
Nonlinear Dynamics and Systems Theory, 3(2) (2003) 151–161

Set Differential Equations and Monotone Flows

V. Lakshmikantham1 and A.S. Vatsala2

1Department of Mathematical Sciences, Florida Institute of Technology,

Melbourne, FL, 32901, USA
2Department of Mathematics, University of Louisiana at Lafayette,

Lafayette, LA, 70504-1010, USA

Received: November 7, 2002; Revised: June 30, 2003

Abstract: Monotone iterative technique is extended to set differential equa-
tions. The nonlinear function involved is allowed to be difference of two mono-
tone functions, which takes care of several results known and new.

Keywords: Set differential equations; monotone flows.

Mathematics Subject Classification (2000): 34A60, 49K24, 93B03, 94D05.

1 Preliminaries

Let K(Rn)(Kc(R
n)) denote the collection of all nonempty, compact (compact, convex)

subsets of Rn. Define the Hausdorff metric

D[A, B] = max
[

sup
x∈B

d(x, A), sup
y∈A

d(y, B)
]

, (1.1)

where d[x, A] = inf[d(x, y) : y ∈ A], A, B are bounded sets in Rn. We note that K(Rn),
(Kc(R

n)), with the metric is a complete metric space.
It is known that if the space Kc(R

n) is equipped with the natural algebraic operations
of addition and nonnegative scalar multiplication, then Kc(R

n) becomes a semilinear
metric space which can be embedded as a complete cone into a corresponding Banach
space [1, 9].

The Hausdorff metric (1.1) satisfies the following properties.

D[A + C, B + C] = D[A, B] and D[A, B] = D[B, A], (1.2)

D[λA, λB] = λD[A, B], (1.3)

D[A, B] ≤ D[A, C] + D[C, B], (1.4)

for all A, B, C ∈ Kc(R
n) and λ ∈ R+.
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Let A, B ∈ Kc(R
n). The set C ∈ Kc(R

n) satisfying A = B + C is known as the
geometric difference of the sets A and B and is denoted by the symbol A − B. We say
that the mapping F : I → Kc(R

n) has a Hukuhara derivative DHF (t0) at a point t0 ∈ I,
if there exists an element DHF (t0) ∈ Kc(R

n) such that the limits

lim
h→0+

F (t0 + h) − F (t0)

h
, and lim

h→0+

F (t0) − F (t0 − h)

h

exist in the topology of Kc(R
n) and are equal to DHF (t0). Here I is any interval in R.

By embedding Kc(R
n) as a complete cone in a corresponding Banach space and taking

into account the result on differentiation of Bochner integral, we find that if

F (t) = X0 +

t
∫

0

Φ(s) ds, X0 ∈ Kc(R
n), (1.5)

where Φ: I → Kc(R
n) is integrable in the sense of Bochner, then DHF (t) exists and the

equality
DHF (t) = Φ(t), a.e on I, (1.6)

holds. Also, the Hukuhara integral

∫

I

F (s) ds =

[
∫

I

f(s) ds : f is a continuous selector of F

]

,

for any compact set I ⊂ R+. With these preliminaries, we consider the set differential
equation

DHU = F (t, U), U(t0) = U0 ∈ Kc(R
n), t0 ≥ 0, (1.7)

where F ∈ C[R+ × Kc(R
n), Kc(R

n)].
The mapping U ∈ C1[J, Kc(R

n)], J = [t0, t0 + a] is said to be a solution of (1.7) on J

if it satisfies (1.7) on J . Since U(t) is continuously differentiable, we have

U(t) = U0 +

t
∫

t0

DHU(s) ds, t ∈ J. (1.8)

