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Abstract: In this paper we study the problem of H∞ control of singular lin-
ear continuous-time systems with parametric uncertainty. The system under
consideration is subjected to time-delay in state, and norm-bounded para-
metric uncertainty entering all matrices of the system and output equations.
First, the problem of robust stabilization of the underlying system is investi-
gated. Next, we address the problem of robust H∞ state feedback control in
which both robust stability and a prescribed H∞ performance are required to
be achieved irrespective of the uncertainty and time-delay. It is shown that
the above control problem can be solved in terms of solutions of some linear
matrix inequalities.

Keywords: Singular continuous-time systems; parameter uncertainty; time-delay;

linear matrix inequality (LMI).

Mathematics Subject Classification (2000): 37N35, 55N10.

1 Introduction

Time delay is commonly encountered in various engineering systems, which often occurs
in the transmission of information or material between different parts of a system and is
frequently a source of instability and poor performance (Malek-Zavarei and Jamshidi [15].
Transportation systems, communications systems, chemical process, power systems are
typical examples of time-delay systems. During the past years, the study of time-delay
systems has received considerable interest, see, e.g., Suh and Bien [30]. In the work
of Gutman and Palmor [8], nonlinear state feedback controllers have been considered
whereas Basher, et al. [9] has focused on memoryless linear state feedback. Recently,
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memoryless stabilization and H∞ control of uncertain continuous-time delay systems
have been extensively investigated. For some representative prior work on this gen-
eral topic, we refer the reader to Shen, et al. [21], Lee, et al. [12], Mahmoud and
Al-Muthairi [14], Nguang [18], Benjelloun, et al. [1], Kim, et al. [10], Moheimani and
Petersen [16], Li and de Souza [13] and the very recent book by Boukas and Liu [2].
The problem of robust stabilization for a class of time varying delay systems with both
Lipschitz and non-Lipschitz bounded uncertainties has been studied by Nguang [18] via
Riccati equation approach, and a memoryless state feedback controller is designed. In
the research conducted by Mahmoud and Al-Muthairi [14], quadratic stabilization of
continuous time systems with state-delay and norm-bounded time-varying uncertainties
has been considered. More recently, optimal quadratic guaranteed cost control for a class
of uncertain linear time-delay systems with norm-bounded uncertainty has been designed
by Moheimani and Petersen [16]. The issue of delay-dependent robust stability and sta-
bilization of uncertain linear delay systems has been tackled by Li and de Souza [13] via
a linear matrix inequality approach. However, to the best of authors’ knowledge, the
problems of robust stability and H∞ control of singular continuous-time delay uncertain
systems has not been fully investigated yet. In this paper, the problems of robust sta-
bility and control of a class of singular uncertain systems with unknown time delays in
both system state and output equations are addressed. We consider uncertain systems
with norm-bounded time-varying parameter uncertainty in all system matrices. We deal
with the problems of robust stabilization and robust H∞ control, where in the latter the
controller is required to guarantee both the robust stability and a prescribed robust H∞

performance, irrespective of the uncertainty and unknown time delay.

Notation. The notation in this paper is quite standard. Rn and Rn×m denote, respec-
tively, the n-dimensional Euclidean space and the set of all n × m real matrices. The
superscript “T ” denotes the transpose and the notation X ≥ Y (respectively, X > Y )
where X and Y are symmetric matrices, means that X −Y is positive semi-definite (re-
spectively, positive definite). I is the identity matrix of appropriate dimension. L2[0,∞)
is the space of square integrable functions over [0,∞). ‖ · ‖ will refer to the Euclidean
vector norm.

