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Control of Chaos in a Convective Loop System
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Abstract: A convective loop is a system in which a fluid circulates freely
inside a closed circular pipe. The circulating fluid works as a transport media
of heat from a source to a sink. First order lumped parameter modelling of this
system leads to a set of nonlinear ordinary differential equations. Depending
on heating rate this system can show chaotic behavior. In this paper, the
performance of nonlinear model predictive control is compared with other
conventional nonlinear control law and it is found that although a simple linear
or, nonlinear controller may stabilize the system, nonlinear model predictive
controller outperforms other controllers.
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1 Introduction

Natural convection loops showing chaotic behavior are used in solar energy heating and
cooling systems, reactor, turbine, engine cooling systems, greenhouses, geothermal power
production and in process industries. Chaos in such convective loop systems in general
can be beneficial or detrimental depending on the process and the objective. Since it
is associated with vigorous change in states under nominal operating condition without
any change in input energy, it is beneficial for processes where mixing, heat transport
and chemical reactions are important. However due to the oscillation, chaos may lead
to vibrations and fatigue failure to the physical equipment, irregular and oscillation of
process operating conditions and increased drag of fluid flow systems. Ehrhard and
Müller [9] in their paper investigated natural convection in a closed loop. They first
developed a first principal model of the loop based on heat transfer law. They also
accounted for the nonsymmetric arrangement of heat sources and sinks. Finally the
model is reduced to a set of nonlinear ordinary differential equations. Then through
experimental and analytical data it is shown that this loop is characterized by nonlinear
effects and can show stable, unstable or, chaotic regimes based on the heating rate. The
model development and its analysis is further discussed in Section 2.3.
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Abed and Fu [1, 2] in their papers have shown ways for local stabilization of nonlinear
systems with Hopf and Stationary bifurcation. Sufficient conditions are also obtained
for the local stabilization of nonlinear systems whose linearization has a pair of simple,
nonzero imaginary eigenvalues. The greatest contribution in this area lies perhaps upon
Ott, et al. [21] who have shown that small time dependent perturbations can be effectively
used to convert a chaotic attractor to any of a large number of possible attracting time
periodic motions. The method utilizes delay coordinate embedding and can be used on
experimental situations where knowledge of the system dynamics are not available.

Like Ott, et al. [21], Singer, et al. [26] in their paper through experimental and sim-
ulation results have also shown how a simple low energy feedback controller like on-off
controller can stabilize a chaotic system. The developed control action is based on the
deviation of the vertical temperature difference from the equilibrium point which stabi-
lizes the states to their equilibrium points. Wang and Abed [30] have also suggested a
feedback control synthesis technique for relocating and ensuring stability of bifurcated
limit cycles to a convective loop problem. They showed that stability can be ensured in
several different ways, one of which is replacing the chaotic behavior by its equilibrium or,
replacing the limit cycle with a relatively small amplitude limit cycle. For this purpose
they have used a small washout filter to delay and to extinguish chaos in the model and
developed linear and nonlinear feedback control law. Recently Bošković and Krstić [5]
have investigated a thermal convective loop and developed a nonlinear feedback con-
trol law to achieve global stability using boundary control of velocity and temperature.
The nonlinear control law is developed based on the discretized model of nonlinear PDE
in space using the finite difference method and resultant high order system of coupled
nonlinear ODE’s.

In this paper, we will apply linear and nonlinear control law and investigate their
performance among each other. For this case it is found that proportional state feedback
control law with setpoint tracking (u = −k(x3 − x3e)) gives the best result where the
proportional constant can be found out by stability analysis of linearized model or LQR.
A nonlinear control law similar to the previous structure (u = −(x1 +x2)(x3−x3e)) gives
better result in terms of quick stabilization of the states to the desired setpoints (here,
the desired setpoints are the equilibrium points). This controller is equivalent to taking
−k(x) = x1 + x2 and depends a lot on the initial values of the states at the time when
the control law is applied. Nonlinear control law based on backstepping method is also
developed here which stabilizes the system but can not bring the states to the desired
equilibrium points. Other advanced control law like Nonlinear Model Predictive Control
(NMPC) stabilizes the system very efficiently compared to Linear MPC. Results from
these simulations are also included for comparision.