Thus we associate with the initial value problem (IVP) (1.7) the following

U(t) = U0 +

t
∫

t0

F (s, U(s)) ds, t ∈ J, (1.9)

where the integral is the Hukuhara integral. Observe also that U(t) is a solution of
(1.7) iff it satisfies (1.9) on J . The investigation of set differential equation (1.7) as an
independent subject has some advantages. For example, when U(t) is a singlevalued
mapping, it is easy to see that Hukuhara derivative and the integral reduce to the ordi-
nary vector derivative and the integral, and therefore, the results obtained in this new
framework of (1.7) become the corresponding results of ordinary differential systems.
Also, we have only semilinear complete metric space to work with, in the present setup,
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compared to the complete normed linear space one employs in the study of ordinary
differential systems. Furthermore, set differential equations, that are generated by mul-
tivalued differential inclusions, when the multivalued functions involved do not possess
convex values, can be used as a tool for studying multivalued differential inclusions. See
Tolstonogov [9]. Moreover one can utilize set differential equations of the type (1.7) to
investigate profitably fuzzy differential equations, since the original formulation of which
suffers from grave disadvantages and does not reflect the rich behavior of corresponding
differential equations without fuzziness [2, 3, 6]. This is due to the fact that the diameter
of any solution of fuzzy differential equation increases as time increases because of the
necessity of the fuzzification of the derivative involved.

It is well known that the ideas embedded in the interesting and fruitful method of
monotone iterative technique have proved to be of immense value and have played a
crucial role in unifying a wide variety of nonlinear problems [4]. In this paper, we shall
develop this technique to set differential equations (1.7) in a unified way following the
work in [5]. In [7], we initiated the study of set differential equations of the type (1.7) as
an independent subject and in [8] an interconnection between fuzzy differential equations
and set differential equation is investigated.

2 Comparison Results

Let us introduce a partial ordering in the metric space (Kc(R
n), D) which is needed in

order to prove a basic comparison result that is required for our discussion.
We denote by K(K0) the subfamily of Kc(R

n) consisting of sets X ∈ Kc(R
n) such

that any x ∈ X is a nonnegative (positive) vector of n-components satisfying xi ≥ 0
(xi > 0) for i = 1, 2, ..., n. Thus K is a cone in Kc(R

n) and K0 is the nonempty interior
of K. We can therefore induce a partial ordering in Kc(R

n). See [1] for this approach.

Definition 2.1 For any X and Y ∈ Kc(R
n), if there exists a Z ∈ Kc(R

n) such that
Z ∈ K(K0) and

X = Y + Z,

then we write X ≥ Y (X > Y ) respectively. Similarly, one can define X ≤ Y (X < Y ).

We can now prove the following basic result on set differential inequalities.

Theorem 2.1 Assume that

(i) V, W ∈ C1[R+, Kc(R
n)], F ∈ C[R+ × Kc(R

n), Kc(R
n)], F (t, X) is monotone

nondecreasing in X for each t ∈ R+ and

DHV ≤ F (t, V ), DHW ≥ F (t, W ), t ∈ R+;

(ii) for any X, Y ∈ Kc(R
n) such that X ≥ Y , t ∈ R+,

F (t, X) ≤ F (t, Y ) + L(X − Y )

for some L > 0.

Then V (t0) ≤ W (t0) implies

V (t) ≤ W (t), t ≥ t0. (2.1)
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Proof Let ǫ = (ǫ1, ǫ2, . . . , ǫn) > 0 and define W̃ = W + ǫe2Lt. Since V (t0) ≤ W (t0) <

W̃ (t0), it is enough to prove that

V (t) < W̃ (t), t ≥ t0, (2.2)

to prove the conclusion (2.1) in view of the fact ǫ > 0 is arbitrary.

Let t1 > 0 be the supremum of all positive numbers δ > 0 such that V (t0) < W̃ (t0)

implies V (t) < W̃ (t) on [t0, δ]. It is clear that t1 > t0 and V (t1) ≤ W̃ (t1). From this
follows, using the nondecreasing nature of F and condition (ii), that

DHV (t1) ≤ F (t1, V (t1)) ≤ F (t1, W̃ (t1)) ≤ F (t1, W (t1)) + L(W̃ − W )

≤ DHW (t1) + L ∈ e2Lt1 < DHW (t1) + 2L ∈ e2Lt1 = DHW̃ (t1).