2 Problem Formulation and Preliminaries

The system considered in this paper is assumed to be a state-space model as follows:

Eẋ(t) = [A + ∆A(t)]x(t) + [Ad + ∆Ad(t)]x(t − d1(t))

+ [B + ∆B(t)]u(t) + [Bw + ∆Bw(t)]w(t),

z(t) = [C + ∆C(t)]x(t) + [Cd + ∆Cd(t)]x(t − d1(t))

+ [D + ∆D(t)]u(t) + [Dw + ∆Dw(t)]w(t),

x(t) = φ1(t), ∀t ∈ [−d1(t), 0],

(2.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control, w(t) ∈ Rp is the disturbance
from L2[0,∞), i.e., square-integrable, z(t) ∈ Rq is the controlled output, A, Ad, B,
Bw, C, Cd, D and Dw are real-valued constant matrices of appropriate dimensions that
describe the nominal system, ∆A(t), ∆Ad(t), ∆B(t), ∆Bw(t), ∆C(t), ∆Cd(t), ∆D(t),
and ∆Dw(t) are real time-varying matrix functions representing parameter uncertainties,
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and the matrix E is a singular matrix with rank (E) = r ≤ n. d1(t) ≥ 0 is an unknown
time-varying time delay in state, φ1(t), t ∈ [−d1(t), 0], is continuous vector valued initial
function. d1(t) satisfies the following condition:

0 ≤ d1(t) < ∞, ḋ1(t) ≤ β1 < 1. (2.2)

The admissible parameter uncertainties in this paper is assumed to be modeled as

[

∆A(t) ∆Ad(t) ∆B(t) ∆Bw(t)
∆C(t) ∆Cd(t) ∆D(t) ∆Dw(t)

]

=

[

H1

H2

]

F (t)[E1 E2 E3 E4], (2.3)

where H1, H2, E1, E2, E3, E4 and E5 are known real constant matrices, and F (t) is an
unknown time-varying matrix function satisfying

‖F (t)‖ ≤ 1, ∀ t ∈ [0,∞). (2.4)

Remark 2.1 It should be noted that (2.1) encompasses many state space models of
delay systems and can be used to represent many important physical systems; for exam-
ple, power systems [29], singular space perturbation theory [31], circuits theory [17], and
also cold rolling mills, wind tunnel and water resources systems (see, e.g., [15] and the
references therein).

Remark 2.2 The parameter uncertainty structure as in (2.3) and (2.4) is an extension
of the so-called “matching condition” which has been widely used in the problems of ro-
bust control and robust filtering of uncertain systems (see, e.g., [3, 19, 22 – 27, 33] and the
references therein), and many practical systems possess parameter uncertainties which
can be either exactly modeled, or overbounded by (2.4). The matrices H1, H2, E1, E2,
E3 and E4 specify how the uncertain parameters in F (t) affect the nominal matrices of
system (2.1). Observe that the unknown matrix F (t) in (2.3) can even be allowed to be
state-dependent, i.e., F (t) = F (t, x(t)), as long as (2.4) is satisfied. It also should be
noted that the unit overbound for F (t) does not cause any loss of generality. Indeed, F (t)
can be always normalized, in the sense of (2.4), by appropriately choosing the matrices
H1, H2, E1, E2, E3 and E4. Furthermore, we may consider the more general structure
of the uncertainties in system (2.1), that is,

Eẋ(t) = Ax(t) + Bu(t) + Adx(t − d1(t)) + Bww(t) + ∆1(t, x, u),

z(t) = Cx(t) + Du(t) + Cdx(t − d1(t)) + Dww(t) + ∆2(t, x, u),

where
‖∆i(t, x, u)‖ ≤ ai‖x‖ + bi‖u‖,

i = 1, 2, ∀ t ∈ [0,∞), x ∈ Rn, u ∈ Rm,
(2.5)

where ai ≥ 0 and bi ≥ 0, i = 1, 2, are known constant numbers. In the work of Shi and
Shue [28], it has been shown that the set of the uncertainties satisfying (2.3) and (2.4)
is equivalent to the set of the uncertainties satisfying (2.5) after appropriately choosing
the constants ai, bi and the matrices H1, H2, E1, E2, E3 and E4.

