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dynamical systems with uncertainties. The considered dynamical systems may
be nonminimum phase systems. The designed controller requires only input
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1 Introduction

In recent years, the robust control for uncertain dynamical systems has been a topic of
considerable interest. It is well known that all the practical control systems are subjected
to uncertainties. Various robust design methodologies have been proposed for minimum
phase dynamical systems until now [7, 10, 11]. For the systems with uncertainties, robust
controllers are proposed in [3 – 5, 9, 13] recently. The overall systems can be ensured
to be globally uniformly ultimately bounded (GUUB) which can be made arbitrarily
close to exponential stability if the control energy permits. However, these approaches
cannot be extended to the robust control for nonminimum phase dynamical systems with
uncertainties.
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It has long been known that the output tracking control of nonminimum phase plants is
very difficult [8] even though the systems are perfectly known, and there is a fundamental
limitation to the control performance, because the boundedness of all signals is not
assured due to the unstable pole-zero cancellation. For discrete time nonminimum phase
dynamical systems, one considerable method proposed by Clarke [6], in which the perfect
output tracking is given up, is to minimize the control input and the difference between
the plant output and the desired output. Chen and Fukuda [1] give a robust control for
the continuous time systems with uncertainties by also minimizing the control input and
the output error. The shortcoming of this kind of approach is that the difference between
the plant output and the desired output still remains.

This paper tries to consider the robust control for a class of uncertain systems which
may be nonminimum phase systems. By applying least square techniques, the class of
nonminimum phase systems are approximated by minimum phase dynamical systems.
Then, based on the approximated minimum phase system, the uncertainties are esti-
mated. Finally, the robust control, which assures that the system input and output
remain bounded in the closed-loop system, is synthesized. The output tracking error
is controlled by the design parameters. This paper is organized as follows. Section 2
gives the problem formulation. In Section 3, approximate inverse system is introduced,
the class of nonminimum phase systems are approximated by minimum phase systems.
In Section 4, based on the approximated minimum phase systems, the uncertainties are
estimated. In Section 5, the robust controller is synthesized. In Section 6, design exam-
ple and simulations are presented to show the effectiveness of the proposed algorithm.
Section 7 concludes this paper.

2 Problem Statement

Consider an uncertain system of the form

a(s)y(t) = b(s)u(t) + k(s)v(t), (1)

where s denotes the differential operator; u(t) and y(t) are scalar input and output,
respectively; v(t) is an unknown signal composed of model uncertainties, nonlinearities
and disturbances; a(s) and b(s) are described by

a(s) = sn + a1s
n−1 + · · · + an−1s+ an, (2)

b(s) = brs
n−r + br−1s

n−r+1 + · · · + bn−1s+ bn, (3)

k(s) = kms
n−m + km−1s

n−m+1 + · · · + kn−1s+ kn. (4)

In this paper, we make the following assumptions:

(A1) The parameters in a(s) and b(s) are known; br 6= 0; a(s) and b(s) are coprime.
(A2) The real parts of the roots of b(s) are smaller than 1.

This paper attempts to construct a robust controller to drive the system output to
track a desired uniformly bounded signal yd(t) for the uncertain system, where yd(t) is
differentiable to a necessary order and the derivatives are also uniformly bounded.

Even though assumption (A2) looks somewhat strict, it is meaningful to consider
the output tracking problem for the formulated system because many practical control
systems meet this assumption.
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3 Approximate Inverse Systems

Express b(s) as
b(s) = brκ1(s)κ2(s), (5)

where κ1(s) is a υ-th order monic polynomial with no root lying in the left half plane,
κ2(s) is an (n− r − υ)-th order monic Hurwitz polynomial. Furthermore, we suppose

κ1(s) = (s− φ1) . . . (s− φτ )(s− α1)(s− ᾱ1) . . . (s− αι)(s− ᾱι), (6)

where φi (i = 1, . . . , τ) are real numbers satisfying 1 > φi ≥ 0; αj (j = 1, . . . , ι) are
complex numbers satisfying 1 > Re (αj) ≥ 0; τ + 2ι = υ.