Consequently, it follows that there exists an η > 0 satisfying

V (t) − W̃ (t) > V (t1) − W̃ (t1), t1 − η < t < t1.

This implies that t1 > t0 cannot be the supremum in view of the continuity of the
functions involved and therefore the relation (2.2) is true, which, in turn, leads to the
conclusion (2.1). The proof is complete.

The following corollary is useful.

Corollary 2.1 Let V, W ∈ C1[R+, Kc(R
n)], σ ∈ C[R+, Kc(R

n)]. Suppose that

DHV ≤ σ, DHW ≥ σ for t ≥ t0.

Then V (t) ≤ W (t), t ≥ t0, provided V (t0) ≤ W (t0).

3 Monotone Flows

In this section, we shall consider the following set differential equation

DHU = F (t, U) + G(t, U), U(0) = U0 ∈ Kc(R
n), (3.1)

where F, G ∈ C[J × Kc(R
n), Kc(R

n)] and J = [0, T ]. We need the following definition
which gives various possible notions of lower and upper solutions relative to (3.1).

Definition 3.1 Let V, W ∈ C1[J, Kc(R
n)]. Then V , W are said to be

(a) natural lower and upper solutions of (3.1) if

DHV ≤ F (t, V ) + G(t, V ), DHW ≥ F (t, W ) + G(t, W ), t ∈ J ; (3.2)

(b) coupled lower and upper solutions of type I of (3.1) if

DHV ≤ F (t, V ) + G(t, W ), DHW ≥ F (t, W ) + G(t, V ), t ∈ J ; (3.3)

(c) coupled lower and upper solutions of type II of (3.1) if

DHV ≤ F (t, W ) + G(t, V ), DHW ≥ F (t, V ) + G(t, W ), t ∈ J ; (3.4)

(d) coupled lower and upper solutions of type III of (3.1) if

DHV ≤ F (t, W ) + G(t, W ), DHW ≥ F (t, V ) + G(t, V ), t ∈ J. (3.5)

We observe that whenever we have V (t) ≤ W (t), t ∈ J , if F (t, X) is nondecreasing in
X for each t ∈ J and G(t, Y ) is nonincreasing in Y for each t ∈ J , the lower and upper
solutions defined by (3.2) and (3.5) reduce to (3.4) and consequently, it is sufficient to
investigate the cases (3.3) and (3.4).

We are now in a position to prove the following result.
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Theorem 3.1 Assume that

(A1) V, W ∈ C1[J, Kc(R
n)] are coupled lower and upper solutions of type I relative to

(3.1) with V (t) ≤ W (t), t ∈ J ;
(A2) F, G ∈ C[J × Kc(R

n), Kc(R
n)], F (t, X) is nondecreasing in X and G(t, Y ) is

nonincreasing in Y , for each t ∈ J .

Then there exist monotone sequences {Vn(t)}, {Wn(t)} ∈ Kc(R
n) such that Vn(t) → ρ(t),

Wn(t) → R(t) in Kc(R
n) and (ρ, R) are the coupled minimal and maximal solutions of

(3.1) respectively, that is, they satisfy

DHρ = F (t, ρ) + G(t, R), ρ(0) = U0,

DHR = F (t, R) + G(t, ρ), R(0) = U0, on J.

Proof For each n ≥ 0, define the unique solutions Vn+1(t), Wn+1(t) by

DHVn+1 = F (t, Vn) + G(t, Wn), Vn+1(0) = U0, (3.6)

DHWn+1 = F (t, Wn) + G(t, Vn), Wn+1(0) = U0, t ∈ J, (3.7)

where V (0) ≤ U0 ≤ W (0). We set V0 = V , W0 = W . Our aim is to prove

V0 ≤ V1 ≤ V2 ≤ · · · ≤ Vn ≤ Wn ≤ · · · ≤ W2 ≤ W1 ≤ W0, t ∈ J. (3.8)

Since V0 is the coupled lower solutions of type I of (3.1), we have using the fact
V0 ≤ W0 and the nondecreasing character of F ,

DHV0 ≤ F (t, V0) + G(t, W0).

