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Abstract: In the paper the application of hierarchical Lyapunov functions is
proposed for qualitative analysis of solutions of discrete-time system. General
results of analysis of quasi-linear discrete system are applied to the analysis
of robust stability of large-scale neural system in the case of unperturbed and
perturbed equilibrium state. The obtained results are compared with those
obtained via the application of vector Lyapunov function in this problem. It
is shown that the application of hierarchical Lyapunov function allows us to
extend the boundaries of the parameter values of the neural network for which
the exponential stability of its solutions takes place. The examples illustrating
the efficiency of the proposed approach are given.
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1 Introduction

Discrete-time uncertain systems are satisfactory models for investigation of real pheno-
mena in populational dynamics, macroeconomics, for simulation of chemical reactions,
and also for analysis of discrete Markov processes, finite and probabilistic automata and
others.

One of the most actively developed areas in recent years is the dynamics of neural
systems [1— 3] which are described by discrete-time equations (see [4, 5] and the references
therein). Along with the investigation of such systems under diffrent assumptions there
has been a considerable interest in the development of general approaches in stability
analysis of discrete-time uncertain systems, which will be admissible in the stability
analysis of neural networks.
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The aim of this paper is to develop a method of analysis of exponential stability of
neural systems with nonperturbed and perturbed equilibrium states based on hierarchical
Lyapunov function.

The paper is arranged as follows.

In Section 2 the uncertain quasilinear system is considered. To decrease the order
of subsystems this system is decomposed. For each component and subsystem auxiliary
norm-like functions are constructed and robust bounds are given.

In Section 3 the uncertain neural system with nonperturbed equilibrium state is lin-
earized and the results of Section 2 are applied.

In Section 4 similar problem is solved for the uncertain neural system with perturbed
equilibrium state.

In final Section 5 two numerical examples are given.

2 Uncertain Quasilinear System

We consider the discrete-time system with uncertainties and perturbations of the form
S: z(t+1)=(A+ AA)x(7) + g(z(1)), (2.1)

where 7 € T, = {to + k,k =0,1,2,...}, to € R, © € R", z, = 0 is an equilibrium
of (2.1), g: U — R™ is a continuous vector function, U C R™ is an open subset containing
Te. A € R™™ is a constant matrix, AA € R™ "™ is an uncertain matrix. The only
knowledge we have regarding the matrix AA is that it lies in the known compact set
S C R™™. In paper [5] robust stability results were established for the system (2.1)
via scalar quadratic Lyapunov function. Unlike this paper we shall apply vector and
hierarchical Lyapunov functions composed of norm-like components.

2.1 Vector approach

Assume that the system (2.1) is decomposed into two interconnected subsystems

Sit w4+ 1) = (A + AA) zi (1) + (B + AB;) (1) + gi(z(7)),

- e (2.2)
17]21725 Z#]

Here z; € R™, A;, B; and AA;, AB, are submatrices of the known and uncertain

matrices
(A B (A4, AB
A—<32 A2> and AA_<AB2 AA2>’

respectively, with A;, AA; € R"*" B; AB; € R"*"i i, =1,2,i#7j, g= (91,93)%,

gi: U — R™ are continuous vector functions.
From (2.2) we extract the independent subsystems

with the same designations of variables as in system (2.2).
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Assumption 2.1 We assume that:

(1) there exist unique symmetric and positive definite matrices P; € R™*™  which
satisfy Lyapunov matrix equations

ATPA; — P = -Gy, i=1,2, (2.4)

where G; € R™*™ are arbitrary symmetric and positive definite matrices;
(2) there exists a constant v € (0;1) such that

IBull | Ball < 72 papia,

where p; = (O'I%[(B - Ini)al%/[(Pi) + UM(Pi))il, P; are solutions of the Lya-
punov matriz equations (2.4) for the matrices G; = I,,,, I, are n; x n; identity
matrices, 1 = 1,2;

(3) lim zy—0 lg(2)l/ll] = 0.

Here [|B;l| = supy,, <1 |Biwill, l|zill = (2Tx;)2 are the Euclidean norms of vectors

x;, and o7 (P;) are the maximum eigenvalues of P;.
Let P; be determined as solutions of the Lyapunov matrix equations (2.4) for G; = I,,.
We define the constants

(P) ', i=1,2,

g ol

o =0 (P = (03 (P~ In) + o
1 1 1
a= 08 (P)ai (P, b=0}(P)ok(P)(| Bl +|Bal). (2.5)
1 1
¢ = Yaras — o} (P)od (BBl 1Ball, €= (8 + 4ac)® —b)/2a.