2 Process Description

The presence of chaos is very common in physical systems. It is desirable to reduce the
chaos so that system performance can be improved. We can do it in two ways (Ott, et

al. [21]). First make some large costly alteration to the system which completely changes
its dynamics to the desired dynamic behavior. Second improve performance by making
small time dependant perturbations in an accessible parameters. In this case chaotic
system holds advantage over other systems in that it can be made stable to any existing
orbit without much effort or alteration of the system.
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2.1 Definition of chaos

There is no universally agreed definition of chaos. Wang and Abed [30] defined chaos as
“an irregular, seemingly random, dynamic behavior of a deterministic system displaying
extreme sensitivity to initial condition” which most people accept as working definition.
It has two main parts: 1) the system is deterministic meaning that the system has no
irregular input; the chaotic behavior solely comes from the highly nonlinear nature of
the system, and 2) the system is extremely sensitive to the initial conditions. Usually
this kind of system has different stable region and can show periodic jump among these
states depending on the external condition.

2.2 Description of thermal convection loop model

Natural convection in a closed loop system consists of a heat source and several sinks
positioned above the source. The source and sink are connected by pipe forming at
least one closed loop system. The heat is transported from the source to the sink by
circulating fluid inside the loop. Unlike the forced convection (as in refrigerator), the heat
is transported by natural convection only. Solar heating system and nuclear reactors are
example of such system. For a detailed review of closed loop natural convection system,
(see [9, 11, 19, 32]).

Figure 2.1(a) shows a schematic diagram of the system. The sink and the source
are connected by a circular loop filled with an incompressible fluid which works as a
transporting media of heat from source to sink. The cross section, A of this loop is circular
and constant. The lower semicircle of the loop is heated by a hot fluid at a temperature
TH and the upper semicircle is cooled by a coolant at a temperature TC . The cooling and
heating zones are tilted by an angle δ from the symmetric position. If the temperature
difference ∆T = TH−TC is increased, the fluid is at first at no motion state. During this
stage, heat is transported by conduction only. As the heating rate is increased, a steady
state convection arises either in clockwise or counter-clockwise direction. If heating rate
is further increased, the steady state convection becomes unstable and shows oscillatory
and chaotic motion.

Figure 2.1. a) System, b) Bifurcation of the system depends on the heating

rate, β.
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2.3 First order model development

Assuming d << l, material and energy balance (see [9] for detail derivation) leads to the
following equations,

∂u

l∂ϕ
= 0,

ρ0
∂u

∂t
= − ∂p

l∂ϕ
− ρ(T )g sin(ϕ) − fw,

ρ0cp

{
∂T

∂t
+ u

∂T

l∂ϕ

}

− λ
∂2T

l2∂ϕ2
= hw[Tw(ϕ(T ) − T ] + qw(ϕ),

(2.3.1)

where

fw =
1

2
ρ0fw0u, (2.3.2a)

T (ϕ, t) = T0(t) +

∞∑

n=1

{Sn(t) sin(nϕ) + Cn(t) cos(nϕ)}, (2.3.2b)

Q(ϕ) = Q0 +
∞∑

n=1

{Qn sin(nϕ) + Rn cos(nϕ)},

=
1

ρ0cp
l{hwTw(ϕ) + qw(ϕ)}. (2.3.2c)

Introducing the dimensionless variables as follows,

Time, t′ =
hw0

ρ0cp
t, (2.3.3a)

x1 =
ρ0cp

lhw0
u, (2.3.3b)

x2 =
ρ0cp

hw0

γg

fw0l
S1, (2.3.3c)

x3 =
ρ0cp

hw0

γg

fw0l

{
ρ0cp

hw0
R1 − C1

}

, (2.3.3d)

where
γ = coefficient of thermal expansion,

cp = specific heat,

ρ0 = reference density,

λ = heat conductivity,

g = acceleration due to gravity,

hw = heat transfer coefficient = hw0

{

1 + K|x1|1/3
}

.

(2.3.4)
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Neglecting higher order terms in equation (2.3.2),

T (ϕ, t) = T0(t) + S1(t) sin(ϕ) + C1(t) cos(ϕ),

Q(ϕ) = Q0 + Q1 sin(ϕ) + R1 cos(ϕ) =
1

ρ0cp
l{hwTw(ϕ) + qw(ϕ)}

and assuming that the heat transfer coefficient hw is constant i.e., K = 0, the parameters
S1, C1, R1 are found to be

C1(t) =
T (0◦, t) − T (180◦, t)

2
, (2.3.5a)

S1(t) =
T (90◦, t) − T (270◦, t)

2
, (2.3.5b)

R1 =
hw0

ρ0cp

TH − TC

2
, (2.3.5c)

where TH and TC are the temperature of the heating and cooling zone respectively.
Further assuming that there is no tilting between the heating and cooling zone i.e.,
δ = 0 and there is negligible heat transfer in the direction of the tube axis, the system
can be described by the following set of ordinary differential equations:

ẋ1 = α (−x1 + x2) ,

ẋ2 = −x2 − x1x3,

ẋ3 = x1x2 − x3 − β,

(2.3.6)

where,

α =
ρ0cp

hw0

fw0

2
, (2.3.7)

β =
γg

fw0l

(
ρ0cp

hw0

)2

R1 =
γg

fw0l

ρ0cp

hw0

TH − TC

2
. (2.3.8)

Here, α is comparable to the Prandtl number and β is the heating rate which is directly
proportional to the temperature difference ∆T and is equivalent to the Rayleigh number.
The states x1, x2 and x3 are proportional to the average cross sectional velocity inside the
loop, temperature difference along the horizontal direction and temperature difference
along the vertical direction. All of the states are measurable and hence available for
computation.