Also from (3.6), we get for n = 0,

DHV1 = F (t, V0) + G(t, W0).

Consequently, we arrive at V0 ≤ V1 on J . A similar argument shows that W1 ≤ W0 on
J . We next prove V1 ≤ W1 on J . For this purpose consider

DHV1 = F (t, V0) + G(t, W0) and

DHW1 = F (t, W0) + G(t, V0), V1(0) = W1(0) = U0.

Then, the monotone nature of F and G respectively yield

DHV1 ≤ F (t, W0) + G(t, W0), DHW1 ≥ F (t, W0) + G(t, W0), t ∈ J.

We therefore have, by Corollary 2.1, V1 ≤ W1 on J . As a result, we obtain

V0 ≤ V1 ≤ W1 ≤ W0 on J. (3.9)

Assume that for some j > 1, we have

Vj−1 ≤ Vj ≤ Wj ≤ Wj−1 on J. (3.10)
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Then we show that
Vj ≤ Vj+1 ≤ Wj+1 ≤ Wj on J. (3.11)

To do this, consider

DHVj = F (t, Vj−1) + G(t, Wj−1), Vj(0) = U0,

DHVj+1 = F (t, Vj) + G(t, Wj) ≥ F (t, Vj−1) + G(t, Wj−1), t ∈ J.

Here we have employed (3.10) and the monotone nature of F and G. Corollary 2.1 now
gives Vj ≤ Vj+1 on J . Similarly, we can get Wj+1 ≤ Wj on J . Next we show that
Vj+1 ≤ Wj+1, t ∈ J . We have from (3.6) and (3.7)

DHVj+1 = F (t, Vj) + G(t, Wj), Vj+1(0) = U0,

DHWj+1 = F (t, Wj) + G(t, Vj), Wj+1(0) = U0, t ∈ J.

Using (3.10) and the monotone character of F and G, we arrive at

DHVj+1 ≤ F (t, Wj) + G(t, Wj),

DHWj+1 ≥ F (t, Wj) + G(t, Wj), t ∈ J,

and therefore Corollary 2.1 implies that Vj+1 ≤ Wj+1, t ∈ J . Hence (3.11) follows and
consequently, by induction (3.8) is valid for all n. Clearly the sequences {Vn}, {Wn} are
uniformly bounded on J . To show that they are equicontinuous, consider for any s < t,
where t, s ∈ J ,

D[Vn(t), Vn(s)] = D

[

U0 +

t
∫

0

{F (ξ, Vn−1(ξ)) + G(ξ, Wn−1(ξ))} dξ,

U0 +

s
∫

0

{F (ξ, Vn−1(ξ)) + G(ξ, Wn−1(ξ))} dξ

]

= D

[

t
∫

0

{F (ξ, Vn−1(ξ)) + G(ξ, Wn−1(ξ)} dξ,

s
∫

0

{F (ξ, Vn−1(ξ) + G(ξ, Wn−1(ξ))} dξ

]

≤

t
∫

s

D[F (ξ, Vn−1(ξ)) + G(ξ, Wn−1(ξ)), θ] dξ ≤ M |t − s|.

Here we have utilized the properties of integral and the metric D, together with the
fact F + G are bounded since {Vn}, {Wn} are uniformly bounded. Hence {Vn(t)} is
equicontinuous on J . The corresponding Ascoli’s Theorem [9] now gives a subsequence
{Vnk

(t)} which converges uniformly to ρ(t) ∈ Kc(R
n), t ∈ J , and since {Vn(t)} is mono-

tone nondecreasing sequence, the entire sequence {Vn(t)} converges uniformly to ρ(t) on
J . Similar arguments apply to the sequence {Wn(t)} and Wn(t) → R(t) uniformly on J .
It therefore follows, using the integral representations of (3.6) and (3.7) that ρ(t), R(t)
satisfy

[

DHρ(t) = F (t, ρ(t)) + G(t, R(t)), ρ(0) = U0,

DHR(t) = F (t, R(t)) + G(t, ρ(t)), R(0) = U0, t ∈ J,
(3.12)
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and that
V0 ≤ ρ ≤ R ≤ W0, t ∈ J. (3.13)