I

Theorem 2.1 We assume that for the uncertain system (2.1) the decomposition
(2.2), (2.3) takes place and all conditions of Assumption 2.1 are satisfied. If the inequali-
ties

HAAl” < (1 =)  and ”BZH <€ 1=12,

are true, then the equilibrium x. =0 of (2.1) is global exponentially stable.
Proof For nominal subsystems
$Z(T+1):AZI1(7—), i:1527
we construct the norm-like functions
T 1 .
vi(a;) = (v; Pwy)2,  i=1,2, (2.6)

and the function
’U(,T) =div (J,'l) + dovo (,TQ),

where di, do are some positive constants.
Similarly to the proof of Theorem 3.1 from paper [6] for the first diffrences Av ;(x;)
of the functions (2.6) along the solutions of the system (2.1) we obtain the estimates

Avi(wi)| g < —(i = o3 (PIAA D]l + o3 (P Bl + 1ABi ) 51| + o5, (P)  ga )]l
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1,7 =1,2, 14 # j, and the estimate
Av(x)‘sz d"Wz+ §(z),
where d = (dy,d2)%, z = (1], |lz2]])T, W € R?*? is a matrix with the elements

{ai—a%mnmn, it 0=
Wi = 1
—oy (B)(IBill + |ABi), if i #j,

the function g: R™ — R is such that lim, o [|g(x)||/|z| = 0.

It was shown [6] that condition (2) of Assumption 2.1 implies that the matrix W is an
M-matrix [7]. Then there exist positive constants d; and dy such that the vector d™W
has positive elements [8].

Using the trivial inequalities ||z;|| > v; (xi)/al%/[(Pi), i = 1,2, for the first diffrence of
the function v(x) along the solutions of the system (2.1) we get

=

doo 2, (P
Av(@)] o< — [ — [ AA ] — 2T gt AR, )] dion (a)
dlaf/[ P1
dyo? (P i (2.7)
(o — [ AAs] — BIUP) (g AB, ) davs () + 5(a)

dgd& P2
< —w(d1vi(71) + dave(w2)) + g(v) = —wv(z) + (),

where .

. dio2 (P;

o=, min fu-aa) - B8
1,j=1,2,i#]

(13,1 + ||ABJ»|>}.

P
i O pp\ L

The choice of the constants d; and do implies w > 0. Let us assume that w > 1, then

-

dio? (P; . o
i ad - BB G AR 21 = 2i4) (@8)

oy (B
If [[AA]l = [[AAs]| = [[AB1|| = [[ABz|| = ||Bi1]| = |[[B2|| = 0, the system (2.1) is
written in the form

(T + 1) = Ajzi(1) + gi(2(7)), 1=1,2.

It is known [9] that the equilibrium x = 0 of this system is exponentially stable.
Let at least one of the numbers ||AA;|, ||AB;||, or ||B;|]| be not equal to zero, for
example, ||[AA;|. Then the inequalities (2.8) give

I

doo 2, (P
iz 1 [Ad ]+ 2P g ARy > 1,

dlafz[(Pl

but

<1

— )

1
1=z T
oi(Pr = In,)oi (P1) + om(Pr)
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since opr(P1) > 1. We get the contradiction, from which it follows that 0 < w < 1.
Using the condition (3) of Assumption 2.1 for the function g(z) we get the estimate

§(x) = dio 2, (P) g1 (21)]] + dao2y (Po)llga(wa)]| < <dlo%4<P1> +doo 2, (Py)) g ()]
+ do

1 1
< Oé(dlaM(Pl +d2UM (P2))llz]| < a(diog (P, o1 (P2)) (1]l + llz2ll)

)l (
< oa(dlaM(Pl —|—d20’M PQ )< T Il) 1)12 I2 )
om(P1)) Uﬁm (Pz))

! bt
dioa(Py) dzU%(Pz)

a(dio},(Pr) + dyof(P2)) max {

1
where o2, (P;) are minimum eigenvalues of the matrices P;, « is a small positive number
such that for the constant

~ 1 1 1 1
O =w—a(do}(P1)+ dyoi(P2)) max{ T ) T }
dio(P1)) deoi(Pz)

the inequality 0 < @ < 1 holds.
Using (2.7) we get the estimate

Av(z)| < —wv(x)

for all z belonging to sufficiently small neighborhood of the origin UcCuU , which implies
global exponential stability of the equilibrium z, =0 of (2.1) (see [10]).
The proof of Theorem 2.1 is complete.

2.2 Hierarchical approach

Now in the framework of hierarchical approach we decompose each subsystem (2.3) into
two interconnected components

éij . xij (T =+ 1) = (AZJ + AAU) xij (T) =+ (Blj =+ ABU) Tik (7’), (29)
where Ti; € R™i, R™ = R™! x R™?2, Aij,AAij c Rnijxnij, Bil,ABil S Rnilxnﬂ,
Bi?u AB%? S Rnwxnﬂu iuj?k = 17 27 j 7& k?