Definition 2.1 For any given two matrices E ∈ Rn×n and A ∈ Rn×n, the pencil
(E, A) is said regular if there exists a constant number α such that |αE + A| 6= 0 or the
polynomial |sE − A| 6= 0.
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In this paper, we assume that the nominal system (2.1) is regular, i.e., the pair (E, A+
Ade

−sd1) is regular, where d1 = max
t

d1(t). This condition will guarantee the existence

and uniqueness of the solution for the nominal system (2.1). In addition, we assume
that the nominal system (2.1) is impulse free, which ensures the delay system has no
infinite poles. Throughout this paper, it is also assumed that the state is measurable
for feedback. In this paper, we are concerned with the problem of robust state feedback
control for the singular uncertain time-delay system (2.1) for all admissible uncertainties.
Our attention is to design a state feedback controller G:

u(t) = Kx(t), (2.6)

such that for a given scalar γ > 0, for all non-zero w(t) ∈ L2[0,∞) and for all parameter
uncertainties satisfying (2.3) and (2.4)

sup
06=w∈L2[0,∞)

( ‖z‖2

‖w‖2

)

< γ. (2.7)

In this situation, the system of (2.1) with the controller (2.6) is said to have a robust
H∞ performance (2.7). More specifically, our objective is to design a state feedback
controller G such that: the system of (2.1) with G is robustly stable and has a robust
H∞ performance (2.7). Here, robustly stable means that the uncertain system (2.1) is
asymptotically stable about the origin for all admissible uncertainties. In the remainder
of this section, we will establish stability and H∞ control results associated with the
nominal system of (2.1), i.e., the case when F (t) = 0.











Eẋ(t) = Ax(t) + Adx(t − d1(t)) + Bu(t) + Bww(t),

z(t) = Cx(t) + Du(t) + Cdx(t − d1(t)) + Dww(t),

x(t) = φ(t), ∀ t ∈ [−d1(t), 0].

(2.8)

First we recall the following lemma.

Lemma 2.1 (Schur Complements) Given constant matrices M , L and Q of appro-
priate dimensions with M and Q are symmetric and Q > 0, then M + LT QL < 0 if
and only if

[

M LT

L −Q−1

]

< 0 or

[

−Q−1 L

LT M

]

< 0.

Lemma 2.2 Let T0, · · · , Tp ∈ Rn×n be symmetric matrices. If there exists 0 ≤ τi,
1 ≤ τ ≤ p such that

T0 −
p

∑

i=1

τiTi > 0,

then we have
ξ⊤T0ξ > 0 (2.9)

holds for all ξ 6= 0 satisfying T0 −
p
∑

i=1

τiTi > 0.
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Lemma 2.3 Let H be a symmetric matrix and D, E be matrices with appropriate
dimensions. Then, H +DF (t)E +ET FT (t)DT < 0 holds for any FT (t)F (t) ≤ I if and
only if there exists a constant scalar ε > 0 satisfying H + εDDT + 1

ε
ET E < 0.

Lemma 2.4 Let G, U , V be given matrices with G being symmetric. Then there
exists matrix X such that

G + UXV ⊤ + V X⊤U⊤ > 0 (2.10)

if and only if
U⊤
⊥GU⊥ > 0, V ⊤

⊥ GV⊥ > 0 (2.11)

hold, where U⊥, V⊥ are orthogonal complements of U and V respectively. U⊤
⊥GU⊥ > 0

holds if and only if there exists a scalar σ such that

G − σUU⊤ > 0.

Throughout this paper we will make the following assumption.