Next we claim that (ρ, R) are coupled minimal and maximal solution of (3.1), that is,
if U(t) is any solution of (3.1) such that

V0 ≤ U ≤ W0, t ∈ J, (3.14)

then
V0 ≤ ρ ≤ U ≤ R ≤ V0, t ∈ J. (3.15)

Suppose that for some n,
Vn ≤ U ≤ Wn on J. (3.16)

Then we have using monotone nature of F , G and (3.16),

DHU = F (t, U) + G(t, U) ≥ F (t, Vn) + G(t, Wn), U(0) = U0,

DHVn+1 = F (t, Vn) + G(t, Wn), Vn+1(0) = U0.

Corollary 2.1 yields Vn+1 ≤ U on J . Similarly Wn+1 ≥ U on J . Hence by induction
(3.16) is true for all n ≥ 1. Now taking limit as n → ∞, we get (3.15) proving the claim.
The proof is therefore complete.

Corollary 3.1 If, in addition to the assumptions of Theorem 3.1, F and G satisfy
whenever X ≥ Y , X, Y ∈ Kc(R

n),

F (t, X) ≤ F (t, Y ) + N1(X − Y )

and
G(t, X) + N2(X − Y ) ≥ G(t, Y ),

where N1, N2 > 0. Then ρ = R = U is the unique solution of (3.1).

Proof Since ρ ≤ R on J , it is enough to prove that R ≤ ρ on J . We know that

DHρ = F (t, ρ) + G(t, R), ρ(0) = U0,

DHR = F (t, R) + G(t, ρ), R(0) = U0, t ∈ J.

Using the assumptions, we then get

DH(R − ρ) ≤ (N1 + N2)(R − ρ),

which leads to by Theorem 2.1, R ≤ ρ on J , proving the claimed uniqueness of ρ = R = U ,
completing the proof.

Several remarks are now in order.

Remark 3.1

(1) In Theorem 3.1, if G(t, Y ) ≡ 0, then we get a result when F is nondecreasing.

(2) In (1) above, suppose that F is not nondecreasing but F̃ (t, X) = F (t, X) + MX

is nondecreasing in X for each t ∈ J , for some M > 0, then one can consider
the IVP

DHU + MU = F̃ (t, U), U(0) = U0,
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where F̃ (t, X) = F (t, X) + MX to obtain the same conclusion as in (1). To see

this, use the transformation Ũ = UeMt so that

DH Ũ = [DHU + MU ]eMt = F̃ (t, Ũe−Mt)eMt ≡ F0(t, Ũ),

Ũ(0) = U0.
(3.17)

Clearly (3.17) has Ṽ = V eMt as a lower solution and W̃ = WeMt as an upper
solution and therefore we have the same conclusion as in (1).

(3) If f(t, X) ≡ 0 in Theorem 3.1, then we obtain the result for G nonincreasing.

(4) If in (3) above, G is not monotone but G̃(t, Y ) = G(t, Y ) − MY , M > 0 is
nonincreasing in Y for each t ∈ J , then one can consider the IVP

DHU − MU = G̃(t, U), U(0) = U0.

The transformation Ũ = Ue−Mt gives the IVP

DH Ũ = G0(t, Ũ), Ũ(0) = U0, (3.18)

where G0(t, Ũ) = G̃(t, ŨeMt)e−Mt. In this case, we need to assume that (3.18)
has coupled lower and upper solutions of (3.18) to get the same conclusion as
in (3).

(5) Suppose that in Theorem 3.1, G(t, Y ) is nonincreasing in Y and F (t, X) is not

monotone but F̃ (t, X) = F (t, X)+ MX , M > 0 is nondecreasing in X . Then we
consider the IVP

DHU + MU = F̃ (t, U) + G(t, U), U(0) = U0. (3.19)

The transformation as in (2) yields the conclusion by Theorem 3.1 in this case as
well.