Now, we introduce the next polynomial

ξ(s) =






{
τ∏

i=1

(s+ χi)

}{
ι∏

j=1

(s+ βj)(s+ β̄j)

}




p+1

, (7)

where p is a positive integer, χi’s are positive real numbers, βj ’s are complex numbers,
j = 1, . . . , ι. Let

(s+ χi)
p+1 = sp+1 + gi1s

p + · · · + gips+ gi,p+1,

(s+ βj)
p+1 = sp+1 + lj1s

p + · · · + ljps+ lj,p+1.
(8)

Furthermore, we introduce the following polynomials

θi(s) = sp + θi1s
p−1 + · · · + θi,p−1s+ θip,

ϑj(s) = sp + ϑj1s
p−1 + · · · + ϑj,p−1s+ ϑjp,

ϑ̄j(s) = sp + ϑ̄j1s
p−1 + · · · + ϑ̄j,p−1s+ ϑ̄jp.

(9)

The coefficients of θi(s) and ϑj(s) are determined by

θi = (NT
i Ni)

−1NT
i gi, ϑj = (K∗

jKj)
−1K∗

j lj , (10)

where

Ni =





1 0 . . . 0
−φi 1 . . . . . .

0 −φi . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . −φi




, θi =





1
θi1
...
θip



 , gi =





1
gi1
...

gi,p+1



 , i = 1, . . . , τ, (11)

Kj =





1 0 . . . 0
−αj 1 . . . . . .

0 −αj . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . −αj




, ϑj =





1
ϑj1

...
ϑjp



 , lj =





1
lj1
...

lj,p+1



 , j = 1, . . . , ι. (12)
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Define

ζ(s) =

{
τ∏

i=1

θi(s)

}{
ι∏

j=1

ϑj(s)ϑ̄j(s)

}
, (13)

and

ū(t) =
κ1(s)ζ(s)

ξ(s)
u(t). (14)

Remark 1 It should be pointed out that ξ(s) is a monic (p + 1)υ-th order Hurwitz
polynomial. κ1(s)ζ(s) is a monic (p+ 1)υ-th order polynomial.

Let

∆(s) = ξ(s) − κ1(s)ζ(s) = ψ1s
(p+1)υ−1 + · · · + ψ(p+1)υ−1s+ ψ(p+1)υ. (15)

We have the next theorem to describe the coefficients of ∆(s).

Theorem 1 If the parameters χi, i = 1, . . . , τ , and βj, j = 1, . . . , ι, are chosen
such that 1 − φi > χi > 0, 0 < Re(βj) < 1 − Re (αj), Im (βj) = − Im (αj), then

(p+ 1)2υ2

(p+1)υ∑

i=1

|ψi|
2 → 0 (16)

as p→ ∞.

Proof The proof is given in the Appendix.

Remark 2 In general, the parameter p should not be chosen to be very large, since a
very large p may result in complicated computation, slow and long transients, etc.

Theorem 2 For a uniformly bounded signal σ(t), the next relation uniformly holds

σ(t) −
κ1(s)ζ(s)

ξ(s)
σ(t) → 0 (17)

for all t as p→ ∞.

Proof Express σ(t) − κ1(s)ζ(s)
ξ(s) σ(t) as

σ(t) −
κ1(s)ζ(s)

ξ(s)
σ(t) = ψ1

s(p+1)υ−1

ξ(s)
σ(t) + . . . + ψ(p+1)υ−1

s

ξ(s)
σ(t)

+ ψ(p+1)υ
1

ξ(s)
σ(t).

(18)

Since si

ξ(s) σ(t) are bounded for i = 0, 1, . . . , (p + 1)υ − 1, relation (17) can be easily

concluded by using (18) and Theorem 1.

