition x(t0) = x0 ∈ Rn, then letting y(t) = x(t) − x̄(t), one finds
instead of (1) the equation

dy

dt
= (Ay)(t) + (Bu)(t),

if x̄(t) is the (unique) solution of the homogeneous equation dx/dt = (Ax)(t), such that
x̄(t0) = x0. Obviously, y(t0) = θ is the null element of Rn, which agrees with the second
condition in (2).

Remark 2 The nature of the functional (3) suggests the following interpretation of
the control problem formulated above.

Namely, once we obtain the optimal triplet (x̄; ϕ̄, ū), then imposing on the dynamical
system described by (1) the dynamics resulting from (2), and then applying the control
u on [t0, T ], we will obtain the optimal trajectory on [t0, T ].

This feature of the problem illustrates the possibility of achieving a certain objective
by acting on the initial interval [0, t0], first in accordance with (2), and then implementing
the control u as resulting from the optimal problem.

Remark 3 It is possible to formulate a more general problem than the one described
above, by considering nonlinear equations instead of (1), such as

dx

dt
= (Fx)(t) + (Gu)(t), (5)

under some initial data (2), and with a nonlinear cost functional of the general form

C(x;ϕ, u) =

t0∫

0

(Kϕ)(t) dt +

T∫

t0

L(x;u)(t) dt. (6)

We shall not attempt to deal with problems of this type, in which F , G, K and L stand
for some nonlinear operators, with adequate properties.

Remark 4 Once proven the existence of the optimal triplet (x̄; ϕ̄, ū), the next impor-
tant problem consists in achieving the synthesis of the control problem. In other words,
to express the variable u in terms of ϕ and x. Or, maybe it is more adequate to express
both ϕ and u in terms of the (desired) trajectory x, if at all possible. Of course, these
feedback relations should also contain causal operators. A paper by A.J. Pritchard and
Yuncheng You [3], in which only classical Volterra operator are considered, seems to be
promising in this regard.

2 The Main Result

We shall now formulate a set of sufficient conditions assuring the existence of the optimal
triplet (x̄; ϕ̄, ū).
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This will be achieved by reducing the problem to an elementary result in the theory
of Hilbert spaces. Namely, in a Hilbert space, every closed convex set contains a unique
element of minimal norm. We have applied this result in [1, 2], when only the case of
point-wise data was considered, which meant that only the second integral appeared in
the right-hand side of (3).

We shall take as underlying space the Hilbert space

H = L2([0, t0], R
n) × L2([t0, T ], Rm), (7)

in which the scalar product is given by the sum of the scalar products in the factor
spaces. This implies the fact that the norm in H is the square root of the sum of squares
of norms in the factor spaces.

Let us now state the basic conditions under which we shall be able to prove the
existence and uniqueness of the optimal triplet (x̄; ϕ̄, ū).

(1) The operators A and B appearing in the equation (1) are linear, continuous and
causal on the space L2([0, T ], Rn), resp. from L2([t0, T ], Rm) into L2([t0, T ], Rn).

(2) The linear operators P,Q and R appearing in the cost functional (2) are bounded
and self-adjoint; moreover, P and R are positive definite, while Q is nonnegative
definite.

(3) The initial set Φ ⊂ L2([0, t0], R
n), and the control set U ⊂ L2([t0, T ], Rm) are

convex closed sets.

The following result can be stated.

Theorem Consider the modified LQ-optimal control problem of minimizing the cost
functional C(x;ϕ, u) given by (3), under the constraints (1), (2) and ϕ ∈ Φ, u ∈ U.
If conditions (1), (2) and (3) formulated above are satisfied, then there exists a unique
optimal triplet (x̄; ϕ̄, ū), i.e., such that (4) takes place.

Proof First of all, it is necessary to show that the cost functional C(x;ϕ, u), given
by (3), has a meaning for any ϕ ∈ Φ and u ∈ U . In other words, we need to prove that
x(t) from (1), under initial condition (2), is defined on the whole interval [t0, T ].

We notice that (1) has the form

dx

dt
= (Ax)(t) + f(t), t ∈ [t0, T ], (8)

with f ∈ L2([t0, T ], Rn), because Bu ∈ L2([t0, T ], Rn) when u ∈ U . Hence, the
solution of (8) under condition (2), can be represented by the variation of parameter
formula

x(t) =

t∫

t0

X(t, s)f(s) ds+

t0∫

0

X̃(t, s; t0)ϕ(s) ds, t ∈ [t0, T ], (9)

with X(t, s) the Cauchy matrix attached to the homogeneous system dx/dt = (Ax)(t)

on the interval [t0, T ], and X̃(t, s; t0) a matrix whose definition and significance are
given in [2]. The last integral in (9) represents the solution of the homogenous system,
with initial condition (2).

Returning to the equation (1), and taking (8) into account, the solution of (1), for
given u ∈ U , under initial condition (2), is given by

x(t) =

t∫

t0

X(t, s)(Bu)(s) ds+

t0∫

0

X̃(t, s; t0)ϕ(s) ds, (10)
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on [t0, T ]. The formula (10) shows that the solution x(t) of (1), (2) is defined on [t0, T ].
It is absolutely continuous on that interval. The integrals in (3) obviously make sense.