(6) If F in Theorem 3.1 is nondecreasing and G is not monotone but G̃0(t, Y ) =
G(t, Y ) − MY , M > 0 is nonincreasing in Y for each t ∈ J , then we consider
the IVP

DHU − MU = F (t, U) + G̃(t, U), U(0) = U0,

and employ the same transformation as in (4) to obtain

DH Ũ = F0(t, Ũ) + G0(t, Ũ), Ũ(0) = U0, (3.20)

where F0(t, Ũ) = F (t, ŨeMt)e−Mt and G0(t, Ũ) = G̃(t, ŨeMt)e−Mt. If we as-
sume that (3.20) has coupled lower and upper solutions of type I then we get by
Theorem 3.1 the same result in this case also.

(7) If both F and G are not monotone in Theorem 3.1 but F̃ (t, X) = F (t, X)+MX ,

M > 0, G̃(t, Y ) = G(t, Y ) − NY , N > 0 are nondecreasing and nonincreasing
respectively, then we consider the IVP

DHU + (M − N)U = F̃ (t, U) + G̃(t, U), U(0) = U0,

one can utilize a similar transformation to obtain

DH Ũ = F0(t, Ũ) + G0(t, Ũ), Ũ(0) = U0, (3.20∗)

where F0, G0 are defined suitably as before. Assuming that (3.20∗) has coupled
lower and upper solutions of type I, one gets the same conclusion by Theorem 3.1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(2) (2003) 151–161 159

Let us next consider utilizing the coupled lower and upper solutions of type II. In
this case, we don’t need to assume the existence of coupled lower and upper solutions of
type II of (3.1) since one can construct them under the given assumptions. However, we
have to pay a price to get monotone flows, by assuming certain conditions on the second
iterates. Also, we get alternative sequences which are monotone but complicated.

Theorem 3.2 Assume that (A2) of Theorem 3.1 holds. Then for any solution U(t)
of (3.1) with V0 ≤ U ≤ W0 on J , we have the iterates {Vn}, {Wn} satisfying

V0 ≤ V2 ≤ · · · ≤ V2n ≤ U ≤ V2n+1 ≤ · · · ≤ V3 ≤ V1 on J, (3.21)

W1 ≤ W3 ≤ · · · ≤ W2n+1 ≤ U ≤ W2n ≤ · · · ≤ W2 ≤ W0 on J, (3.22)

Provided V0 ≤ V2, W2 ≤ W0 on J , where the iterative schemes are given by

DHVn+1 = F (t, Wn) + G(t, Vn), Vn+1(0) = U0, (3.23)

DHWn+1 = F (t, Vn) + G(t, Wn), Wn+1(0) = U0, on J. (3.24)

Moreover, the monotone sequences {V2n}, {V2n+1}, {W2n}, {W2n+1} ∈ Kc(R
n) converge

to ρ, R, ρ∗, R∗ in Kc(R
n) respectively and verify

DHR = F (t, R∗) + G(t, ρ), R(0) = U0,

DHρ = F (t, ρ∗) + G(t, R), ρ(0) = U0,

DHR∗ = F (t, R) + G(t, ρ∗), R∗(0) = U0,

DHρ∗ = F (t, ρ) + G(t, R∗), ρ∗(0) = U0, on J.

Proof We shall first show that coupled lower and upper solutions V0, W0 of type II
of (3.1) exist on J satisfying V0 ≤ W0 on J . For this purpose, consider the IVP

DHZ = F (t, θ) + G(t, θ), Z(0) = U0. (3.25)

Let Z(t) be the unique solution of (3.25) which exists on J . Define V0, W0 by

R0 + V0 = Z and W0 = Z + R0,

where the positive vector R0 = (R01, R02, . . . , R0n) is chosen sufficiently large so that we
have V0 ≤ θ ≤ W0 on J . Then using the monotone character of F and G, we arrive at

DHV0 = DHZ = F (t, θ) + G(t, θ) ≤ F (t, W0) + G(t, V0),

V0(0) = Z(0) − R0 ≤ Z(0) = U0.