Remark 3 The difference σ(t) − κ1(s)ζ(s)
ξ(s) σ(t) also depends on the frequency of the

signal σ(t).
Define

v̄(t) =
k(s)ζ(s)

brκ2(s)ξ(s)
v(t). (19)
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Then, by employing the definition (14) and (19), (1) can be rewritten as

a(s)ζ(s)y(t) = brκ2(s)ξ(s) {ū(t) + v̄(t)} , (20)

where a(s)ζ(s) is a monic (n+υp)-th order polynomial, κ2(s)ξ(s) is a monic (n+υp−r)-
th order Hurwitz polynomial with real coefficients.

For simplicity, the signal v̄(t) is called “disturbance” of the system in the following
sections of this paper.

4 Disturbance Identifier Formulation

In this section, by estimating the filters of v̄(t), the signal v̄(t) is eventually estimated,
based on our proposed formulation in [2]. For the disturbance v̄(t), we make the following
assumption.

(A3) The disturbance v̄(t) and its first order derivative are bounded. However, the
bounds are unknown.

Because v̄(t) is bounded, it is easy to see that its filters are also bounded, i.e.

∣∣∣∣
1

(s+ λ)i
v̄(t)

∣∣∣∣ ≤ Ci (21)

for i ≥ 0, where λ is a positive constant, Ci’s are unknown positive constants.
Now, we introduce a monic (n+ υp)-th order Hurwitz polynomial

f(s) = κ2(s)ξ(s)(s + λ)r. (22)

Then, (20) can be rewritten as

ẏ(t) + λy(t) =
f(s) − a(s)ζ(s)

κ2(s)ξ(s)(s + λ)r−1
y(t) +

br

(s+ λ)r−1
ū(t) +

br

(s+ λ)r−1
v̄(t). (23)

As f(s) − a(s)ζ(s) is an (n + υp − 1)-th order polynomial, it is easy to know that
f(s) − a(s)ζ(s)

κ2(s)ξ(s)(s + λ)r−1
y(t) is a signal which can be calculated.

The next proposition gives an estimate of the signal v̄(t).

Proposition 1 For small positive constants δi > 0 (i = 1, . . . , r), construct the
dynamical systems described by

˙̂y(t) + λŷ(t) =
f(s) − a(s)ζ(s)

κ2(s)ξ(s)(s + λ)r−1
y(t) +

br

(s+ λ)r−1
ū(t) + brw1(t),

ŷ(t0) = y(t0),

(24)

˙̂wi−1(t) + λŵi−1(t) = wi(t) , ŵi−1(t0) = 0, i = 2, . . . , r, (25)

where wi(t), i = 1, . . . , r, are given as

w1(t) =
br{y(t) − ŷ(t)}Ĉr−1(t)

|br{y(t) − ŷ(t)}| + δ1
(26)
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and

wi(t) =
{wi−1(t) − ŵi−1(t)}Ĉr−i(t)

|wi−1(t) − ŵi−1(t)| + δi
, i = 2, . . . , r, (27)

respectively; Ĉi(t)’s are updated by the following adaptive algorithm

˙̂
Cr−1(t) =

{
or−1|y(t) − ŷ(t)| if |br{y(t) − ŷ(t)}| > δ1,

0 otherwise,
(28)

˙̂
Cr−i(t) =

{
or−i|wi−1(t) − ŵi−1(t)| if |wi−1(t) − ŵi−1(t)}| > δi,

0 otherwise,
(29)

(i = 2, . . . , r)

where or−i’s are positive constants. It can be concluded that, when
r∑

j=1

δj is very small,

wi(t)’s are all bounded for i = 1, . . . , r. Furthermore, wi(t)’s are the corresponding
approximate estimates of 1

(s+λ)r−i v̄(t), i.e. there exist ǫi(δ1, . . . , δi) > 0 and Ti > 0

such that ∣∣∣∣
1

(s+ λ)r−i
v̄(t) − wi(t)

∣∣∣∣ ≤ ǫi(δ1, . . . , δi) (30)

as t > Ti, where ǫi(δ1, . . . , δi) has the property that ǫi(δ1, . . . , δi) → 0 as
i∑

j=1

δj → 0
for i = 1, . . . , r.

