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1 Introduction

The purpose of this paper is to keep on studying memory effects in electromagnetic sys-
tems, which occur through a rate-type equation for the electric conduction. Its presence
in the system of equations has been recently considered in another work [5], where we
have supposed that the boundary of the solid is a perfect conductor.

In the present work a homogeneous, isotropic and conducting solid, characterized also
by linear constitutive equations for the electric displacement and the magnetic induction,
is considered on supposing that a general dissipative boundary condition holds on its
boundary.

After introducing the field equations, the thermodynamic restrictions on the constitu-
tive equations and the free energy in Section 2, we formulate the initial-boundary value
problem. Thus, we show that a domain of dependence inequality exists for these bodies
and we derive a useful energy estimate.

†Work performed under the auspices of C.N.R. and M.U.R.S.T..
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In Section 4 we prove the existence and uniqueness theorems for the weak and the
strong solution of this evolutive problem; then, we study the asymptotic stability, which
holds under suitable hypotheses on the values of the material constants of the medium.

2 Basic Equations and Thermodynamic Restrictions

Let B be an electromagnetic solid, which occupies at time t a bounded and regular domain
Ω ⊂ R3 with a smooth boundary ∂Ω.

The electromagnetic phenomena of B are described by Maxwell’s equations

Ḋ(x, t) = ∇× H(x, t) − J(x, t) − Jf (x, t), Ḃ(x, t) = −∇× E(x, t), (2.1)

∇ ·D(x, t) = 0, ∇ ·B(x, t) = 0, (2.2)

where E and H denote the electric and magnetic fields, J is the electric current density,
D is the electric displacement, B is the magnetic induction; moreover, Jf is a forced
current density which must be considered as a given function of the position x ∈ Ω and
t ∈ R+. In (2.2)1 we have supposed that the free charge density is zero.

Besides Maxwell’s equations we must consider the thermodynamic principles [1 – 2].
The Dissipation Principle states that for any cyclic process the following inequality

∮

[Ḋ(x, t) ·E(x, t) + Ḃ(x, t) · H(x, t) + J(x, t) ·E(x, t)] dt ≥ 0 (2.3)

holds, the equality sign referring to reversible processes.
The Second Law for smooth isothermal processes yields

ψ̇(x, t) ≤ Ḋ(x, t) · E(x, t) + Ḃ(x, t) · H(x, t) + E(x, t) · J(x, t), (2.4)

where ψ is the free energy.
Let us assume that B is a homogeneous and isotropic conductor, whose constitutive

equations are linear and given by

D(x, t) = εE(x, t), B(x, t) = µH(x, t), (2.5)

where both the dielectric constant ε and the permeability µ are positive constants. For
the electric conduction we suppose that the following rate-type equation

αJ̇(x, t) + J(x, t) = σE(x, t) (2.6)

holds, where α is a positive parameter and σ denotes the conductivity, which is assumed
constant too.

Using (2.5) and the relation derived from (2.6) for E, inequality (2.4) becomes [5]

∮

d

dt

1

2

(

εE2 + µH2 +
α

σ
J2

)

dt+

∮

1

σ
J2 dt ≥ 0, (2.7)

which, taking into account that the integration is made on cycles, yields

σ > 0. (2.8)
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Finally, we can introduce the free energy

ψ(x, t) =
1

2

[

εE2(x, t) + µH2(x, t) +
α

σ
J2(x, t)

]

, (2.9)

which satisfies (2.4) on account of (2.6).

3 Formulation of the Problem and Domain of Dependence

Maxwell’s equations (2.1), taking account of the constitutive equations (2.5), and (2.6)
take the form

∇× H(x, t) − εĖ(x, t) − J(x, t) = f(x, t), (3.1)

∇× E(x, t) + µḢ(x, t) = g(x, t), (3.2)

αJ̇(x, t) + J(x, t) − σE(x, t) = l(x, t), (3.3)

on introducing the source terms g and l, which are two known functions of x and t as
well as f ≡ Jf ; the other two equations (2.2) reduce to

∇ ·E(x, t) = 0, ∇ · H(x, t) = 0, (3.4)

in Ω ×R+.
The initial conditions are

E(x, 0) = E0(x), H(x, 0) = H0(x), J(x, 0) = J0(x) ∀x ∈ Ω, (3.5)

while on ∂Ω we consider a linear dissipative boundary condition, characterized by the
following definition [8].

We first denote by Σ the set of the states, to which E and H belong together J, and
introduce the function space

I(Ω) =

{

E ∈ L2(Ω):

∫

Ω

E(x, t) · ∇φ(x, t) dx = 0 ∀φ ∈ C∞
0 (Ω, R)

}

,

which allows us to consider equations (3.4) automatically satisfied if both E and H belong
to it.