2.4 Open loop response

In the equation (2.3.6), α stands for Prandtl number and can be assumed constant. The
other parameter β stands for Rayleigh number which is proportional to the heating rate.
At equilibrium, ẋi’s are zero. Putting these values in equation (2.3.6) and solving them
the following two cases arise:

Case a: β ≤ 1, x1e = x2e = 0 and x3e = −β
In this case, the states are globally stable and converge to the equilibrium points
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Figure 2.2. Open loop response of the system for different β’s; Initial conditions

of the state variables are x10 = 4.0, x20 = −3.0 and x30 = 5.5, taken arbitrarily.

irrespective of the initial conditions. The state x1 i.e., average cross-sectional
velocity of the fluid is zero at equilibrium which means that the fluid is at no
motion state in this case and heat is transported from the source to the sink by
conduction only.

Case b: β > 1, x1e = x2e = ±
√

β − 1 and x3e = −1
In this case, the states have two equilibrium points. The fluid average velocity
may be clockwise or counter-clockwise. Heat is transported at this stage by con-
vection. Depending on the value of the parameter β the system may show stable
or unstable and chaotic behavior. This is because as heating rate is increased
fluid velocity is also increased and at higher value of β it becomes locally unsta-
ble and jumps from one equilibrium point to another from time to time making
the system chaotic.

The different cases are depicted in Figure 2.1(b). The open loop response for different
β are given in Figures 2.2(a – c). These figures show how the system responses to the
same initial condition with different β.

From Figure 2.2(d), it is obvious that at chaos the system has two different orbits.
Solution of x1 and x2 remains in this orbit but never becomes stable to any single
equilibrium point (see, Figure 2.2(c)). From the bifurcation diagram it is obvious that
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at some critical value of β the system starts showing chaotic behavior. To find out this
critical value we need to do stability analysis of the open loop system:

2.4.1 Stability analysis of the linearized open loop system for β > 1

If there is a nonlinear equation
ẋ = f(x)

then linearization of the above equation around the equilibrium point leads to the fol-
lowing equation

ẋ = Ax,

where

A =






∂f1

∂x1

· · · ∂f1

∂xn

...
. . .

...
∂fn

∂x1

· · · ∂fn

∂xn






is evaluated at equilibrium points. For the system to be stable all the eigenvalues of
the matrix A must have negative real parts. For the convective loop described by equa-
tion (2.3.6), the linearized equation becomes

ẋ = Ax,

where

A =





−α α 0
−x3 −1 −x1

x2 x1 −1





evaluated at equilibrium

=





−α α 0
1 −1 −

√
β − 1√

β − 1
√

β − 1 −1



 .

Here, the positive equilibrium values of x1 and x2 are taken for analysis with β > 1.
Making the real parts of the eigenvalues of the A matrix equal to zero leads to the
following relation1:

βcrit =
α(α + 4)

α − 2
.

So, if β is greater than this critical value then the system will show chaotic behavior. For
example for α = 4, the critical value of β is 16 over which the system is chaotic. Notice
that the critical value is found by linearization of the nonlinear system. So, in practice
the transition from stable to chaotic behavior will not happen exactly at this critical
value of β. In fact, there is a transition region where the system actually is semi-chaotic
meaning that it shows chaotic response initially and after some period the oscillation
decays resulting into settling down of the response to one of its stable equilibrium points.

3 Controlling Chaos

Unlike linear systems, control of nonlinear and chaotic system is difficult due to the heavy
computational duty which makes nonlinear control not feasible. Also, when the main

1All the eigenvalue analysis is done by using Maple V.
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Figure 3.1. Schematic diagram of closed loop system.

target is to keep the operating point steady, it often suffices to linearize the nonlinear
system around the operating point and apply linear control law.