Proof The proposition can be similarly proved by referring to [2].

Remark 4 The design parameter λ > 0 determines the estimating speed. The design
parameters δi > 0 (i = 1, . . . , r) determine the estimating precision.

5 The Robust Control Input

Now, we introduce monic Hurwitz polynomials d(s) and h(s) of orders (n + υp) and r,
respectively. Consider the following equation

d(s)h(s) = η(s){ζ(s)a(s)} + µ(s), (31)

where η(s) is a monic r-th order polynomial, µ(s) is a (n+ υp− 1)-th order polynomial.
It is very clear that the solutions η(s) and µ(s) exist uniquely. Multiplying (31) by y(t)
and applying (20) yields

d(s)h(s)y(t) = brη(s)κ2(s)ξ(s){ū(t) + v̄(t)} + µ(s)y(t) (32)

i.e.

h(s)y(t) = br{ū(t) + v̄(t)} + br
η(s)κ2(s)ξ(s) − d(s)

d(s)
{ū(t) + v̄(t)} +

µ(s)

d(s)
y(t). (33)

Based on the above preparation, we have the next theorem.
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Theorem 3 If ū(t) is set as

ū(t) = −wr(t)−
η(s)κ2(s)ξ(s) − d(s)

d(s)
{ū(t)+wr(t)}+

1

br

{
−
µ(s)

d(s)
y(t)+h(s)yd(t)

}
, (34)

in which wr(t) is the estimate of v̄(t) obtained in Theorem 2, then there exist T ′ > t0
and ε′(t, δ1, . . . , δr) > 0 such that

|y(t) − yd(t)| < ε′(t, δ1, . . . , δr) (35)

for all t > T ′, where ε′(t, δ1, . . . , δr) has the property that ε′(t, δ1, . . . , δr) → 0 as t→ ∞

and
r∑

i=1

δi → 0.

Proof By combining (33) and (34), the result is obvious by applying Proposition 1.

By the definition of ū(t), it can be seen that it is a filter of u(t). Further, from
Theorem 2, it can be known that the difference between ū(t) and u(t) is very small if
u(t) is uniformly bounded. Thus, we are inspired to choose the real control input u(t) as

u(t) = −wr(t)−
η(s)κ2(s)ξ(s) − d(s)

d(s)
{u(t)+wr(t)}+

1

br

{
−
µ(s)

d(s)
y(t) + h(s)yd(t)

}
. (36)

The next theorem is derived to describe the stability of the closed-loop system.

Theorem 4 If the control u(t) is chosen as (36), then all the signals in the loop
remain uniformly bounded for a sufficiently large p. Furthermore, there exist T > t0
and ε(t, p, δ1, . . . , δr) > 0 such that

|y(t) − yd(t)| < ε(t, p, δ1, . . . , δr) (37)

for all t > T , where ε(t, p, δ1, . . . , δr) has the property that ε(t, p, δ1, . . . , δr) → 0 as

t→ ∞, p→ ∞ and
r∑

i=1

δi → 0.

Proof By using (20) and the definition of ū(t), system (1) can be rewritten as

a(s)ζ(s)y(t) = brκ2(s)ξ(s){u(t) + v̄(t)} − brκ2(s)∆(s)u(t). (38)

From (36) and (38), the closed-loop system can be expressed as

[
a(s)ζ(s) −brκ2(s){ξ(s) − ∆(s)}

[µ(s) brη(s)κ2(s)ξ(s)

] [
y(t)

u(t)

]

=

[
brκ2(s)ξ(s)

0

]
v̄(t) −

[
0

brη(s)κ2(s)ξ(s)

]
wr(t) +

[
0

h(s)

]
yd(t).