_(Aa Ba _ (AAq ABa
Ai= (Bi2 AiQ) ’ Adi= (ABQ AAgp )

We assume that the matrices B; and AB; have a block structure:

B; = <M1§11; Ml?%) AB; = <AM11§ AM%)
My My, AMu AMy;
where M), AM{) € Rro*mik i j k1=1,2, i #1.
We take from (2.9) the independent components
Cij : LL‘ij(T + 1) = (AU + AAU) xij(T), i, =1,2. (210)

with the same designations of variables as in system (2.9).
We denote g; = (934,95, - -, g};i)T and introduce the following assumptions.
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Assumption 2.2 We assume that:
(1) there exist unique symmetric and positive definite matrices P;;, which satisfy the
Lyapunov matrix equations

ALPj Ay — Pij = —Gyj, i=1,2, (2.11)

j
where G;; are arbitrary symmetric and positive definite matrices;

(2) there exist constants v; € (0,1) such that

| Birll | Biall < ¥7pirpiz, i=1,2,

where p;; = (O’E(Pij — Enij)ail(Pij) + UM(Pij))fl. Here and over Pj; are
solutions of the Lyapunov matriz equations (2.11) for the matrices Gij = I,
Inij are ng; X ng; identity matrices.
We construct the auxiliary functions v; on the base of the functions wv;;(z;;) =
(LL'EPUJJU)% by formulae ’Ui(,Ti) = dilvil (le) + diQ’UiQ (xig), 1= 1, 2.
We consider 2 x 2 matrices W; = ( (i)) with the elements

J

(1) Yilij, for j = ka
Wiy =

1 .
=05 (Pig)(|Bij|| +€), for j#k.
Here 0 <€ < ¢,

1 1 1 1
aij = o5y (Pij)pis = (031(Pyj — Eig) + 03,(Py))

1 1 —1
pij = (031(Pyg — Eij)oy(Py) + om(Py))
e = (07 + 46%'61')% —b)/2a;, a; = 01%4(31)01%4(32), (2.12)

1 1
¢i = Yian iy — 03 (Pi)oi (P)l|Bal | Ball, i,j=1,2,

1 1
bi = o3 (Pir)og; (Pi2)(|| Ball + || Bazll)-

Let us denote

T = mln{dzlwﬁ) + digwgl);dilw%) + dig’wgz)}, 1 =1,2,

1
2
) - (2.13)

m = — 1 1 1 1
(d1103,(Pi1) + d120 2, (P12)) (d2102,(P21) + da2o 2 (Pa2))

A method of optimal choice of the constant d;;, 7,7 = 1,2, is given in [6].
Assumption 2.3 Let HliHm llg(@)||/llz]] = 0 and for the submatrices M](;C) of the
x||—0

matrices B; the inequalities T = max ||MJ(,?H <m be realized for all i, j, k =1,2.
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Theorem 2.2 We assume that for the uncertain system (2.1) the two-level decompo-
sition (2.2), (2.3), (2.9), (2.10) is realized and all conditions of Assumptions 2.2 and 2.3
are satisfied. If the inequalities

IAAGII < (1= 7)pi,  [AByl <&, [|AMP| <m—m

are fulfilled for all i,j,k = 1,2, then the equilibrium x. =0 of the system (2.1) is global
exponentially stable.

Proof Under the hypotheses of Theorem 2.2 analogous to the proof of Theorem 4.1
from [6] for the function v(z) = dyvi (1) + d2va(z2) we get the estimates:

A’U( )‘ = dlA’Ul :vl ’S +d2A’U2 ,TQ ’S < dTWz+g( ) (214)

where d = (d1,d2)", z = (||z1], |lz2])™, i = (¢, 95)T and W is 2 x 2matrix with the
elements

5, for 5=k,
l . .
wi = § —dpod (Pn)@m + |AMI|) + | AMP)
1 . . )
—djo} (P)@m + |AMIP ) + | AMP]),  for j#k,

§(@) = di (Ao, (Pr)llgn (@) + iz (Po) | gra(@)]

1 1
+d2 (d2101?4(P21)||911(I)H + d220§4(P22)||922(I)H) :

Under the hypotheses of Theorem 2.2 the matrix W is the M-matrix and, according
to [7] there exist positive constants d; and dz such that the vector d™W has positive
components. That is

dTWZ = (7T1d1 — WQ1d2)||$1|| + (7T2d2 — w12d1)||:vg|\

> Y (midi —wudy)(|lzal + llzil)/ V2

0.=1,2, i

midi —wjid; (v (zi) | vie(@iz) )
> ) — +
- V2 ( >

1
oy (Pa) o3 (Pi2)

1,j=1,2,i#j
idi — wjid; 1 L
. Z T wjid; < . did;vi + 17dldzgvn> > wv(aj),
i,j=1,2, %] V24 dinosr(Pi) dizo iy (Pi2)
where
) { md; — wﬂd mid; — wﬂd }
W= mm ’
1,7=1,2,i#j \/—d dzlgM( ’Ll) \/_d szUM( 12)

As the matrix W is the M-matrix, v € (0,1) and pu1; < 1,

midi — waida < 1
T = T
V2didioy (Pi1)  V2diioi(Prr)

1 1
d11w§1) + dl?wé : < W§1) __moem_mpun

\/_dllaM(Pll) _\/igM(Pll) \/501%4(P11) V2
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and 0 <w < 1.
It follows from (2.14) that

Av(x)}sg —wov(z) + g(x).
As for sufficiently small « > 0 the estimate
_ 2 1 1
g(z) <ad d; (dilU&(Pil) + dwaiAPiz)) |l

=1

2
<ap! Z d; (dile?/[(Pﬂ) + dizaﬂ(Pm))U(I)
i—1

is realized in some neighborhood of zero U,

Av(z)] (< —av(z),

S

2
where @ = w — 06671 E d; (dlla]%[(Pﬂ) + diQU]%d(BQ)), 0<w<1.
i=1

These conditions are sufficient [10] for the global exponential stability of the equilibri-
um x =0 of (2.1). The proof of Theorem 2.2 is complete.