Definition 3.1 A linear and dissipative boundary condition Σ′ ⊂ Σ is a linear closed
subset of I(Ω) × I(Ω) such that C1

0 (Ω) × C1
0 (Ω) ⊂ Σ′ and

∫

∂Ω

E(x, t) × H(x, t) · n(x) da ≥ 0 ∀ (E,H) ∈ Σ′ (3.6)

with the static condition
∫

∂Ω

|H · n|2 da = 0,

where n is the unit outward normal to ∂Ω.

We shall denote by P the problem (3.1) – (3.6).
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Lemma 3.1 The electromagnetic fields E and H satisfy this inequality

χψ(x, t) + E(x, t) × H(x, t) · u(x) ≥ 0, χ = 2(εµ)−1/2, (3.7)

for any unit vector u(x).

Proof From the definition of the free energy, given by (2.9), it follows that

|E(x, t)| ≤ [2ψ(x, t)/ε]1/2, |H(x, t)| ≤ [2ψ(x, t)/µ]1/2 (3.8)

and hence we obtain (3.7) easily.

Let

E(A, t) =

∫

A

ψ(x, t) dx (3.9)

be the total energy for every domain A ⊂ Ω, where ψ is given by (2.9), we have the
following theorem.

Theorem 3.1 If the triplet (E,H,J) is a solution of the problem P, for every (x0, T )
∈ Ω ×R+ the total energy satisfies

E(B(x0, ρ), T ) ≤ E(B(x0, ρ+ χT ), 0) +

T
∫

0

∫

Ω∩B(x0,ρ+χ(T−t))

[l(x, t) · J(x, t)/σ

+ g(x, t) ·H(x, t) − f(x, t) ·E(x, t)] dx dt,

(3.10)

where χ is given by (3.7)2 and B(x0, ρ) = {x ∈ Ω: |x− x0| ≤ ρ}.
Proof We introduce the weighted energy

Eφ(Ω, t) =

∫

Ω

ψ(x, t)φ(x, t) dx, (3.11)

where ψ is expressed by (2.9) in terms of the solution (E,H,J) of the problem P and

φ(x, t) ∈ C∞
0 (Ω, R+), and we consider its derivative with respect to time, where Ė, Ḣ and

J̇ can be eliminated by means of (3.1) – (3.3). Using the identity ∇×E ·H−∇×H ·E =
∇ · (E × H), we get

Ėφ(Ω, t) =

∫

Ω

[l(x, t) · J(x, t)/σ + g(x, t) · H(x, t) − f(x, t) · E(x, t)

− J2(x, t)/σ]φ(x, t) dx +

∫

Ω

[E(x, t) × H(x, t) · ∇φ(x, t) + ψ(x, t)φ̇(x, t)]dx

−
∫

∂Ω

E(x, t) × H(x, t) · n(x)φ(x, t)da.

(3.12)

Following [4], we put φ(x, t) = φδ(x, t) = φδ(y) ∈ C∞
0 (R), a monotonic decreasing

function of y = |x − x0| − ρ − χ(T − t), with ρ > 0, (x0, T ) ∈ Ω × R+, χ given by
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(3.7)2, such that φδ(y) = 1 for all y ≤ −δ, φδ(y) = 0 for all y > δ, φ
′

δ(y) ≤ 0,

φ̇δ(x, t) = χφ
′

δ(y), ∇φδ(x, t) = φ
′

δ(y)∇|x − x0|, for any (x, t) ∈ Ω × (0, T ). Thus, from
(3.12), using (3.7) and the properties of φδ, it follows an inequality, which, integrated
over (0, T ), yields

Eφδ
(Ω, T ) − Eφδ

(Ω, 0) ≤
T

∫

0

∫

Ω

[l(x, t) · J(x, t)/σ + g(x, t) · H(x, t)

− f(x, t) · E(x, t)]φδ(x, t) dx dt,

(3.13)

whose limit as δ tends to zero gives (3.10), since φδ tends to the characteristic function
of the subset B(x0, ρ+ χ(T − t)).

From this theorem a useful estimate of the energy can be derived as follows.

Corollary 3.1 For any solution (E,H,J) of the problem P we have this inequality

E(Ω, t) ≤ eT

{

E(Ω, 0) +M

T
∫

0

∫

Ω

[f2(x, t) + g2(x, t) + l2(x, t)] dx dt

}

, (3.14)

where M = max{2/ε, 2/µ, 2/(ασ)} and t ∈ (0, T ).