(39)

Since

det

[
a(s)ζ(s) −brκ2(s)ξ(s)

µ(s) brη(s)κ2(s)ξ(s)

]
= brκ2(s)ξ(s)d(s)h(s) (40)
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is a Hurwitz polynomial and the order of ∆(s) is lower than that of ξ(s), by Theorem 1,
it can be concluded that

det

[
a(s)ζ(s) −brκ2(s){ξ(s) − ∆(s)}

µ(s) brη(s)κ2(s)ξ(s)

]
= brκ2(s) (ξ(s)d(s)h(s) − µ(s)∆(s)) (41)

is also a Hurwitz polynomial if p is chosen to be large enough. Therefore, based on (39),
it can be seen that all the signals in the closed-loop remain uniformly bounded for a
sufficiently large p.

By the definition of ū(t), (32) can be rewritten as

d(s)h(s)y(t) = brη(s)κ2(s)ξ(s){u(t) + v̄(t)}

+ µ(s)y(t) − brκ2(s)η(s)(ξ(s) − κ1(s)ζ(s))u(t).
(42)

Substituting (36) into (42) gives

h(s)(y(t) − yd(t)) =
brη(s)κ2(s)ξ(s)

d(s)
{v̄(t) − wr(t)}

−
brη(s)κ2(s)ξ(s)

d(s)

{
u(t) −

κ1(s)ζ(s)

ξ(s)
u(t)

}
.

(43)

Since
brη(s)κ2(s)ξ(s)

d(s)
is proper, by Theorem 2 and the above discussions, it can be seen

that
brη(s)κ2(s)ξ(s)

d(s)

{
u(t) −

κ1(s)ζ(s)

ξ(s)
u(t)

}
approaches zero as p→ ∞. Furthermore,

by using the fact that wr(t) is the approximate estimate of v̄(t), (37) can be proved based
on (43). Thus, the theorem is proved.

Remark 5 As p increases, the computation may become complicated. On the other
hand, as p is large enough, u(t) is uniformly bounded and good tracking performance
may be obtained. Therefore, the choice of the parameter p depends on the requirement
of the considered system.

6 Design Example and Simulation Results

In this section, a nonminimum phase system will be presented to show the design proce-
dure of the proposed output tracking algorithm. Consider the system described by

(s− 1)3y(t) = (4s− 0.5)u(t) + (2s− 1) v(t), (44)

where y(t) is the output; u(t) is the input; v(t) is the unknown disturbance governed by

v(t) = cos(5t)

(
{ẏ(t) + u(t)}

|ẏ(t) + u(t)| + 0.5

)(
y(t)

|y(t)| + 1

)
.

The purpose of the control is to drive the output to follow the signal yd(t) = 2 sin(t).
As b(s) = 4(s − 0.125) is a first order polynomial, for simplicity, we use the inverse

system proposed for s − α in (58) – (63). The parameter β is chosen as β = 0.3. The



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(2) (2004) 125–137 133

accuracy of the approximate inverse system depends on the choice of the parameter p.
However, when p is chosen too large, the computation may become complicated. In
the presented example, p is chosen as p = 7. Under the above choice, the value of
J is J = 1.1153 × 10−6. The least square approximate solution c of (63) is obtained
as c1 = 2.5250, c2 = 2.8356, c3 = 1.8665, c4 = 0.8003, c5 = 0.2369, c6 = 0.0499,
c7 = 0.0079.