Whenever any feedback control action is taken, the open loop system is changed to a
desired closed loop stable system (Figure 3.1). In the following sections several methods
for controlling chaos in the convective loop is discussed. For a review of different control
strategy of chaotic system and bifurcation control see [21, 26, 30, 3, 16, 1, 2, 14]. There
are several works on linear feedback control of chaotic system (see [30]). For different
well established nonlinear controller design technique see [13, 17, 25]. The main theme
is to set the control action to be a function of some observable state so that it can be
calculated and implemented. In case of convective loop, the parameter β (heating rate)
is proportional to the temperature difference in the vertical direction which is the state
x3. So the control action , u in the convective loop system is taken as the deviation of
heating rate from its nominal value

ẋ1 = α(−x1 + x2),

ẋ2 = −x2 − x1x3,

ẋ3 = x1x2 − x3 −β + u
︸ ︷︷ ︸

Total heating rate, U

.
(3.0.1)

3.1 Proportional controller

For the convective loop system the control action, u in equation (3.0.1) is taken as
proportional to the state, x3 i.e.,

u = −kx3.

Stability analysis of the closed loop system leads to the following relationship for the
linear system

β =
α(4 + α + 5k + αk + k2)

α − k − 2
.

This means that if the system were linear for α = 4, k = 2 would be sufficient for
stabilizing the system for any value of β. Since the system is highly nonlinear, feedback
gain k = 2 may not suffice for higher values of β. However for small β, small negative
feedback gain suffices to make the system steady [see, Figure 3.2]. However in this case
the system equilibrium point is not the same as the open loop system. The equilibrium
point of the average cross-sectional velocity is determined by ±√

β − k − 1 and the final
fluid velocity stabilizes at this new equilibrium point instead of open loop equilibrium
point x2e = ±

√
β − 1. The heating rate does not remain the same as β instead it
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Figure 3.2. Closed loop response with proportional controller for k = 2 for

system with β = 20. The control is applied at time, t = 20.

becomes β − u where u is a constant value at steady state. This actually changes the
heating rate to some extent.

3.2 Setpoint tracking

This is same as the proportional controller but the control law is defined by

u = −k(x3 − x3e), (3.2.1)

where x3e is the open loop equilibrium point of the state, x3. The closed loop equilibrium
point is same as the open loop equilibria and the steady state value of the control action,
u is zero. This is given in the Figure 3.3.

3.3 Nonlinear control law: Lyapunov stability criterion

The main difficulties with designing a controller based on Lyapunov stability criterion is
in choosing the energy function. For this case the best candidate for the energy function
should be of the form:

V (x) = mx2
3 + nx2

1, m, n > 0, (3.3.1)

because of the fact that heating rate is proportional to x3 (vertical temperature difference)
and energy loss due to friction is proportional to x2

1. Here m and n are two proportional
constants which depends on the parameters used during conversion from PDE to ODE
of the system model. But this energy function is positive semi-definite. Nevertheless
using this “wrong” energy function, and Taylor series approximation to approximate√

β − u + 1 = f(u) ≈ a + bu, where a and b are linearization constants and truncating
constant terms in the final control law which accounts for lowering the heating rate
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Figure 3.3. Feed back control with reference point tracking; here, k = 2 for

system with β = 20.

(similar things are discussed in Section 3.4), we can finally come up with the following
control law2:

u = (x1 + x2)(x3 + 1). (3.3.2)

Surprisingly this control gives better stabilizing effect than that developed by backstep-
ping method as will be discussed next. But it depends greatly on the initial condition.
Simulation result is given in Figure 3.4.

As we said earlier that this control law is based on the “wrong” energy function
V (x). So why does it work then? The answer is that with so many assumption during
the development of the control law, the control law u is not associated with the positive
semi-definite energy function any more. Rather it belongs to some other unknown energy
function. If we take an energy function of the form V (z) = 1

2 (z2
1 + z2

2 + z2
3), where zi’s

are the transformed states for ż = f(z) with equilibrium points at the origin, it can be

shown that V̇ is negative provided that the open loop system is bounded (which is true
for this case without any external excitation even in unstable chaotic region).

3.4 Nonlinear control law: Back stepping method

The system

ẋ1 = α(−x1 + x2), (3.4.1)

ẋ2 = −x2 − x1x3, (3.4.2)

ẋ3 = x1x2 − x3 − β + u, (3.4.2)

2Detailed derivation is omitted here due to page constraints.
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Figure 3.4. Feed back control for system with β = 20: Lyapunov stability

criterion.

can be written in the following strict feedback system form:

ẋ1 = f(x1) + g(x1)ξ1, (3.4.4)

ξ̇1 = f1(x1, ξ1) + g1(x1, ξ1)ξ2, (3.4.5)

ξ̇2 = f2(x1, ξ1, ξ2) + g2(x1, ξ1, ξ2)u, (3.4.6)

where

f(x1) = −αx1, g(x1) = α, ξ1 = x2,

f1(x1, ξ1) = −x2, g1(x1, ξ1) = −x1, ξ2 = x3,

f2(x1, ξ1, ξ2) = x1x2 − x3 − β, g2(x1, ξ1, ξ2) = 1.