Proof If ρ is large enough, (3.10) yields

E(Ω, t) − E(Ω, 0) ≤
t

∫

0

∫

Ω

[l(x, τ) · J(x, τ)/σ + g(x, τ) ·H(x, τ) − f(x, τ) ·E(x, τ)] dx dτ,

(3.15)
where t ∈ (0, T ).

Applications of Schwarz’s inequality allow us to increase the integral as follows

t
∫

0

∫

Ω

(l · J/σ + g · H− f ·E) dx dτ ≤
t

∫

0

(
∫

Ω

1

σ
l2 dx

)1/2( ∫

Ω

1

σ
J2 dx

)1/2

dτ

+

t
∫

0

(
∫

Ω

g2 dx

)1/2( ∫

Ω

H2 dx

)1/2

dτ +

t
∫

0

(
∫

Ω

f2 dx

)1/2( ∫

Ω

E2 dx

)1/2

dτ

≤
(

t
∫

0

2

ασ

∫

Ω

l2 dx dτ

)1/2( t
∫

0

1

2

∫

Ω

α

σ
J2 dx dτ

)1/2

+

(

t
∫

0

2

µ

∫

Ω

g2 dx dτ

)1/2

×
(

t
∫

0

1

2

∫

Ω

µH2 dx dτ

)1/2

+

(

t
∫

0

2

ε

∫

Ω

f2 dx dτ

)1/2(
t

∫

0

1

2

∫

Ω

εE2 dx dτ

)1/2

≤
[

t
∫

0

1

2

∫

Ω

(

εE2 + µH2 +
α

σ
J2

)

dx dτ

]1/2[(

t
∫

0

2

ε

∫

Ω

f2 dx dτ

)1/2

+

(

t
∫

0

2

µ

∫

Ω

g2 dx dτ

)1/2

+

(

t
∫

0

2

ασ

∫

Ω

l2 dx dτ

)1/2]

.

(3.16)
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Using the elementary inequality 2ab ≤ a2 + b2, we have 2(ab)1/2 ≤ a + b; then,

(a1/2 + b1/2 + c1/2)2 = a+ b+ c+ 2(ab)1/2 + 2(ac)1/2 + 2(bc)1/2 ≤ 4(a+ b+ c) and hence

a1/2 + b1/2 + c1/2 ≤ 2(a+ b+ c)1/2.

Therefore, (3.16) becomes

t
∫

0

∫

Ω

(l · J/σ + g ·H− f · E)dx dτ (3.17)

≤
[

t
∫

0

E(Ω, τ) dτ

]1/2

2

(

t
∫

0

2

ε

∫

Ω

f2 dx dτ +

t
∫

0

2

µ

∫

Ω

g2 dx dτ +

t
∫

0

2

ασ

∫

Ω

l2 dx dτ

)1/2

≤
t

∫

0

E(Ω, τ) dτ +

t
∫

0

∫

Ω

(

2

ε
f2 +

2

µ
g2 +

2

ασ
l2

)

dx dτ

and (3.15), with

ξ(t) =

t
∫

0

E(Ω, τ) dτ, ξ′(t) = E(Ω, t), ξ′(0) = E(Ω, 0), (3.18)

can be written as follows

ξ′(t) − ξ′(0) ≤ ξ(t) +M

T
∫

0

∫

Ω

(f2 + g2 + l2) dx dt. (3.19)

Putting

a = ξ′(0) +M

T
∫

0

∫

Ω

(f2 + g2 + l2) dx dt, (3.20)

(3.19) reduces to

ξ′(t) ≤ ξ(t) + a ∀ t ∈ (0, T ). (3.21)

From the last inequality, integrating with ξ(0) = 0, we have

ξ(t) ≤ a(et − 1), (3.22)

which allows us to derive from (3.21)

ξ′(t) ≤ aet (3.23)

and hence to obtain (3.14).
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4 Existence and Uniqueness Theorem

To study the existence and uniqueness of the solution to the problem P, we consider the
following function spaces

I1(Ω) = {E ∈ I(Ω): ∇× E ∈ L2(Ω)},
H1

α(Ω, (0, T )) = L2((0, T ); I1(Ω)) ∩H1((0, T );L2(Ω)),

H1
β(Ω, (0, T )) = H1((0, T );L2(Ω)),

H(Ω, (0, T )) = {(E,H,J) ∈ H1
α(Ω, (0, T )) ×H1

α(Ω, (0, T ))×H1
β(Ω, (0, T )) :

(E,H) satisfies (3.6) on ∂Ω × (0, T )},
W(Ω, (0, T )) = {(E,H,J) ∈ L2((0, T ); I(Ω)) × L2((0, T ); I(Ω))

× L2((0, T );L2(Ω)): (E,H) satisfies (3.6) on ∂Ω × (0, T )},

together with

W0(Ω, (0, T )) = L2((0, T );L2(Ω)) × L2((0, T ); I(Ω)) × L2((0, T );L2(Ω)),

W1(Ω, (0, T )) = L2((0, T ); I1(Ω)) × L2((0, T ); I1(Ω)) × L2((0, T );L2(Ω)),

where (0, T ) ⊂ R+.