3 Neural System with Nonperturbed Equilibrium

We consider discrete-time neural networks described by
z(t+ 1) = Ga(r) + Cs(Tx(r) + 1), (3.1)

where 7 € T, = {to+k,k=0,1,2,...}, to € R,x € R", x = (v1,22,..., ¥n) 7T, x; is the

state of ith neuron, x; € R, s: R" — R", s(z) = (s1(z1), 52(x2), . .-, sn(zn))h, st R —
(-1,1), T € R, G = diag{91,92,---9n}, gi € [-1,1], C = diag{ec1,ca,...cn},
c; # 0 for all ¢ = 1,2,...,n. The functions s; are twice continuously diffrentiable

functions, they are monotonically increasing and odd.
Together with the system (3.1) we consider an uncertain system

z(t+1) = (G+AG)z(r) + (C+ AC)s((T + AT)z(r) + (I + AI)), (3.2)

where AG,AC, AT € R"*™, Al € R™ are uncertain matrices and a vector.
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3.1 Vector approach

In the framework of vector approach we decompose the neural system (3.1) into two
interconnected subsystems

1171'(7' + 1) = Gzirl(T) + CiSi(nlilfl(T) + EQ.IQ(T) + Ii), i =1,2, (33)

where z; € R™, z; = (a1, T, .. .:Eim)T, x;; represents the state of the ¢jth neuron,
Lij S R, S; R" — Rni, Sz(xz) = (Sil(Iil),SiQ(IiQ), . -75ini($ini))T7 Sij: R — (—1, 1),
Ti; € R ™, G; = diag{gi1, gi2,---9gin. }» 9i5 € [—1;1], C; = diag{ci1, ciz,... cin,},
cij # 0 for all ¢ = 1,2, 7 = 1,2,...,n;. The functions s;; are twice continuously
diffrentiable functions, they are monotonically increasing and odd.

Together with the system (3.1) we decompose the uncertain system (3.2)

1171'(7' + 1) = (GZ + AGl){EZ(T) + (Ol + AC’l)sZ((Tll + Anl)xl(T)

+ (Ti2 + ATig)xa (1) + (I + AL)). 34
Here AG;, AC; € R"*™, AT;; € R"*™, Al; € R™ are uncertain matrices and vector.

Let z. = (z],,23.)"7 denote the equilibrium state of (3.1), si(x;) = diag{s}; (zi1),
Sig(Ti2),- -5 Sin, (Tin, )}, 87 (i) = diag {sfy (wi1), si5(wi2), .-, s, (Tin, )}, Lin = Supy, e g
l[s3(@)ll, Liz = supg,epm: |57 (zi)l-

All above assumptions concerning the matrices G;, C;, T;;, the vectors I; and the
functions s; are similar to the assumptions under which a scalar Lyapunov function is
applied to the neural systems of (3.1) type in paper [5]. Further we need assumptions
connected just with the decomposition of neural system.

Let us introduce the matrices

A; = Gi+ Cisi(Thzie + Tiowae + 1) Ty,

3.5
B; = Cisi(Tinxie + Towae + 1) Tij, 1,5 =1,2,1 # j, (3.5)

and the following assumptions.

Assumption 3.1 Assume that:

(1) for the matrices (3.5) the conditions (1) and (2) of Assumption 2.1 are satisfied;
(2) x is an equilibrium state of both (3.3) and (3.4).

We set
Bi =14 ([ICill + |1 Tull) Lix + (1 + llwiell + @2ell) 1Ci | T | Liz,

6 = (Gl + 1T ) Lix + (1 + [|wrell + |lz2e ) |Cilll| Tij] Lz,

1

(3.6)

=

K; = min { 5T ((52 +4(1 = y)pilin)? — ﬁi) ((52 + 45Li1)% - 51)}

where 4,j = 1,2, i # j, the constants u;, € are computed by (2.5) for the matrices (3.5).
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Theorem 3.1 Let for the system (3.2) the decomposition (3.4) take place and all
conditions of Assumption 3.1 be satisfied. If the inequalities

max { [|AG]|, [ACi, [ATall, [ATy||, AL} < K, i=1,2, (3.7)
are true, then the equilibrium x. of (3.2) is global exponentially stable.
Proof We denote
fi(@) = Giwi + Cisi(Tinawy + Tiowa + 1),
hi(z) = AG;z; + (C; + ACy)s; (T + AT )z + (Tio + ATp)zs + (I; + AL))
— C;si(Tnwy + Tigxa + I).