Assumption 2.1 There exist a positive scalar ρ such that

‖x(t)‖2 ≤ ρ‖x(t − d1(t))‖2. (2.12)

Theorem 2.1 Consider the singular time-delay system (2.8) with all uncertainties
disturbance input w(t) = 0. Under Assumption 2.1, system (2.1) is asymptotically stable
for all d1(t) ≥ 0 satisfying (2.2), if there exist matrices P > 0 and R1 > 0 such that
the following inequality holds

[

ET PA + AT PE + R1 − ρτI ET PAd

AT
d PE −R̃1 + τI

]

< 0, (2.13)

where R̃1 = (1 − β1)R1 > 0.

Remark 2.3 Before proving Theorem 2.1, we have the following observations:

1) If system (2.8) is stable, then (2.12) is satisfied with ρ = 1. If system (2.8) is
instable, assumption (2.12) means that increase rate of the system trajectory can
not be greater than ρ.

2) With no loss of generality, we can assume E is of form E =

(

I 0
0 N

)

, where

I is the identity and N is a nilpotent. In this case, ET PA + A⊤PE + R1 is
always infeasible. The purpose of introducing Assumption 2.1 is to overcome this
infeasibility.

Proof of Theorem 2.1 Let xt ∈ C[−d1, 0] be defined by xt(s) = x(t+s), s ∈ [−d1, 0].
Let us consider a Lyapunov functional candidate as

V (xt)
∆
= xT (t)ET PEx(t) +

t
∫

t−d1(t)

xT (τ)R1x(τ) dτ. (2.14)
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The derivative of the Lyapunov functional (2.14) along the trajectory of (2.1) is

V̇ (xt) = ẋT (t)ET PEx(t) + xT (t)ET PEẋ(t)

+ xT (t)R1x(t) − (1 − ḋ1(t))x
T (t − d1(t))R1x(t − d1(t))

= [Ax(t) + Adx(t − d1(t))]
T PEx(t) + xT (t)ET P [Ax(t) + Adx(t − d1(t))]

+ xT (t)R1x(t) − (1 − ḋ1(t))x
T (t − d1(t))R1x(t − d1(t))

≤
[

x(t)
x(t − d1(t))

]T [

ET PA + AT PE + R1 ET PAd

AT
d PE −R̃1

] [

x(t)
x(t − d1(t))

]

.

Using Lemma 2.2, together with (2.13), implies that

[

x(t)
x(t − d1(t))

]T [

ET PA + AT PE + R1 ET PAd

AT
d PE −R̃1

] [

x(t)
x(t − d1(t))

]

< 0,

holds for any x(t) 6= 0 satisfying (2.12), which concludes the stability of system (2.8).

Remark 2.4 Theorem 2.1 provides a delay independent stability criteria since in-
equality (2.13) does not include the unknown delay d1(t). However, we have used the
information β1 on d1(t), which seems the best we can do. It should be noted that when
E = I, Theorem 2.1 will reduce to the result in [4]. Furthermore, when Ad = 0 and
E = I, the inequality (2.13) becomes the standard necessary and sufficient condition of
stability for the non-singular systems without time-delay.

Next, we conduct the H∞ analysis for the nominal system (2.1) (setting F (t) = 0).

Theorem 2.2 Consider the singular time-delay system (2.1) with all uncertainties
being zero. Under Assumption 2.1, for a given constant γ > 0, system (2.1) is asymp-
totically stable and has an H∞ performance γ for all d1(t) ≥ 0 satisfying (2.2), if there
exist matrices P > 0, R1 > 0 and a scalar τ > 0 such that the following inequality
holds







ET PA + AT PE + R1 − ρτI ET PAd ET PBw CT

AT
d PE −R̃1 + τI 0 CT

d

BT
wPE 0 −γ2I DT

w

C Cd Dw −I






< 0, (2.15)

where R̃1 = (1 − β1)R1 > 0.