The first target is to stabilize the x1 sub-system defined by equation (3.4.4). Let the
Lyapunov function be V1 = 1

2 x2
1. Then

v̇1 =
∂V1

∂x1
ẋ1 = x1(−αx1 + αx2) = −αx2

1 + αx1x2.

Let us take the control law to be

x2 = φ(x1) = −ax1, a ∈ ℜ+. (3.4.7)

We have included an unknown parameter a in the control law φ(x1) which we will see
in the later section increases degree of freedom and will help removing singularity in the
final control law. For better flexibility and more degree of freedom we could also take
the following control law instead:

x2 = φ(x1) = −ax2b+1
1 , a > 0, b ≥ 0. (3.4.8)
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But the addition of parameter b increases complexity in the final control law and so we
assumed b = 0 for now. If necessary we can always come back and assume it to be
nonzero.

With this control law [equation (3.4.7)] the sub-system equation (3.4.4) becomes:

ẋ1 = −(a + 1)αx1 (3.4.9)

and the derivative of the energy function V becomes:

V̇ = −(a + 1)αx2
1, a, α > 0 (3.4.10)

which is negative definite. Hence the sub-system is globally asymptotically stable. The
energy function for the next sub-system equation (3.4.5) can be written as:

V2 = V1 +
1

2
[ξ1 − φ]2 =

1

2
x2

1 +
1

2
[x2 + ax1]

2. (3.4.11)

Then the control law that makes the derivative of V2 negative definite can be expressed
as

x3 = φ1 =
1

g1

[
∂φ

∂x1
(f + gξ1) −

∂V1

∂x1
g − k1(ξ1 − φ) − f1

]

= − 1

x1
[−a(−αx1 + αx2) − x1α − k1(x2 + ax1) + x2]

= −(aα − α − k1a) + (aα + k1 − 1)
x2

x1
, k1 > 0.

(3.4.12)

Similarly the final control law can be written as:

u =
1

g2

[
∂φ1

∂x1
(f + gξ1) +

∂φ1

∂ξ1
(f1 + g1ξ2) −

∂V2

∂ξ1
g1 − k2(ξ2 − φ1) − f2

]

= −(aα + k1 − 1)
x2

x2
1

(−αx1 + αx2) +
aα + k1 − 1

x1
(−x2 − x1x3)

− (x2 + ax1)(−x1) − k2

(

x3 + (aα − α − k1a) − (aα + k1 − 1)
x2

x1

)

− (x1x2 − x3 − β)

= (aα + k1 − 1)

(

α + k2 − 1 − α
x2

x1

)
x2

x1
︸ ︷︷ ︸

Singularity

+ (ax2
1 − (k2 − 1)x3 − k2(aα − α − k1) + β).

(3.4.13)

The above control law is not feasible in terms of implementation due to the first term
which has x1 in the denominator. So, whenever x1 goes near zero the control action
becomes very large. For example, with α = 4, a = 1, k1 = 1 and k2 = 2, the control
action rises to infinity making the system unstable. To evade this problem we have two
options in hand:

1. Switching to an alternative control law [e.g., u = −k(x3 + 1)] that can stabilize
the system to the desired setpoint whenever control action calculated from the
control law [equation (3.4.13)] exceeds a predefined boundary.

2. Choose the parameters a and k1 in such a way so that the term containing
singularity vanishes.
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Of the two options, the first option will always work as long as the alternative control
law works. For the second case we need to set the parameter values a and k1 so that the
terms containing x1 in the denominator vanishes away. For this purpose set

aα − k1 + 1 = 0 ⇒ k1 = 1 − aα. (3.4.14)

Since by assumption k1 should be a positive number, choose

a =
1

nα
, n > 1 (3.4.15)

which gives the final control law to be:

u = ax2
1 − (k2 − 1)x3 − k2(aα − α − k1) + β

⇒u =
1

nα
x2

1
︸ ︷︷ ︸

Nonlinear Part

−(k2 − 1)x3
︸ ︷︷ ︸

Linear Part

−k2

(
2

n
− α − 1

)

+ β

︸ ︷︷ ︸

Constant Part

. (3.4.16)

The final control law defined by equation (3.4.16) has three parts: Nonlinear, Linear and
Constant terms. If we take k2 = 1, the linear term vanishes away. From the simulation
result it is found that presence of this linear term enhances quick stability of the system

to the desired equilibrium points. So, it is better to choose

k2 > 1. (3.4.17)