As the functions f; and h; are twice continuously diffrentiable functions in the neigh-
borhood of the equilibrium z., the equations (3.4) can be written in the equivalent form

zi(T+1) —xe = fi(z(T)) + hi(z(7)) — fixe) — hilze)
_ Ofixe) dfize)

o, (i(T) — @ie) + oz, (;(1) — je) (3.8)
+ Ohi(z.) (2i(7) — Tie) + 3%558) (xj (1) — zje) + gi(x(T) — xe),

6:101-

where g;(z(7) — z.) are the higher-order terms with respect to (z(7) — ),

Ofin Ifi1 Ofi1 Ofir Ofin Ofi1

Ox1 Oxziz "7 OTin, Owj1 Ozjo 77 Omwjn,

. Ofi2 Ofi2 Ofiz . Ofi2 Ofiz Ofi2
Oxi | o ’ 6;Uj ........................ ’

Ofin,  Ofin, Ofin; Ofin;  Ofin, Ofin;

Oxi1 0T 2 OTin; Owj1 Oz j2 am]nj

Ohi Ohy

and have an analogous form. We get

Oxi® Oz,
8{;2566) = G; + Cis;(Tnzie + Tinwoe + I;) Ty = Ay,
% = Cisy(Tnzie + Tioxae + 1) Tyj = By, i,j=1,2,i#j,
j
If we denote
Adi= ahéze)’ AB; = 61223?6)7 y(r) = 2(1) — =,

then the equations (3.8) are written in the form
yi(T +1) = (Ai + AA) yi(7) + (Bi + ABi) y;(7) + 9i(y(7)) (3.9)
and the state y = 0 will be the equilibrium of the system (3.9). Letting

zi = (Tin + ATi1)x1e + (T2 + ATyo)xoe + (I; + AL,
t; = Tixie + Tioxoe +I;, 1=1,2.
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we find
= AG; + Cis;(zi)ATii + ACzs;(zz)(Tu + AT;) + Cl(S;(ZZ) — S;(ti))Tii

Similarly to [5] here we have used the formula

1
fla)—f (@a=1b) [ fla+&(b—a))ds
I

for the functions f = s;j,

1

1
Qi(z,t;) = diag { sz + &t — 20)) dE, | sip(zi + E(ts — 2)) dE, .. .,
[ER—

0

1
/sym (2i + &t — 21)) df}a

0
Ni(z —t;) = diag{zil —ti1, zi2 — tio, oo, Zing — tim}, 1=1,2.

It is easy to see that

1

/ St €t — z)) dE | < Lo,

[Qi(zi, ts)l| = sup

j=1,2,...,n;

(3.10)

[Ai(zi = t)ll < llzi = till < (1 + [|z1e]] + [[22]) K
Using (3.6), (3.7) and (3.10), we get
[AA:]| < Ki + ||Cill Lin Ki + Lia (| Tl + Ki) Ki + |Cil| Liz || 20 — ]| || Tl
< LK} + (14 (G|l + 1T D) Lix + 1 Cill | Tl Liz(1 + |zl + l|22e])) K
= Lo K2+ BiK; < (1 —5)u. (3.11)
Similarly for i # j
ABZ' = (Cz =+ ACl)S;(Zl)(TU + ATZ]) C S (lfz)
— Cisi(z) ATy + ACisi(z)(Tyy + ATy) + Cilsh(z0)s4(6)Ty
= Cisli(zi)ATij + ACiSQ(Zi)(Tij + ATU) + C; QZ( 23y 1) i(Zi — ti)Tij
and
IAB|| < L K7 + (([|Cill + 1 T3 ) Ly + [|CillTij Lz (1 + ||z ]| + l|z2e ) K.
= Llllfl2 +6,K; <e. (312)
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It follows from (3.11), (3.12) and Assumption 3.1 that, for the system (3.9) all conditions
of Theorem 2.1 are satisfied. Hence the equilibrium y = 0 of the system (3.9) is global
exponentially stable, and it is equivalent to global exponential stability of equilibrium z,
of the system (3.2). Theorem 3.1 is proved.

3.2 Hierarchical approach

In the framework of hierarchical approach we decompose each subsystem (3.3) into two
interconnected components

2y (T +1) = Gijai (T )+Cw8u( Tiix11(7) + Tjaa1a(7)
(3.13)
+ Tj o (1) 4+ Tjswoa(T )+Iij), i,j=1,2.

— (T .T\T ij i — i i R g g g T ..
Here x; = (21, 2;5)", iy € R™9, R™ = R™ X R™2, x;; = (Tij1,Tij2, .- Tijny) s Tijl
represents the state of the ijlth neuron, z;;; € R,

T T Gin 0 Ca 0
= ] a= (5 o) a= (G o) nmunmT
Ty Ty 0 Gi 0 Ci

T;Z S Rnijxn?k, Iij € R™i, Gij = diag {gijl,gij% .. 'gijnij}7 giji € [ 1 1] Cl] =
diag {cij1, cij2,---Cijny, sy it # 0, si(x) = (sa(wa)T, siz(@i2)™)T, sij: R™ — R,
Sij (Izg) = (Sijl(xijl)a Sij2 (.IijQ), ceey Sijnij (xijnij))Ty the functions Sijl - R — (—1, 1), Sijl
are twice continuously diffrentiable, increasing and odd, 4,5, k,p=1,2, I =1,2,...,n ;.