Similarly, DHW0 ≥ F (t, V0)+G(t, W0), W0(0) ≥ U0. Thus V0, W0 are the coupled lower
and upper solutions of type II of (3.1).

Let U(t) be any solution of (3.1) such that V0 ≤ U ≤ W0 on J . We shall show that

V0 ≤ V2 ≤ U ≤ V3 ≤ V1,

W1 ≤ W3 ≤ U ≤ W2 ≤ W0 on J.
(3.26)
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Since U is a solution of (3.1), we have using the monotone character of F and G and the
fact V0 ≤ U ≤ W0,

DHU = F (t, U) + G(t, U) ≤ F (t, W0) + G(t, V0), U(0) = U0,

and V1 satisfies

DHV1 = F (t, W0) + G(t, V0), V1(0) = U0, on J. (3.27)

Hence Corollary 2.1 yields U ≤ V1 on J . Similarly, W1 ≤ U on J . Next we show that
V2 ≤ U on J . Note that

DHV2 = F (t, W1) + G(t, V1), V2(0) = U0,

and because of monotonicity of F and G, we get

DHU = F (t, U) + G(t, U) ≥ F (t, W1) + G(t, V1), U(0) = U0 on J.

Corollary 2.1 therefore gives V2 ≤ U on J . A similar argument shows that U ≤ W2 on
J . Next we find utilizing the assumption V0 ≤ V2, W2 ≤ W0 on J and monotonicity of
F and G,

DHV3 = F (t, W2) + G(t, V2) ≤ F (t, W0) + G(t, V0), V3(0) = U0 on J.

This together with (3.27) shows by Corollary 2.1 that V3 ≤ V1, on J . In the same way
one can show that W1 ≤ W3 on J . Also, employing a similar reasoning, one can prove
that U ≤ V3 and W3 ≤ U on J , proving the relations (3.26).

Now assuming for some n > 2, the inequalities

V2n−4 ≤ V2n−2 ≤ U ≤ V2n−1 ≤ V2n−3,

W2n−3 ≤ W2n−1 ≤ U ≤ W2n−2 ≤ W2n−4, on J,

to hold, it can be shown, employing similar arguments that

V2n−2 ≤ V2n ≤ U ≤ V2n+1 ≤ V2n−1,

W2n−1 ≤ W2n+1 ≤ U ≤ W2n ≤ W2n−2, on J.

Thus by induction (3.21) and (3.22) are valid for all n = 0, 1, 2, . . . .
Since Vn, Wn ∈ Kc(R

n) for all n, employing a similar reasoning as in Theorem 3.1,
we conclude that the limits

lim
n→∞

V2n = ρ, lim
n→∞

V2n+1 = R,

lim
n→∞

Wn+1 = ρ∗, lim
n→∞

W2n = R∗,

exist, in Kc(R
n), uniformly on J . It therefore follows using the integral representations

(3.23) and (3.24) suitably that ρ, ρ∗, R, R∗ satisfy corresponding set differential equations
given in Theorem 3.2 on J . Also, from (3.21)and (3.22), we arrive at

ρ ≤ U ≤ R, ρ∗ ≤ U ≤ R∗ on J.

The proof is therefore complete.
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Corollary 3.2 Under the assumptions of Theorem 3.2 if F and G satisfy the as-
sumptions of Corollary 3.1, then ρ = ρ∗ = R = R∗ = U is the unique solution of (3.1).

Proof Let q1 +ρ = R, q2 +ρ∗ = R∗ so that q1, q2 ≥ 0 on J , since ρ ≤ R and ρ∗ ≤ R∗

on J . It then follows using the assumptions, that

DH(q1 + q2) ≤ (N1 + N2)(q1 + q2), q1(0) + q2(0) = 0 on J.

This implies that q1 + q2 ≤ 0 on J and consequently, we get

U = ρ = R and ρ∗ = R∗ = U on J,

and this proves the claim of Corollary 3.2.

Theorem 3.2 also has several remarks which correspond to the remarks of Theorem 3.1.
To avoid monotony we do not list them again. For similar results which unify monotone
iterative technique refer to [5].
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