The constant term however stabilizes the system in a slightly different manner. What
it does is that it reduces the heating rate β to the region where the overall open loop
system is stable. Since we want to keep the system in the region where the open loop
system is unstable and want to diminish the chaos, the constant term in the control law

does not serve our purpose. So, removing the constant part we have the following control
law which is actually perturbation around the nominal heating rate:

u =
1

nα
x2

1 − (k2 − 1)x3, n, k2 > 1. (3.4.18)

Notice that heating rate is proportional to x3. Also x1 denotes fluid velocity inside

the convective loop and hence energy loss due to the fluid flow is proportional to x2
1[

hL = f LV 2

2gD

]

. So, the control law is actually an energy term which makes it physically

understandable. But with this truncated control law the question that immediately
comes into the mind is that “Does this truncated control law still makes the system
stable?”. To answer this question we have to analyze the stability of the closed loop

system with the truncated control law defined by equation (3.4.18). The energy function
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for the closed loop system with the full control law [equation(3.4.16)] is given by:

V3 = V2 +
1

2
[ξ2 − φ1]

2

=
1

2
x2

1 +
1

2
[x2 + ax1]

2 +
1

2
[x3 + aα − α − k1a]2

⇒ V̇3 =
[
(1 + a2)x1 + ax2 ax1 + x2 x3 + aα − α − k1a

]

×





−αx1 + αx2

−x2 − x1x3

x1x2 − x3 − β + u





= −(α + aα + k1a
2)x2

1 − k1x
2
2 − k2x

2
3

︸ ︷︷ ︸

negative

+ (k1k2 + k2α + k1k2a − k2 − β)x3 − 2k1ax1x2
︸ ︷︷ ︸

depends on the sign of x1 and x2

+ (1 − k1 − α + k1a)
︸ ︷︷ ︸

negative

β.

(3.4.19)

Here V̇3 has three terms as shown in equation (3.4.19): a negative quadratic term con-
sisting of x2

1, x2
2 and x2

3, a term containing x1x2 and x3 which depends on the sign
of the variable and a constant term. In the constant term 1 − k1 = 1

n ∈ (0, 1) and

k1a =
(

1 − 1
n ) 1

nα ∈ (0, 1). Usually the parameter α has value 4, which makes the term

(1 − k1 − α + k1a) negative. Nothing can be said about the other two terms containing
x1x2 and x3. But if we take a look at the simulation result it is found that except near
zero x1 and x2 have the same sign making −2k1ax1x2 negative and even in the extreme
conditions when x3 is negative making (k1k2 + k2α + k1k2a − k2 − β)x3 positive but
smaller than the other negative terms. This is due to the fact that though the system
shows chaotic behavior the states are always confined in a boundary. Hence the equilib-
rium points of the system are locally stable with this control action defined by equation
(3.4.18). For α = 4, k2 = 3 and n = 2 [k1 = 1 − 1/n = 0.5, a = 1/nα = 1/8], the
control law becomes:

u =
1

8
x2

1 − 2x3. (3.4.20)

With the same initial condition as before the response of the controlled system is given
in Figure 3.5.

3.5 Model predictive control (MPC)

In model predictive control3, a set of future control action including the current control
action is calculated based on the model of the system. That is why it is sometimes called
the model based predictive control. The model can be linear or non-linear. The main
purpose is to minimize an objective function (which is often a quadratic function of the
states and inputs) subject to the model equation and some physical constraints. For

3For a review of different model predictive control technique see [4, 6, 12, 24, 31, 23, 20, 7, 8, 22, 28, 18].
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Figure 3.5. Controlled system for β = 20: Back Stepping method.

linear time invariant model this problem can be solved to give a control law as a function
of current output and past input. For nonlinear case there is usually no explicit solution
of the minimization problem and one is forced to solve it numerically.

3.5.1 Nonlinear model predictive control (NMPC)

The objective of all control problem is to minimize the difference of output, y with the
desired value4, yref . One such objective function is

min
u,x1,... ,xn

J =

n∑

i=1

γi[xi(t) − xi,ref ]T [xi(t) − xi,ref ]

+ γu[u(t) − uref ]T [u(t) − uref ] + γ∆u∆uT ∆u

(3.5.1)

subject to,
dx

dt
= f(x(t), u, t), (3.5.2)

where γ’s are penalty functions on xi’s and for the convective loop system

dx

dt
=










dx1

dt
dx2

dt
dx3

dt










=





−px1 + px2

−x1x3 − x2

x1x2 − x3 − R + u



 . (3.5.3)

4In convective loop problem, the desired reference points are the equilibrium points.
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Figure 3.6. Approximation of a function by three point collocation on one step

ahead prediction.