Together with the system (3.3) we decompose the system (3.4) into interconnected
components

23y (7 + 1) = (Gig + Ay (1) + (Cy + ACy) sy (T + AT (7)
+ (T_;Ql + A1_‘]121)5E12( ) (jﬂ2 + AT,LQ)ZE21( )

Here AG;j;, AC;j, AT;}’;, Al;; are unknown matrices and a vector of corresponding
dimensions. The only knowledge about it is that it lies in some known compact sets.
Let us denote by z, = (25,7, 25,7, 25,7, 25, ") the equilibrium of system (3.13), and

S/ij (zi5) = diag {S/ijl(xijl)v S/ij2(xij2)a S ngnij (Iijnij)}7

sij(wij) = diag {s7j1(xij1), 87j2(Tij2) s - - -+ Sijny, (Tijnis )}

Lj; = Supn” sty (xij)ll, L = Supn” l[s7; (i) I,
Tij € ] Tij € ]

tij = J1$11 + T J2%12 + T2 %21 + T2 [2%22 + 1;j,
zij = (T + AT} )z + (T + ATj3)z12
+ (T} + AT} )wor + (T3 + ATj3)w02 + (Lij + AL)
T_]lll zi + T123312 + T123321 + T123322 + Lij,
(Tﬂ T?ll)xu (ng + AT;21)$12
+ (T jl +ATj12)5U§1 (T} +AT2)$22 + (Lij + Aly).
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and the matrices
Aij = Gij + Cijsiy(85)T55,
Bij = Cijsi; (t)Tjk, 3 # k, (3.15)
My = Cysly(5)T}F, i #p.
We need the following assumptions.
Assumption 3.2 We assume that:

(1) all conditions of Assumption 2.2 are satisfied for the matrices (3.15);
(2) the state z. is an equilibrium of both (3.13) and (3.14);

(3) M = max ||Mj(ll)|| < m, where the constant m is computed by formula (2.13).

Let us denote

Bij = 1+ (ICyll + ITHIN L + IC5ITHIILE R
% = (I1Ci | + IT;RIN LY + I Co5 N TRl LY Re, i # p B ]7“‘37
Re =1+ |21 + llz%all + [[251 | + 23],
ol = (B4 + 400 =)y L) — Bij) /2L,
ol = ((O)? +4& L2 — %) 2LY;, j#k,
oy = ()2 +4mLy)? — o%)J2LY,, i#p,

K’Lj - mln{o‘mvafjvaz;lv 1J2} i Jak pvl - 1 2.

Here 0 < m < m—m and 0 < & < ¢ the constants p,j;, €; are computed for the
matrices (3.15) by formula (2.12).

Theorem 3.2 For the system (3.2) let the decomposition (3.4), (3.14) take place and
all conditions of Assumption 3.2 be satisfied. If the inequalities

max {[IAGy | [AC |, AT AL } < Ky, i =1.2.

are true, then the equilibrium x. of (3.2) is global exponentially stable.

Proof We denote

fij(x) = Gigij + Cgsij (ti5),
hij ($) = AGijLL'ij + (CU =+ AC%J)SU (Zij)—CijSij (tij).

For the functions f;; we get

Gij_'—CZJSZJ(fj)T;; :Aija Z.:paj:kv
Lfij(xe) = CZJSU( ij)TJ?llc = Bij, i=p,jF#k,

i ij

Cijs; (fj)T;IZc)_Mg(lzgv i;ﬁp.
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Since the functions f;; and h;; are twice continuously diffrentiable in the neighborhood
of the equilibrium z., the equations (3.14) can be written in the equivalent form

g7+ 1) =y = £ (o) + iy (a(0) = i) = hstoe) = LD o) =y
81"5178 81".7Ee 81"5178
+ 2D () — ae) o+ P (0 (r) = ) + P () — )
8hz Te 8hz Te 8hz Te
+ ) () )+ T war) = ) + T (0 (1) = a5
+af;;7(:e)(xp2(7-)_x;2)+gij(‘r(7—)_:Ee)v i7j7k7p:1727 Z#puj#ku
p

(3.16)
where g;;(x(7) — x.) are the higher-order terms with respect to x(7) — z.. If we denote

Ohij(ze) Ohij(we)
AAy = T2 ARy = = 7)) — e
j 6(EU ) J axik ) y(T) .I(T) Tes
AM]‘Z):%%W, g kp =12 i#p j#k
T

the equations (3.16) are written in the form

Yyij (T + 1) = (Aij + AAiy) yij (1) + (Bij + ABij) yir(7)

(i (i (i) (i) (3.17)
(M1 + AM) ypi (1) + (Mjy" + AM5") ypo(7) + 945 (y(7)),
1 #p, j # k, and the state y = 0 is an equilibrium of (3.17).
Then, as in proof of Theorem 3.1, we have
|41 < LLES + (1+ (1Cs1 + ITHIDLY .
HICHINTILE R ) Ky = LK + Bk < (1= ),
1By < LLEE + ((ICs1 + ITEINLY + 1CHITEEL R ) Ky 1)
= L}sz?j + 52;7(” <&, Jj#k,
IAMP | < LEEE + ((1C3 |+ 1T LY + IS IITILE R ) Koy 520)

ZL}ijj+6ffKij§m<m—m, 1 #p.