Following the same lines as in [1, 2] and taking into account the fact that the new
scalar product in H is given by

〈〈(x;ϕ, u), (y;ψ, v)〉〉=

t0∫

0

〈(Pϕ)(t), ψ(t)〉 dt+

T∫

t0

(〈(Qx)(t), y(t)〉+〈(Ru)(t), v(t)〉) dt, (11)

one can easily see that the cost functional C(x;ϕ, u), given by (3), can be represented
in the form

C(x;ϕ, u) = 〈〈(x;ϕ, u), (x;ϕ, u)〉〉 = |||(x;ϕ, u)|||2. (12)

In (12), the triple bar stands for the new norm in H . Therefore, the problem of
minimizing the cost functional C(x;ϕ, u) in (3), has been reduced to the problem of
minimum norm in the Hilbert space H .

Since the product Φ×U is a convex set in H , we need to show that it is also closed in
the topology of H , induced by the norm ||| · |||, derived from the scalar product defined
by (11). Using estimates established in [2], as well as a similar one for x(t) given by (10),

T∫

t0

|x(t)|2 dt ≤ C1

T∫

t0

|u(t)|2 dt+ C2

t0∫

0

|ϕ(t)|2 dt,

one obtains for some positive constants λ, Λ > 0,

λ

( t0∫

0

|ϕ(t)|2 dt+

T∫

t0

|u(t)|2 dt

)
≤ |||(x;ϕ, u)|||2 ≤ Λ

( t0∫

0

|ϕ(t)|2 dt+

T∫

t0

|u(t)|2 dt

)
, (13)

which proves the equivalence of the two topologies on H ; that induced by the L2–norms
in the factor spaces and the new norm ||| · |||.

Consequently, by applying the minimum norm property of Hilbert spaces quoted
above, we derive the existence and uniqueness of an element (ϕ, u) ∈ Φ × U , such
that the triplet (x̄;ϕ, u), with x̄ determined from (1), (2) when u = u, ϕ = ϕ, is the
unique optimal triplet for the problem considered above.

This ends the proof of the theorem stated in this section.

Remark 1 Some properties of the matrices X(t, s) and X̃(t, s; t0) are mentioned in
[2]. For instance, noticing that the integral

t0∫

0

X̃(t, s; t0)ϕ(s) ds

represents an absolutely continuous function of t ∈ [t0, T ], with values in Rn, for each
ϕ ∈ L2([0, t0], R

n), enables us to derive estimates appearing in (13).
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Remark 2 The relationship between the elements of the optimal triplet is given by
the formula (10), i.e.,

x̄(t) =

t∫

t0

X(t, s)(Bu)(s) ds +

t0∫

0

X̃(t, s; t0)ϕ(s) ds. (14)

It is useful to notice that the first integral in the right-hand side of (14) can be expressed
in the form

t∫

t0

X(t, s)(Bu)(s) ds =

t∫

t0

X1(t, s)u(s) ds, (15)

where X1(t, s), t0 ≤ s ≤ t ≤ T , is completely determined by X(t, s) and the operator
B. The existence of X1(t, s), which is a matrix of type n by m, follows from the fact
that the first term in (15) represents a continuous operator from L2([t0, T ], Rm) into
L2([t0, T ], Rn) (actually, each u ∈ L2 is taken into an absolutely continuous function).

Therefore, (14) can be rewritten as

x̄(t) =

t∫

t0

X1(t, s)u(s) ds+

t0∫

0

X̃(t, s; t0)ϕ(s) ds (16)

which shows that in order to determine the feedback equation, one has to solve (16)
with respect to u(t). When this is possible, the feedback equation will be of the form
u(t) = F (x̄, ϕ)(t). Equation (16) is a first kind Volterra integral equation not always
solvable.

3 Feedback Control

It is always important to establish the feedback relationship in any control problem. This
will allow to apply the control in such a manner that the desired trajectory, and finally
the target, are obtained.

Let us notice that the equation (16) has the form

y(t) = f(t) +

t∫

t0

K(t, s)u(s) ds, t0 ≤ t ≤ T, (17)

which expresses the input–output relation. Identifying (16) and (17) is an elementary
operation. For instance, K(t, s) is given by

K(t, s) = X1(t, s), (18)

with X1(t, s) resulting from (15). It is determined by X(t, s) and the operator B, but
we do not have a constructive way to obtain X1(t, s), t0 ≤ s ≤ t ≤ T .
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In regard to the equation (17), the study of A.J. Pritchard and Yuncheng You [3], in
which Rn or Rm are substituted by arbitrary Hilbert spaces, brings substantial contri-
butions when the cost functional is chosen of the form

J(u, f) = 〈(Gy)(T ), y(T )〉 +

T∫

t0

(〈(Qy)(t), y(t)〉 + 〈(Ry)(t), y(t)〉)dt. (19)

While (19) is similar to (3), there is a difference because of the modified form of the
optimal control problem we have dealt with in preceding sections of this paper.

It would be interesting to see if the modified problem can be treated by the method
developed in [3]. The existence of the optimal control can be proven using a similar
scheme as above.

A more general input-output equation than (17) is also considered in [3]. Namely,

y(t) = f(t) +

t∫

t0

Λ(t, s)y(s) ds+

t∫

t0

N(t, s)u(s) ds

is reduced to the form (17), the same way our modified control problem is reduced to
the form (17).

Extending the treatment of the problem, from the case when the cost functional (19)
is replaced by the functional (3), constitutes, we believe, a new type of problem in LQ-
optimal control.

As a byproduct of the solution of the above formulated problem, will be the causal
character of the feedback relation. This property is examined in detail in [3], where a
truncation procedure is exposed and connection with some Fredholm integral equations
is emphasized.

We are not attempting here to get in more detail in respect to the above mentioned
problems and the procedures of their solution.
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