Proof We first show that the stability of the closed-loop system (2.1) under the
condition of (2.15). Again, let us define a Lyapunov functional candidate as

V (xt)
∆
= xT (t)ET PEx(t) +

t
∫

t−d1(t)

xT (τ)R1x(τ) dτ. (2.16)

Note that the negativeness of (2.15) implies

[

ET PA + AT PE + R1 − ρτI ET PAd

AT
d PE −R̃1 + τI

]

< 0, (2.17)
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which combined with Theorem 2.1 implies that the system is internally asymptotically
stable, i.e., system (2.8) is asymptotically stable with w(t) ≡ 0. Next, we analyze the
H∞ performance of the closed-loop system (2.1). Without loss of generality, we assume
the system has a zero initial condition. Taking the derivative of the Lyapunov functional
(2.16) along the trajectory of (2.1), we have

V̇ (xt) = ẋT (t)ET PEx(t) + xT (t)ET PEẋ(t) + xT (t)R1x(t)

− (1 − ḋ1(t))x
T (t − d1(t))R1x(t − d1(t))

= [Ax(t) + Adx(t − d1(t)) + Bww(t)]T PEx(t)

+ xT (t)ET P [Ax(t) + Adx(t − d1(t)) + Bww(t)]

+ xT (t)R1x(t) − (1 − ḋ1(t))x
T (t − d1(t))R1x(t − d1(t))

≤ [Ax(t) + Adx(t − d1(t)) + Bww(t)]T PEx(t)

+ xT (t)ET P [Ax(t) + Adx(t − d1(t)) + Bww(t)]

+ xT (t)R1x(t) − xT (t − d1(t))R̃1x(t − d1(t))
∆
= V̇ (xt).

Let us define performance function

J =

∞
∫

0

[zT (t)z(t) − γ2wT (t)w(t)] dt. (2.18)

Then for any 0 6≡ w(t) ∈ L2[0,∞), one has

J ≤
∞
∫

0

[zT (t)z(t) − γ2wT (t)w(t) + V̇ (xt)] dt

≤
∞
∫

0

[zT (t)z(t) − γ2wT (t)w(t) + V̇ (x(t))] dt.

(2.19)

Substituting V̇ (x(t)) into (2.19), we obtain

J ≤
∞
∫

0

ξT (t)Zξ(t) dt,

where

ξ(t) = [xT (t) xT (t − d1(t)) wT (t)]T

Z =





H ET PAd + CT Cd ET PBw + CT Dw

AT
d PE + CT

d C CT
d Cd − (1 − β1)R1 CT

d Dw

BT
wPE + DT

wC DT
wCd −γ2I + DT

wDw



 ,

where
H = ET PA + AT PE + CT C + R1.
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Therefore, using Lemma 2.1, (2.15) implies J < 0, that is, ‖z(t)‖2 < γ‖w(t)‖2. There-
fore, system (2.8) is internally asymptotically stable and has an H∞ disturbance atten-
uation γ. The proof ends.

3 Robust Controller Design

Substituting (2.6) into (2.1) yields the dynamics of the closed-loop system as follows:
{

Eẋ(t) = Ac(t)x(t) + Ad(t)x(t − d1(t)) + [Bw + ∆Bw(t)]w(t),

z(t) = Cc(t)x(t) + [Cd + ∆Cd(t)]x(t − d1(t)) + [Dw + ∆Dw(t)]w(t),
(3.1)

where Ac(t) = Ac + H1F (t)Ec, Cc(t) = Cc + H2F (t)Ec with Ac = A + BK, Cc =
C + DK, Ec = E1 + E3K. By the same arguments as in the proof of Theorem 2.2, we
have the following result.