Definition 4.1 We call strong solution of P with sources (f ,g, l) ∈ W0(Ω, (0, T ))
and initial data (E0,H0,J0) ∈ I(Ω)×I(Ω)×L2(Ω) any triplet (E,H,J) ∈ H(Ω, (0, T ))
which satisfies almost everywhere (3.1) – (3.3) in Ω × (0, T ) and (3.5) in Ω.

Definition 4.2 We call weak solution of P with sources (f ,g, l) ∈ W0(Ω, (0, T )) and
initial data (E0,H0,J0) ∈ I(Ω) × I(Ω) × L2(Ω) any triplet (E,H,J) ∈ W(Ω, (0, T ))
such that the following identity

T
∫

0

∫

Ω

{

[εė(x, t) −∇× h(x, t) + p(x, t)] · E(x, t) + [µḣ(x, t) + ∇× e(x, t)]

· H(x, t) +

[

α

σ
ṗ(x, t) − 1

σ
p(x, t) − e(x, t)

]

· J(x, t) − f(x, t) · e(x, t)

+ g(x, t) · h(x, t) + l(x, t) · 1

σ
p(x, t)

}

dx dt−
T

∫

0

∫

∂Ω

[e(x, t) × H(x, t) · n(x)

+ E(x, t) × h(x, t) · n(x)] dx dt +

∫

Ω

[εE0(x) · e(x, 0) + µH0(x) · h(x, 0)

+
α

σ
J0(x) · p(x, 0)] dx = 0,

(4.1)

holds for any (e,h,p) ∈ H(Ω, (0, T )) such that

e(x, T ) = 0, h(x, T ) = 0, p(x, T ) = 0. (4.2)

We now prove the uniqueness and the existence of the weak solution.
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Theorem 4.1 (Uniqueness) The problem P has at most one solution in the sense of
Definition 4.2.

Proof The identity (4.1) must hold for any (e,h,p) ∈ H(Ω, (0, T )); therefore, fol-
lowing [6], we can choose

e(x, t) =

{

(τ − t)a(x) 0 ≤ t ≤ τ

0 τ ≤ t ≤ T
,

h(x, t) =

{

(τ − t)b(x) 0 ≤ t ≤ τ

0 τ ≤ t ≤ T
,

p(x, t) =

{

(τ − t)c(x) 0 ≤ t ≤ τ

0 τ ≤ t ≤ T
,

(4.3)

where τ is a fixed value of (0, T ) and (a,b, c) is an arbitrary triplet of I1(Ω) × I1(Ω) ×
L2(Ω).

Substituting (4.3) into (4.1), we obtain

τ
∫

0

∫

Ω

{

(τ − t)[∇× a(x) · H(x, t) −∇× b(x) · E(x, t) − J(x, t) · c(x)/σ

− (J(x, t) + f(x, t)) · a(x) + g(x, t) · b(x) + (σE(x, t) + l(x, t)) · c(x)/σ]

−
[

εa(x) · E(x, t) + µb(x) · H(x, t) +
α

σ
c(x) · J(x, t)

]}

dx dt

−
τ

∫

0

∫

∂Ω

(τ − t)[a(x) × H(x, t) · n(x) + E(x, t) × b(x) · n(x)]da dt

+ τ

∫

Ω

[

εE0(x) · a(x) + µH0(x) · b(x) +
α

σ
J0(x) · c(x)

]

dx = 0.

(4.4)

Hence, differentiating with respect to τ , we have an identity, which, on introducing
the following notation for the fields in (4.4)

Φ1(x, τ) =

τ
∫

0

Φ(x, t) dt, (4.5)

becomes

∫

Ω

{∇× a(x) ·H1(x, τ) −∇× b(x) · E1(x, τ) − [J1(x, τ) + f1(x, τ)] · a(x)

+ g1(x, τ) · b(x) + [σE1(x, τ) − J1(x, τ) + l1(x, τ)] · c(x)/σ}dx

−
∫

∂Ω

[a(x) × H1(x, τ) · n(x) + E1(x, τ) × b(x) · n(x)]da (4.6)
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+

∫

Ω

[εE0(x) · a(x) + µH0(x) · b(x) +
α

σ
J0(x) · c(x)]dx

−
∫

Ω

[

εa(x) · d
dτ

E1(x, τ) + µb(x) · d
dτ

H1(x, τ) +
α

σ
c(x) · d

dτ
J1(x, τ)

]

dx = 0.