It follows from (3.18) —(3.20) and conditions of Assumption 3.2, that for the system (3.17)
all conditions of Theorem 2.2 are fulfilled. Hence, the equilibrium y = 0 of (3.17) is global
exponentially stable, and it is equivalent to global exponential stability of the equilibrium
x. of (3.14). Theorem 3.2 is proved.

4 Neural System with Perturbed Equilibrium

The approach considered below may be used for the investigation of uncertain neural
systems with perturbed equilibrium.
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Assumption 4.1 We assume that:

(1) for the matrices (3.5) the conditions (1) and (2) of Assumption 2.1 are satisfied;
(2) ze is an equilibrium of (3.1), T. is an equilibrium of (3.2), x. # Te.

We denote

[N

1
5T (87 +2(1 = y)piLin)? = Bi), T

rij = Lo (|C5ll + K:) (|1 T35 || + K3) (|1 T || 4 | Tz || + 2K5), i,j=1

A<mm{(1—7)u1 (L—y)p2 € ¢ }

Fi = min { ((612 + 26Li1)% - 61')},

2 (4.1)

3 )

27"11 ’ 2’[”22 ’ 27"127 2T21

where the constants pi, g2 and e are computed by (2.5) for the matrices (3.5).
Theorem 4.1 For the system (3.2) let the decomposition (3.4), (3.14) take place and
all conditions of Assumption 4.1 be satisfied. If the inequalities
max { |AG, |AC]|, [ATull, IAT:ll, [ALII} < Ki, |2ie —Tiell < A, = 1,2,

are true, then the equilibrium T, of (3.2) is global exponentially stable.

Proof In the neighborhood T, the equations (3.4) can be written in the equivalent
form

2i(T +1) = Te = fi(2(r)) + hi(2(7)) = fi(Te) = hi(Te)

+ (S + BN i) - w30 + () 7

= (%Sje) + 6{;%) + 6h5fe) - agge) ) (@i(T) — Tie)
(e ot OOt}

+9i(x(r) = Te),  0,j=1,2,i#],

where g;;(z(7) — T.) are higher-order terms. If we denote

AA: — Ofi(Te) + oh;(z.) _ dfi(we) AB; = afi(@.) + Oh;(z.) _ dfi(ze)

v 8:51 8:51 8:51 ’ 6,Tj al'j al'j ’

y(T):I(T)_Eev 17]2172313&17

then the equations (3.4) are written in the form (3.9) and further the proof of Theorem 4.1
is analogous to the proof of Theorem 3.1.
Assumption 4.2 We assume that:
(1) for matrices (3.15) the conditions (1) and (2) of Assumption 2.2 are satisfied;
(2) x is an equilibrium state of (3.1), T, is an equilibrium state of (3.2), e # Te;
(3) M = max HMJ(,?H < m, the constant m is computed by formula (2.13).
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Let us denote

alj (( +2(1 _FYZ):LLZJLZ‘])7 _61])/21;1]5
Z = (O + 28 Liy)? — 81%) /2LYy, 5 # k,
o = (((05)* + 2~L*-)% - 5?1)/%, i,
K;j = mln{a a?al i, J,k,p,l=1,2. (4.2)

170 i3 “iglo 1]2

2
il = Lo (||| + Kij) (IT;7 || + K i5) < > IT +4K>

v,§=1
A=y & m , -
<I>_m1n{ oy ’2Tii’2—1'p , i#Dp, J#EK,
i ko 2T

where 0 < m < m —m, 0 <€ < ¢, the constants yu;; and ¢; are computed by (2.12) for
the matrices (3.15).

Theorem 4.2 For the system (3.2) let the decomposition (3.4), (3.14) take place and
all conditions of Assumption 4.2 be satisfied. If the inequalities
max {AGy . IACy]. IATE |ALy] } < Ky, gy ~F5l < @, 6.5 =12

are true, then the equilibrium T, of (3.2) is global exponentially stable.

Proof As in the proof of Theorem 4.5, the equations (3.14) are written in the equiva-
lent form

sz(T+1)_I = fij(@(7)) + hij(2(7)) = fij(Te) — hij(Te)

— 8fij(xe) afz] (:Ee) ahz] (xe 6f1] xe
8:1717‘ 8.%” 8Iw 8Iw

— 8fij(xe) afz] (:Ee) ahz] (xe 6f1] xe
0xik 0xik 0xik 0xik

_ Ofij(xe) 3f” (Te) ah” (Te) 8f” Ze)
0xp1 O0xp1 O0x;; 0xp1

_ (afij(xe) 9fij(@e) 8hu(5178) _ dfij(we)

8Ip2 8$p2 8$p2 8:Ep2

) (e () ~T%)
+ gij(2(1) — Te), i,j,k,p=1,2, i#p, j#k.