Proposition 3.1 Consider the singular time-delay system (3.1) with all uncertain-
ties being zero. Under Assumption 2.1, for a given constant γ > 0, system (3.1) is
asymptotically stable and has an H∞ performance γ for all d1(t) ≥ 0 satisfying (2.2), if
there exist matrices P > 0, R1 > 0 and a scalar τ > 0 such that the following inequality
holds









ET PAc(t) + AT
c (t)PE + R1 − ρτI ET PAd(t) ET PBw(t) CT

c (t)

AT
d (t)PE −R̃1 + τI 0 CT

d (t)
BT

w(t)PE 0 −γ2I DT
w(t)

Cc(t) Cd(t) Dw(t) −I









< 0. (3.2)

Noting that the left hand side of (3.2) can be rewritten as








ET PAc + AT
c PE + R1 − ρτI ET PAd ET PBw CT

c

AT
d PE −R̃1 + τI 0 CT

d

BT
wPE 0 −γ2I DT

w

Cc Cd Dw −I









+







ET PH1

0
0

H2






F (t)

(

Ec E2 E4 0
)

+













ET PH1

0
0

H2






F (t)

(

Ec E2 E4 0
)







T

.

Using Lemma 2.3, we conclude that (3.2) holds if and only if there exists a positive scalar
ε > 0 such that









ET PAc + AT
c PE + R1 − ρτI ET PAd ET PBw CT

c

AT
d PE −R̃1 + τI 0 CT

d

BT
wPE 0 −γ2I DT

w

Cc Cd Dw −I









+ ε







ET PH1

0
0

H2







(

HT
1 PE 0 0 HT

2

)

+
1

ε







ET
c

ET
2

ET
4

0







(

Ec E2 E4 0
)

< 0.

(3.3)
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We therefore get the following proposition.

Proposition 3.2 For a given matrix K, if µ0 is the solution of the following opti-
mization problem

min
K, P>0

µ, (3.4)

s.t. (3.3) with γ2 replaced by µ, (3.5)

then controller (2.6) robustly stabilizes system (2.1) and the closed-loop system has noise
attenuation level

√
µ0.

Since (3.2) in nonlinear with respect to design parameters K, P , it can not be used
to design a controller directly. To solve (3.3) using LMI toolbox, we will use an iterative
algorithm. For this purpose, let’s give the following equivalent forms of (3.3). Using
Schur complement, (3.3) hold if and only if

Φ1
∆
=











J1 ET PAd + εET
c E2 ET PBw + εET

c E4 CT
c ET PH1

AT
d PE + εET

2 Ec −R̃1 + τI + εET
2 E2 εET

2 E4 CT
d 0

BT
wPE + εET

4 Ec εET
4 E2 −µI + εET

4 E4 DT
w 0

Cc Cd Dw −I H2

HT
1 PE 0 0 HT

2 −εI











< 0,

(3.6)

where J1 = ET PAc + AT
c PE + R1 − ρτI + εET

c Ec, ε and τ are positive scalars or

Φ2 =











J2 ET PAd ET PBw CT
c + ηET PH1H

T
2 ET

c

AT
d PE −R̃1 + τI 0 CT

d ET
2

BT
wPE 0 −µI DT

w ET
4

Cc + ηH2H
T
1 PE Cd Dw −I + ηH2H

T
2 0

Ec E2 E4 0 −ηI











< 0,

(3.7)

where J2 = ET PAc + AT
c PE + R1 − ρτI + ηET PH1H

T
1 PE, and η is a positive scalar.

Since Φ2 can be rewritten as

Φ2 =













J̃2 ET PAd ET PBw CT
c + ηET PH1H

T
2 ET

AT
d PE −R̃1 + τI 0 CT

d ET
2

BT
wPE 0 −µI DT

w ET
4

C + ηH2H
T
1 PE Cd Dw −I + ηH2H

T
2 0

E1 E2 E4 0 −ηI













+











ET PB

0
0
B

E3











K
(

I 0 0 0 0
)

+











I

0
0
0
0











KT
(

BT PE 0 0 BT ET
3

)

,

where J̃2 = ET PA + AT PE + R1 − ρτI + ηET PH1H
T
1 PE, it follows from Lemma 2.4

that (3.2) is equivalent to










J3 ET PAd ET PBw CT
c + ηET PH1H

T
2 ET − ε1E

T PBET
3

AT
d PE −R̃1 + τI 0 CT

d ET
2

BT
wPE 0 −µI DT

w ET
4

C + ηH2H
T
1 PE Cd Dw −I + ηH2H

T
2 0

E1 − ε1E3B
T PE E2 E4 0 −ηI − ε1E3E

T
3











<0,

(3.8)