This identity must be applied to the case with (f ,g, l) = (0,0,0) and (E0,H0,J0) =
(0,0,0), which corresponds to the homogeneous system with zero initial data.

We observe that the relation derived in such a case must hold for every (a,b, c) ∈
I1(Ω) × I1(Ω) × L2(Ω); therefore, in particular, it follows that both E1 and H1 belong
to I1(Ω).

Thus, we can put

a(x) = E1(x, τ), b(x) = H1(x, τ), c(x) = J1(x, τ), (4.7)

in the modified relation (4.6), which reduces to

d

dτ

1

2

∫

Ω

[

εE2
1(x, τ) + µH2

1(x, τ) +
α

σ
J2

1(x, τ)

]

dx

= −
∫

Ω

1

σ
J2

1(x, τ) dx −
∫

∂Ω

E1(x, τ) × H1(x, τ) · n(x) da ≤ 0,

(4.8)

on account of (3.6) too.
Since E1(x, 0) = 0, H1(x, 0) = 0, J1(x, 0) = 0, by integrating (4.8) over (0, τ) we get

∫

Ω

[

εE2
1(x, τ) + µH2

1(x, τ) +
α

σ
J2

1(x, τ)

]

dx ≤ 0, (4.9)

from which we have

E1(x, τ) = 0, H1(x, τ) = 0, J1(x, τ) = 0 (4.10)

for almost all τ ∈ (0, T ); therefore, it follows that

E(x, t) = 0, H(x, t) = 0, J(x, t) = 0 (4.11)

in Ω × (0, T ), i.e. the uniqueness of the weak solution.

For the existence of the weak solution we first give this theorem.

Theorem 4.2 Let us consider the sets

R =
{

(f ,g, l) ∈ W0(Ω, (0, T )) : f = ∇× H− εĖ− J, g = ∇× E (4.12)

+ µḢ, l = αJ̇ + J − σE ∀ (E,H,J) ∈ H(Ω, (0, T ))
}

,

S = {(E0,H0,J0) ∈ I1(Ω) × I1(Ω) × L2(Ω)}, (4.13)

T = {(E0,H0,J0) ∈ I(Ω) × I(Ω) × L2(Ω)}, (4.14)
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R× S is dense in W0(Ω, (0, T )) × T .

Proof To prove the density of R× S in W0(Ω, (0, T )) × T , we consider its closure

R× S, which is a closed linear subspace of W0(Ω, (0, T )) × T , and we prove that its
orthogonal complement C contains the null element only.

If we suppose that a non-zero element ((f∗,g∗, l∗), (E∗
0,H

∗
0,J

∗
0)) ∈ C exists, it follows

that for any (E,H,J) ∈ H(Ω, (0, T )) and (E0,H0,J0) ∈ S the following equality

T
∫

0

∫

Ω

[

(∇× H− εĖ− J) · f∗ + (∇× E + µḢ) · g∗ +
1

σ
(αJ̇ + J − σE) · l∗

]

dx dt

+

∫

Ω

(

εE∗
0 · E0 + µH∗

0 ·H0 +
α

σ
J∗

0 · J0

)

dx = 0.

(4.15)

must hold.
In this identity the arbitrariness of (E,H,J) ∈ H(Ω, (0, T )) and (E0,H0,J0) ∈ S

allows us to take first H ≡ 0, J ≡ 0 and E0 = 0, then E ≡ 0, J ≡ 0 and H0 = 0 and
finally E ≡ 0, H ≡ 0 and J0 = 0 and to obtain

T
∫

0

∫

Ω

(εĖ · f∗ −∇× E · g∗ + E · l∗)dx dt = 0, E0 = 0, (4.16)

T
∫

0

∫

Ω

(µḢ · g∗ + ∇× H · f∗)dx dt = 0, H0 = 0, (4.17)

T
∫

0

∫

Ω

[

1

σ
(αJ̇ + J) · l∗ − J · f∗

]

dx dt = 0, J0 = 0, (4.18)

respectively.
The initial conditions, which must be considered in these three identities, suggest to

proceed as we have done for the uniqueness theorem, assuming now

E(x, t) =

{

0 0 ≤ t ≤ τ

(t− τ)A(x) τ ≤ t ≤ T
,

H(x, t) =

{

0 0 ≤ t ≤ τ

(t− τ)B(x) τ ≤ t ≤ T
,

J(x, t) =

{

0 0 ≤ t ≤ τ

(t− τ)C(x) τ ≤ t ≤ T
,

(4.19)

where τ is a fixed value in (0, T ), for every (A,B,C) ∈ I1(Ω)× I1(Ω)×L2(Ω), such that
(3.6) holds; therefore, with this choice (E,H,J) ∈ H(Ω, (0, T )).