This minimization problem (3.5.1) has continuous nonlinear model constraint (3.5.2). To
solve this problem the continuous model constraint needs to be discretized. Any finite
element method can be used for this purpose:

1. using the conventional numerical method to predict future values e.g., Runge-
Kutta 23 method etc.

2. by converting dynamic constraints to algebraic constraints using
• Orthogonal Collocation Method;
• Galerkin method;
• Flatness based technique etc.

Of these methods only orthogonal collocation method will be applied on the convective
loop model to control chaos.

3.5.2 Orthogonal collocation method, prediction horizon 1

In the orthogonal collocation method, any function can be approximated by an interpo-
lating polynomials with nodes located at the roots of a set of orthogonal polynomials
(see [10, 29, 15, 6, 27] for detail), i.e.,

y(x) =

N+2∑

i=1

biPi−1(x), (3.5.4)

where

Pm(x) =

m∑

j=0

cjx
j (3.5.5)

is the m-th polynomial such that

b∫

a

W (x)Pk(x)Pm(x) dx = 0, k = 0, 1, 2, . . . , m − 1.

Here, the polynomial m has m-roots in the interval [a, b] and thus users do not need to
pick the collocation points arbitrarily. This has advantage over the conventional colloca-
tion method where there is a good chance of poor choice of these nodes by inexperienced
users and thus bad approximation of the function. Typically, the integration range is
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taken as 0 to 1 to generalize the problem. Equations (3.5.4) and (3.5.5) can be combined
to give

y(xj) =

N+2∑

i=1

dix
i−1
j . (3.5.6)

Derivatives can also be approximated by orthogonal polynomials and finally we get the
following forms

dy

dx
(xj) =

N+2∑

i=1

di(i − 1)xi−2
j , (3.5.7)

d2y

dx2
(xj) =

N+2∑

i=1

di(i − 1)(i − 2)xi−3
j . (3.5.8)

In matrix notation,

y = Qd,
dy

dx
= Cd,

d2y

dx2
= Dd,

where

Qji = xi−1
j ,

Cji = (i − 1)xi−2
j ,

Dji = (i − 1)(i − 2)xi−3
j .

(3.5.9)

Therefore,

dy

dx
= CQ−1y ≡ Ay, (3.5.10)

d2y

dx2
= DQ−1y ≡ By. (3.5.11)

For our case, the three point collocation method is used. The collocation points and the
A-matrices are given in the Table 3.1 and Table 3.2.

Table 3.1. Polynomial roots and the weighting functions.

N xj Wj

1 0.50000 00000 0.66666 66667

2
0.21332 48654
0.78867 51346

0.50000 00000
0.50000 00000

3
0.11270 16654
0.50000 00000
0.88729 83346

0.27777 77778
0.44444 44444
0.27777 77778
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Table 3.2. Matrices for orthogonal collocation found from equation (3.5.9).

N A

1





−3 4 −1
−1 0 1
1 −4 3





2






−7 8.196 −2.196 1
−2.732 1.732 1.732 −07321
0.7321 −1.732 −1.732 2.732
−1 2.196 −8.196 7






3








−13 14.79 −2.67 1.88 −1
−5.32 3.87 2.07 −1.29 0.68
1.5 −3.23 0 3.23 −1.5

−0.68 1.29 −2.07 −3.87 5.32
1 −1.88 2.67 −14.79 13








The matrices given in Table 3.2 for different collocation points are for interval [0, 1].
But the constraint equation (3.5.2) has the interval [0, ∆t], where ∆t is the sampling
interval. To account for it the following changes are made to convert the dynamic con-
straint into algebraic constraint:

dx

dt′
= f(x, u), t′ ∈ [0, ∆t′],

dx

dt
= Ax, t ∈ [0, 1],

⇒ Ax = ∆t′f(x, u).

(3.5.12)

To take into account the initial condition (i.e., previous control effects) the first row of
A-matrix needs to change so that it becomes,

A =








1 0 0 0 0
−5.32 3.87 2.07 −1.29 0.68
1.5 −3.23 0 3.23 −1.5

−0.68 1.29 −2.07 −3.87 5.32
1 −1.88 2.67 −14.79 13








. (3.5.13)

3.5.3 Orthogonal collocation method, prediction horizon > 1

Similar to the conversion of dynamic constraint to algebraic constraint for prediction
horizon one, when prediction horizon is greater than one, same equation (3.5.12) is used

Ãx = ∆t′F̃(x̃, u), (3.5.14)

where
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Figure 3.7. Polynomial approximation of a function using three point collocation

method with prediction horizon > 1.

Ã =













A0

A

A
. . .