If we denote

Ady = 0fi;(Te) 8h” (Te) B 8fij(:178)7 ABy; = 0fi;(Te) 8h” (Te) B 8fij(:178),

0z;j 0z;j 0xi; Oz, Oxiy, O
i 8fi‘(fe) Ohi; (xe) afi'(xe) —
AM( = J J — J = — de
Jl Oxp Oxp O0xp y(r) = a(r) — =,

zu]7k7pal:1727 Z#pa ]#k
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then the equations (3.14) take the form (3.17) and further the proof is carried out anal-
ogously to the proof of Theorem 3.2.

5 Numerical Results
Example 5.1 Let us consider the system

4
x1(T + 1) = — arctan (x1(7) + 0.005 z2(7) — 0.005) ,

™

7 1 1
xo(T+1) = —0.7522(7) + - arctan (% x1(7) 4+ x2(7) — ﬁ)’

with the equilibrium x, = (1;1)T and the perturbed system

4.04
x1(T + 1) = —— arctan (1.02 21 (7) — 0.0052 z5(7) — 0.025) ,
T

801 ) (5.1)

7 1
xo(T+ 1) =—0.7522(7) + . arctan (— x1(7) + 1.02 22(7) — 35000

350
with the equilibrium 7, = (1.01;1)%.

In the framework of scalar approach (see [5]), we have

K1 =0.0167, & =0.0942, AG =diag{0;0}, AC = diag{0.02;0},

T
701 0.02 -0.0102
Al = —-0.02; ——— AT = .
( 0.02; 35000) ’ ( 0 0.02 >
As |AT|w = 0.0302 > K7, we can not make the conclusion about exponential stability

of equilibrium state T. = (1.01; 1)T of the system (5.1).
In the framework of vector approach the constants computed by (4.1) are

K; =0.0215, K =0.0205, & =0.1054.
Then

max { [[AG1 |, [[AC:|, [ATu ||, [[ATw2|, AL} = 0.02 < K,
max { [|AGz|, [|AC:|], [ATo1 ]|, [[ATo|, |AL] } = 0.02002 < K,
||Tle — xleﬂ =0.01< ‘I), ||TQ€ — Ige” =0< ‘I),

and, by Theorem 4.1, we can conclude that the equilibrium 7. = (1.01; 1) of the
system (5.1) is global exponentially stable.

In the framework of vector approach the constants computed by (4.1) are
K1 =0.0215, Ko =0.0205, & =0.1054.
Then
max{[|AGL ], [[ACL, [ATw |, [ATwfl, [[AL |} = 0.02 < K,
max{||AGa||, |AC:||, || ATs1 ||, ||AT22]|, || AL} = 0.02002 < Ko,
|Z1e — 21| = 0.01 < @,  [|Tae — Z2.]| = 0 < P,

and, by Theorem 4.1, we can conclude that the equilibrium Z, = (1.01; 1) of the system
(5.1) is global exponentially stable.
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Ezxample 5.2 Let the system have the form
x(t+1)= % arctan (211(7) — 0.01 221 (7) — 0.01),
x12(T+ 1) = —0.2212(7) + % arctan(z12(7) + 0.0129; (7) + 0.01),

1.6
x91(T + 1) = 0.6 — — arctan (0.01z11(7) + 221 (7) — 1.99),
T

3
Toa (T + 1) = @aa(7) — - arctan(0.01212(7) + x22(7)),
T = ($11,$127$21,I22)T€ R z.=(1;0;-1;0)T,

T

)

2
s(:v) = ;(arctanxll, arctan ri2, arctan xsy, arctanxgg)

G = diag {0; —0.2; 0.6; 1}, C = diag {2; 0.6; —0.8; —1.5}, 1 = (—0.01; 0.01; 1.99; 0)",

2 0.02
= 0 = 0
T v
0 1 001 0 0 0 - 0
= A:
0.01 0 1 ol’ _0.008 0 3r—4 0
0 001 0 1 m 0.03 Sk ;
0o - o IZ
iy v

As a result of hierarchical decomposition we get

2 6—m 3r—4 T—3

An=—-, Ap= , Ao = , As =
T 57 51

By = Biz = Byy = By =0,

0.012 0.008 0.03
oM = U _
T

0.02

1 1
Ml(l):_ T’ MZ(I):

11 7T, 22 7T7

1 1 2 2
M1(2) = M2(2) = M1(2) = M2(1) =0,

i 2 —
R.=3, Ly =~ m=0009.

We get 71 = v2 = 0.5, ¢ =€ = 0.1 and do relevant computations

Py =1.6814, Pio =1.0342, Py =1.1354, Py = 1.0020,
p11 = 0.3633, p12 = 0.8180, o1 = 0.6546, po2 = 0.9549,
a; = 1.3187, ¢; =0.0980, ao =1.0666, co = 0.1667,
€1 = 0.2726, €3 =0.3953, m = 0.0504.

Ifeg =6 = 0.1, m = m —m = 0.0409 then we get the robust bounds

K11 =0.0269, Ko =0.0407, Ko =0.0304, Koo = 0.0393.
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