Substituting (4.19) into (4.16) – (4.18), we get three relations where the range of inte-
gration (0, T ) reduces to (τ, T ). Then, differentiating with respect to τ the relations so
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derived and putting

f∗i (x, τ) =

T
∫

τ

f∗(x, t)dt with
d

dτ
f∗i (x, τ) = −f∗(x, τ) (4.20)

and analogous expressions for g∗ and l∗, we obtain the following system

ε

∫

Ω

A(x) · d
dτ

f∗i (x, τ) dx +

∫

Ω

[∇× A(x) · g∗
i (x, τ)

− A(x) · l∗i (x, τ)] dx = 0,

(4.21)

µ

∫

Ω

B(x) · d
dτ

g∗
i (x, τ) dx −

∫

Ω

∇× B(x) · f∗i (x, τ) dx = 0, (4.22)

α

σ

∫

Ω

C(x) · d
dτ

l∗i (x, τ) dx +

∫

Ω

C(x) ·
[

f∗i (x, τ) − 1

σ
l∗i (x, τ)

]

dx = 0. (4.23)

We observe that this system must hold for every (A,B,C) ∈ I1(Ω) × I1(Ω) × L2(Ω);
hence, in particular, it follows that f∗i and g∗

i belong to I1(Ω) and are equal to zero on
∂Ω for the absence of any surface integral in the system.

Thus, we can put

A(x) = f∗i (x, τ), B(x) = g∗
i (x, τ), C(x) = l∗i (x, τ) (4.24)

and, adding (4.21) – (4.23), we get

d

dτ

1

2

∫

Ω

{

ε[f∗i (x, τ)]2 + µ[g∗
i (x, τ)]2 +

α

σ
[l∗i (x, τ)]

2

}

dx

=
1

σ

∫

Ω

[l∗i (x, τ)]
2 dx−

∫

Ω

[∇× f∗i (x, τ) · g∗
i (x, τ) −∇× g∗

i (x, τ) · f∗i (x, τ)] dx.

(4.25)

Hence, taking account of the previous observation, since from (4.20)1 we have f∗i (x, T )
= 0, g∗

i (x, T ) = 0, l∗i (x, T ) = 0, the integral over (τ, T ) yields

1

2

∫

Ω

{

ε[f∗i (x, τ)]2 + µ[g∗
i (x, τ)]

2 +
α

σ
[l∗i (x, τ)]

2

}

dx+

T
∫

τ

∫

Ω

1

σ
[l∗i (x, ξ)]

2 dx dξ = 0. (4.26)

Therefore, we get

f∗(x, t) = 0, g∗(x, t) = 0, l∗(x, t) = 0. (4.27)

Thus, (4.15) reduces to
∫

Ω

(

εE∗
0 ·E0 + µH∗

0 · H0 +
α

σ
J∗

0 · J0

)

dx = 0 ∀ (E0,H0,J0) ∈ S, (4.28)

from which, choosing E(t) ≡ E0, H(t) ≡ 0, J(t) ≡ 0, then H(t) ≡ H0, E(t) ≡ 0,
J(t) ≡ 0 and finally J(t) ≡ J0, E(t) ≡ 0, H(t) ≡ 0, we get

E∗
0 = 0, H∗

0 = 0, J∗
0 = 0. (4.29)

Equations (4.27) and (4.29) are contrary to the assumed hypothesis and hence R×S
is dense in W0(Ω, (0, T )) × T .
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Theorem 4.3 (Existence) There exists the solution of the problem P in the sense of
Definition 4.2 for all data (f ,g, l) ∈ W0(Ω, (0, T )) and (E0,H0,J0) ∈ T .

Proof To show the theorem we must prove that R×S is closed in W0(Ω, (0, T ))×T .

Let (f (n),g(n), l(n)) ∈ R and (E
(n)
0 ,H

(n)
0 ,J

(n)
0 ) ∈ S, n = 1, 2, ..., be two sequences

convergent to (f ,g, l) ∈ W0(Ω, (0, T )) and (E0,H0,J0) ∈ S, respectively; we denote by

(E(n),H(n),J(n)) ∈ H(Ω, (0, T )), n = 1, 2..., the corresponding solutions.