Corresponding to (20), system (44) can be rewritten as

(s− 1)3c(s)y(t) = 4(s+ 0.3)8{ū(t) + v̄(t)}, (45)

where

ū(t) =
(s− 0.125)c(s)

(s+ 1)8
u(t), v̄(t) =

(2s− 1)c(s)

4(s+ 0.3)8
v(t). (46)

Choose the Hurwitz polynomial f(s) in (22) as f(s) = (s + 0.3)8(s+ 2)2, where λ is
chosen as λ = 2. Corresponding to (23), we have

ẏ(t) + 2y(t) =
f(s) − (s− 1)3c(s)

(s+ 0.3)8(s+ 2)
y(t) +

4

s+ 2
ū(t) +

4

s+ 2
v̄(t). (47)

From Proposition 1, we construct the following dynamical systems

˙̂y(t) + 2ŷ(t) =
f(s) − (s− 1)3c(s)

(s+ 0.3)8(s+ 2)
y(t) +

4

s+ 2
ū(t) + 4w1(t), ŷ(0) = 0, (48)

˙̂w1(t) + 2ŵ1(t) = w2(t), ŵ1(0) = 0, (49)

where w1(t) and w2(t) are respectively determined by

w1(t) =
4{y(t) − ŷ(t)}Ĉ1(t)

4|y(t) − ŷ(t)| + δ1
, (50)

w2(t) =
{w1(t) − ŵ1(t)}Ĉ0(t)

|w1(t) − ŵ1(t)| + δ2
, (51)

and Ĉ1(t), Ĉ0(t) are respectively determined as

˙̂
C1(t) =

{
o1|y(t) − ŷ(t)| if 4|y(t) − ŷ(t)| > δ1,

0 otherwise,
Ĉ1(0) = 0.1, (52)

˙̂
C0(t) =

{
o0|w1(t) − ŵ1(t)| if |w1(t) − ŵ1(t)}| > δ2,

0 otherwise,
Ĉ0(0) = 0.1. (53)

Therefore, w2(t) can be regarded as the approximate estimate of the disturbance v̄(t).
Choose the polynomials h(s) and d(s) as

h(s) = (s+ 1)2, d(s) = (s+ 1)10. (54)

Solving (31) yields

η(s) = s2 + 12.4750s+ 73.6650, (55)

µ(s) = 276.7552s9 + 622.7649s8 + 781.4575s7 + 829.5264s6 + 749.6166s5

+ 507.3089s4 + 238.4558s3 + 74.5042s2 + 14.0286s+ 1.5820.
(56)
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Figure 6.1. The difference between v̄(t) and its estimate w2(t).

Therefore, the control should be chosen as

u(t) = − w2(t) −
η(s)(s+ 0.3)8 − d(s)

d(s)
{u(t) + w2(t)}

+
1

4

{
−
µ(s)

d(s)
y(t) + 2(s+ 1)2 sin(t)

}
.

(57)

In the simulation process, the sampling period is chosen as 1 × 10−4 second. The
parameters are chosen as δ1 = δ2 = 2 × 10−4, o1 = o0 = 0.5. The starting time is
t0 = 0. Figure 6.1 shows the difference v̄(t) − w2(t). Figure 6.2 shows the output
tracking control input. It can be seen the control input remains uniformly bounded.
Figure 6.3 shows the difference between the output and the desired output. It can be
seen that the proposed control works very well. If the parameters δ2 and δ2 are chosen to
be much smaller, and the parameter p is chosen to be much larger, the output tracking
performance may become much better.

Figure 6.2. The output tracking control input u(t).
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Figure 6.3. The difference between the output and the desired output.

7 Conclusions

In this paper, a new robust controller is formulated for a class of uncertain systems by
using only the input output information. The disturbance, which is composed of the
nonlinearities, the model uncertainties, etc., is assumed bounded with unknown bound.
First, based on the least square approximate inverse systems method, the class of non-
minimum phase systems is approximated by minimum phase systems. The approximate
error can be made to be as small as necessary by choosing large p. Then, the disturbance
is estimated. Finally, the robust controller is formulated based on the approximated min-
imum phase systems and the disturbance error. The output tracking error is controlled
by the design parameters. Simulation results of the robust control for a nonminimum
phase system show the effectiveness of the proposed method.