A

A













, (3.5.15)

F̃(x̃, u) =




















xT
init

fT (xT
2∗, u0, t2)

fT (xT
3∗, u0, t3)

fT (xT
4∗, u0, t4)

fT (xT
5∗, u0, t5)

fT (xT
6∗, u1, t6)

fT (xT
7∗, u1, t7)

...
fT (xT

(4N)∗, uN−1, t4N )

fT (xT
(4N+1)∗, uN−1, t4N+1)




















(3.5.16)

and

x̃ =













x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

x4,1 x4,2 x4,3

...
...

...
x4N,1 x4N,2 x4N,3

x4N+1,1 x4N+1,2 x4N+1,3













. (3.5.17)

Here, the first subscript denotes the collocation points in the time interval and the second

means state. Using the formulations stated in the equations (3.5.15) – (3.5.17) (see [12]

for detail) simulation was run for different prediction and control horizons.
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3.5.4 Simulation result for model predictive control

The performance of the controller based on linear or, nonlinear MPC depends on the
sampling time, ∆T , and the penalty of the state and input variables in the objective
function, γi’s. The system is highly nonlinear and shows the peculiarity of chaos and
bifurcation as is described in the Section 2.4. The fast dynamic system with highly
nonlinear behavior makes it difficult to laminarize (or, stabilize) the system using linear
model predictive controller. Surprisingly linear MPC with prediction horizon one gives
better control than with prediction horizon greater than one for the same sampling time.
It is evident from the fact that for this fast chaotic dynamic system a linear model with
smaller prediction horizon (Figure 3.8) can track the system better than that of a linear
model with large prediction horizon (Figure 3.9).

Figure 3.8. Linear MPC; Prediction Horizon = 1, Control Horizon = 1, ∆T = 1,

γ1 = γ2 = γ3 = γu = 1, γ∆u = 0.

In every case however the control action never comes to zero as in the nonlinear model
predictive control. The control action takes the higher limit and stays there which in
fact in most cases drags the system from the chaotic region to nonchaotic one and thus
making the system stable. However nonlinear MPC can stabilize the chaotic system very
well. The control action decays rapidly to zero (see Figures 3.10 – 3.12). The time for
stabilization depends greatly on the penalty functions on the states and input in the
objective function of the optimization problem (3.5.1) as well as the sampling rate5. The
input limit and its change depend on the constraint used in the minimization problem.
Thus in Figure 3.10 due to the input rate constraint limited to 5 control action does not
change instantly as in Figure 3.11 or, Figure 3.12 but it takes more time to stabilize the
system. So, less stabilization time comes at the cost of larger control energy.

5The time interval for implementing control action is also equal to the sampling rate.
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Figure 3.9. Linear MPC; Prediction Horizon = 5, Control Horizon = 2, γ1 =
γ2 = γ3 = 1, γu = γ∆u = 0, ∆T = 1.

Figure 3.10. Nonlinear MPC; Prediction Horizon = 5, Control Horizon = 2,

∆T = 1, γ1 = γ2 = γ3 = γu = 1, γ∆u = 0.
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Figure 3.11. Nonlinear MPC; Prediction Horizon = 5, Control Horizon = 2,

∆T = 0.5, γ1 = γ2 = γ3 = γu = 1, γ∆u = 0.

Figure 3.12. Nonlinear MPC; Prediction Horizon = 5, Control Horizon = 2,

∆T = 0.1, γ1 = γ2 = γ3 = 1, γu = γ∆u = 0.
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4 Conclusion

For this system Nonlinear Model Predictive Control (NMPC) outperforms other con-
troller in terms of stabilizing time and control action. One of its main disadvantage is
high computational time. With the advent of high performance computer however this
is not a major problem anymore. Another disadvantage of NMPC is that tuning of the
parameters in the objective functions has to be tried through a lot of simulations. Also
the model parameters (α and β) need to be correctly identified for the implementation
of the controller. Although computational time for Linear MPC is much smaller than
Nonlinear MPC, it cannot regulate the system to its desired setpoint unless the sampling
time is very small. Among others, linear state feedback controller with setpoint tracking
[equation (3.2.1)] and nonlinear controller based on Lyapunov Stability Criterion [equa-
tion (3.3.2)] also give better result than others in terms of stabilizing time and movement
rate of controller. Of these two, the linear controller is less sensitive to the initial condi-
tion i.e., the time when controller is implemented and gives less fluctuation in the control
action when measurement noise is present. The nonlinear controller stabilizes the system
very quickly but gives a lot of spikes in the control action if noise is present. In this case
we assumed that the states are measurable and available for calculation. If any state is
not measurable, then a nonlinear observer can be used to estimate the unknown states
and calculate the control law. In this case, the performance of the controller will depend
on the performance of the observer as well.
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