Applying Corollary 3.1 to the differences E(n)−E(m), H(n)−H(m), J(n)−J(m) yields

1

2

∫

Ω

[

ε|E(n) − E(m)|2 + µ|H(n) − H(m)|2 +
α

σ
|J(n) − J(m)|2

]

dx

≤ eT

{[

1

2

∫

Ω

[

ε|E(n)
0 − E

(m)
0 |2 + µ|H(n)

0 − H
(m)
0 |2 +

α

σ
|J(n)

0 − J
(m)
0 |2

]

dx

+M

T
∫

0

∫

Ω

[|f (n) − f (m)|2 + |g(n) − g(m)|2 + |l(n) − l(m)|2]dx dt
}

(4.30)

and hence it follows that (E(n),H(n),J(n)), n = 1, 2..., is a Cauchy sequence; thus, there
exists the limit

lim
n→∞

(E(n),H(n),J(n)) = (E,H,J) ∈ H(Ω, (0, T )). (4.31)

Substituting the solutions and the corresponding sources into equations (3.1) – (3.3)
gives a sequence of identities; the limit as n → +∞ is an analogous identity expressed
in terms of (f ,g, l) and (E,H,J), which is the solution of our problem.

We can now prove the uniqueness and the existence of the strong solution.

Theorem 4.4 There exists a unique strong solution of the problem P in the sense of
Definition 4.1 for all data (f ,g, l) ∈ W1(Ω, (0, T )) and (E0,H0,J0) ∈ I1(Ω) × I1(Ω) ×
L2(Ω).

Proof We observe that a strong solution, when it exists, coincides with the weak

solution of the problem P. In fact, let (Ẽ, H̃, J̃) ∈ H(Ω, (0, T )) be such a strong solution,
corresponding to given initial conditions (E0,H0,J0) ∈ I1(Ω)×I1(Ω)×L2(Ω) and sources
(f ,g, l) ∈ W1(Ω, (0, T )), then it satisfies the system (3.1) – (3.3) almost everywhere. It is
enough to take the integrals over Ω and (0, T ) of the inner product of each equation of
the system with any e, h and p/σ, respectively, such that (e,h,p) ∈ H(Ω, (0, T )) and
e(x, T ) = 0, h(x, T ) = 0, p(x, T ) = 0, and subtract the second and the third relations
from the first one, to arrive at (4.1), which characterizes weak solutions.

Therefore, applying Theorem 4.1, the uniqueness of the strong solution follows at once.
For the existence of the strong solution, let (E′,H′,J′) ∈ W(Ω, (0, T )) be the weak

solution to the problem P, whose existence and uniqueness have been already proved,
corresponding to suitable data (f ′,g′, l′) ∈ W0(Ω, (0, T )) and (E′

0,H
′
0,J

′
0) ∈ I(Ω) ×

I(Ω) × L2(Ω). This solution satisfies (4.1) for any (e,h,p) ∈ H(Ω, (0, T )) such that
e(x, T ) = 0, h(x, T ) = 0, p(x, T ) = 0; therefore, as we have done to prove the unique-
ness theorem, we can choose the form (4.3) for (e,h,p) and derive a relation analogous
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to (4.6), which allows us to conclude that both E′
1 and H′

1, defined by (4.5), belong to
I1(Ω) and that (E′,H′,J′) satisfies the following system

εĖ′
1 = ∇× H′

1 − J′
1 − f ′1 + εE′

0, (4.32)

µḢ′
1 = −∇× E′

1 + g′
1 + µH′

0, (4.33)

αJ̇′
1 = −J′

1 + σE′
1 + l′1 + αJ′

0. (4.34)

We can now fix the suitable data as follows

f ′ = − 1

µ
∇× g +

1

α
l, g′ =

1

ε
∇× f , l′ = −σ

ε
f − 1

α
l, (4.35)

E′
0 =

1

ε
(∇× H0 − J0), H′

0 = − 1

µ
∇× E0, J′

0 =
1

α
(σE0 − J0). (4.36)

Then, we put

Ẽ = E′
1 −

1

ε
f1 + E0, H̃ = H′

1 +
1

µ
g1 + H0, J̃ = J′

1 +
1

α
l1 + J0, (4.37)

which yield

Ė′
1 = ˙̃

E +
1

ε
f , Ḣ′

1 = ˙̃
H− 1

µ
g, J̇′

1 = ˙̃
J − 1

α
l (4.38)

and
Ẽ(x, 0) = E0(x), H̃(x, 0) = H0(x), J̃(x, 0) = J0(x). (4.39)

Substituting (4.38), (4.36) and the expressions of (E′
1,H

′
1,J

′
1), derived from (4.37),

together with the expressions of (f ′1,g
′
1, l

′
1), which follow from (4.35), we have

ε ˙̃
E = ∇× H̃ − J̃− f , (4.40)

µ ˙̃
H = −∇× Ẽ + g, (4.41)

α ˙̃
J = −J̃ + σẼ + l (4.42)

and hence see that (Ẽ, H̃, J̃) is the strong solution of the problem P.