Appendix: Proof of Theorem 1

First, we consider the approximate inverse system of s−α, where α ∈ C (C denotes the
set of complex numbers), Re(α) ≥ 0. Consider the equation

(s− α)c(s) = (s+ β)p+1, (58)

c(s) = sp + c1s
p−1 + · · · + cp−1s+ cp,

(s+ β)p+1 = sp+1 + l1s
p + · · · + lps+ lp+1,

(59)

where Re(β) > 0, β ∈ C can be assigned in advance; p is a positive integer. The problem
is finding c(s) such that (58) holds. The parameter p is introduced so that the accuracy
of the approximate inverse system becomes better.

It is easy to see that solving (58) is equivalent to solving the following equation

Kc = l, (60)
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where

K =





1 0 . . . 0
−α 1 . . . . . .

0 −α . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . −α





(p+2)×(p+1)

, c =





1
c1
...
cp



 , l =





1
l1
...

lp+1



 . (61)

Since (60) cannot be satisfied exactly, the solution of c which may minimize the fol-
lowing criterion

J = (Kc− l)∗(Kc− l) (62)

will be derived, where A∗ denotes the complex conjugate of the transpose of A. It is well
known that the least square approximate solution is given by [12]

c = (K∗K)−1K∗l. (63)

Lemma A.1 If β is chosen such that 0 < Re(β) < 1−Re(α) and Im(β) = − Im(α),
then

(p+ 1)2J → 0 (64)

as p→ ∞.

Proof It is well-known that there exists a unitary matrix U ∈ C(p+2)×(p+2) such
that

U∗K =

[
Q

0

]
, i.e., K = U

[
Q

0

]
, (65)

where Q ∈ C(p+1)×(p+1) is an upper triangular matrix. Thus, combining (62), (63) and
(65) yields

J = l∗U

[
0(p+1)×(p+1) 0

0 1

]
U∗l. (66)

Now, express U∗ and K as

U∗ =

[
U11 U12

U21 U22

]
, , K =

[
K1

K2

]
, (67)

where

U11 ∈ C(p+1)×(p+1), U12 ∈ C1×(p+1), K1 ∈ C(p+1)×(p+1),

U21 ∈ C(p+1)×1, U22 ∈ C, K2 ∈ C1×(p+1).

From (65) and (67), we can also get U21K1 + U22K2 = 0, i.e.,

U21 = −U22K2K
−1
1 = −U22 [ 0 . . . 0 −α ]





1 0 0 . . . 0
α 1 0 . . . 0
α2 α 1 . . . 0
...

...
...

...
...

αp αp−1 αp−2 . . . 1





= αU22 [αp . . . α 1 ] .

(68)
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Thus, from (66), (68) and (59), it gives

J = |[U21 U22]l|
2 = |U22(α

p+1 + l1α
p + · · · + lpα+ lp+1)|

2 = |U22|
2|α+ β|2(p+1). (69)

It should be pointed out that 0 < |U22| ≤ 1. Since Re(β) > 0, it can be seen that a
necessary condition to make J to be very small is that Re(α) < 1. This is why we make
the assumption that the real parts of the unstable zeros of b(s) are smaller than 1. Under
this assumption, it is very clear that (p+ 1)2J → 0 if p→ ∞ and β is chosen such that
0 < Re(β) < 1 − Re(α) and Im(β) = − Im(α).

Now, define c̄(s) = [sp, . . . , s, 1]c̄, a similar result about the coefficients of (s+ β̄)p+1−
(s− ᾱ)c̄(s) can be derived as in Lemma A.1. Let

{
(s+ β)(s + β̄)

}p+1
− (s− α)(s − ᾱ)c(s)c̄(s)

= ̟1s
2(p+1)−1 + · · · +̟2(p+1)−1s+̟2(p+1).

(70)

It can be easily proved that 4(p+ 1)2
2(p+1)∑

i=1

|̟i|
2 → 0 as p→ ∞.

Therefore, the theorem can be proved by considering all the factors of κ1(s).
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