68 PENG SHI AND E.K. BOUKAS

where J3 = ET PA + AT PE + R1 − ρτI + ηET PH1H
T
1 PE − ε1E

T PBBT PE, and ε1 is
a positive scalar. Using Proposition 3.1 and noting that (3.2) is equivalent to (3.7), we
obtain the following theorem.

Theorem 3.1 If there exist matrix P > 0 positive scalars η, ε1, τ , µ satisfying (3.8),
then there exists gain matrix K such that controller (2.6) internally stabilizes system (2.1)
and guarantees that the closed-loop system verifies noise attenuation level

√
µ.

This theorem shows that (3.8) provides a LMI for the existence of linear memoryless
state feedback controller (2.6) that internally stabilizes system (2.1) and guarantees the
closed-loop system verifies noise attenuation level

√
µ. However, since the present of

E the conventional method to solve LMI can not be directly used here. The following
algorithm establishes an iterative algorithm to handle the controller design problem.

Algorithm 3.1 (Robust Controller Design Algorithm)

Step 1 Set an error bound ̺0 > 0 and give an initial P0 > 0.
Step 2 With P given, solve the following optimization problem K and denote the optimal

v by v1,

min
µ>0, η>0, τ>0, K

v,

s.t. Φ2 < vI;

Step 3 With K obtained in Step 2, solve the following optimization problem to get P

and denote the optimal performance by v2

min
ε>0, τ>0, P>0

v,

s.t. Φ1 < vI.

If ‖v1 − v2‖ < ̺0 and v1 < 0, v2 < 0, stop, else go to Step 2.

4 Illustrative Example

To illustrate the validness of the algorithm developed in previous section, this section
gives a numerical example. Let us consider a system described by (2.1) with the following
system parameters:

R1 = I, ρ = 2, E =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0






,

A =







2 −0.1 0.1 0
0 0.1 1 0.1

0.1 0 −1 0.1
0.2 0.1 −0.1 −1






, Ad =







0.1 0 0.1 0
0 0.1 −0.1 0

−0.1 0 0 0.1
0 0 −0.1 −0.1






,
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B =







−0.3 0
0 −0.3

−0.5 0
0 −0.5






, Bw =







−0.3 0
0 −0.3
1 0
0 1






,

Dw =







0.2 0
0 0.2
1 0
0 1






, H1 =

(

0 − 0.1 0 0.1
)T

, H2 = −0.1,

E1 =
(

0.1 0.1 0 0
)

, E2 =
(

0.1 0 0 0.1
)

,

E3 =
(

0.1 − 0.1
)

, E4 =
(

0.1 0
)

,

C =
(

1 0 1 0
)

, Cd =
(

0.4 0 − 0.1 0
)

,

D = ( 0 −0.1 ) , Dw = ( 0.4 −0.1 ) ,

β = 0.2, η = 1, τ = 0.1, µ = 2.

With this set of data and choosing initial P = 0.4 ∗ I, ε0 = 0.01, using Algorithm 3.1

yields K =

(

15.9056 3.1213 9.7273 4.2990
12.0251 2.5436 9.5698 −0.0953

)

, then the corresponding controller

(2.6) stabilizes system (2.1) with a guaranteed disturbance attanuation
√

µ.

5 Conclusion

This paper dealt with the class of singular continuous-time systems with delay. Under
the norm bounded uncertainties, the problems of asymptotic stability, stabilizability,
H∞ control and their robustness have been studied. Delay independent sufficient condi-
tions provided to solve all the problems. These conditions are in some sense restrictive.
Presently we are working on the more general delay-dependent conditions for the above
problems.
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