5 Asymptotic Stability

The problem P can be transformed into an equivalent one characterized by zero initial
data, by putting

Ĕ(x, t) = E(x, t) − u(x, t), H̆(x, t) = H(x, t) − v(x, t),

J̆(x, t) = J(x, t) − w(x, t),

where (u,v,w) are regular fields with support compact in Ω × R+ such that

∇ · u(x, t) = 0, ∇ · v(x, t) = 0
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and

u(x, 0) = E0(x), v(x, 0) = H0(x), w(x, 0) = J0(x).

On substituting the expressions of (E,H,J) in terms of (Ĕ, H̆, J̆) and (u,v,w), equa-
tions (3.1) – (3.3) assume a similar form but with the terms

F(x, t) = −f(x, t) − w(x, t) + ∇× v(x, t) − εu̇(x, t),

G(x, t) = g(x, t) −∇× u(x, t) − µv̇(x, t),

I(x, t) = l(x, t) + σu(x, t) − w(x, t) − αẇ(x, t)

to be considered as three new sources in the corresponding equations.
Therefore, without changing the notation of the fields (E,H,J), the new problem is

given by

εĖ(x, t) −∇× H(x, t) + J(x, t) = F(x, t), (5.1)

µḢ(x, t) + ∇× E(x, t) = G(x, t), (5.2)

αJ̇(x, t) + J(x, t) − σE(x, t) = I(x, t) (5.3)

with (3.4), the new initial conditions

E0(x) = 0, H0(x) = 0, J0(x) = 0 (5.4)

and the boundary condition (3.6), which holds because of the hypotheses on u and v,
equal to zero on ∂Ω.

We introduce the Fourier transform of any f : R+ → Rn, identified with the causal
extension on (−∞, 0), where f is put equal to zero, i.e.

f̂(ω) =

+∞
∫

−∞

f(t) exp[−iωt]dt, (5.5)

and recall that if f , f ′ ∈ L2(R+) then f̂ , f̂ ′ ∈ L2(R) and we have

f̂ ′(ω) = iωf̂(ω) − f(0), f(0) =
1

π

+∞
∫

−∞

f̂(ω) dω. (5.6)

We denote by P’ the new problem (5.1) – (5.4) with the boundary condition (3.6), for
which, since it holds for any t ∈ R+, Plancherel’s theorem justifies the assumption that

∫

∂Ω

Ê(x, ω) × Ĥ∗(x, ω) · n(x) da ≥ 0 ∀ (Ê, Ĥ) ∈ Σ̂′, ∀ (x, ω) ∈ ∂Ω × R, (5.7)

where ∗ denotes the complex conjugate and Σ̂′ is the set of Fourier’s transforms of the
electromagnetic fields (E,H) ∈ Σ′.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(1) (2003) 1–22 15

We consider the function spaces of Section 4, where (0, T ) is changed into R+, and,
in particular, we introduce

W2(Ω,R
+) =

{

(F,G, I) ∈ W0(Ω,R
+) :

∂n+1

∂tn+1
(F,G, I) ∈ W0(Ω,R

+),

[

∂n

∂tn
(F,G, I)

]

t=0

= 0 (n = 0, 1, 2, 3)

}

,

where the last conditions, on the initial values of the new sources and of their derivatives
with respect to time, are satisfied by choosing the derivatives of u, v, w at t = 0
opportunely.

When the Fourier transforms with respect to time are considered, the function spaces
can be distinguished with a superposed ;̂ in particular W(Ω,R+) becomes

Ŵ(Ω,R) =
{

(Ê, Ĥ, Ĵ) ∈ L2(R; I(Ω)) × L2(R; I(Ω)) × L2(R;L2(Ω)): iωÊ,

iωĤ ∈ L2(R; I(Ω)) and (Ê, Ĥ) satisfies (5.7) on ∂Ω × R
}

and analogously for Ŵ2(Ω,R).

Theorem 5.1 If

I(ω) =

∫

Ω

(

|Ê|2 + |Ĥ|2 + |Ĵ|2 + |∇ × Ê|2 + |∇ × Ĥ|2
)

dx, (5.8)

under suitable conditions on the material constants the following inequality

(min{ε, µ})2I(ω) ≤ δ2(ω)

∫

Ω

(

|F̂|2 + |Ĝ|2 + |Î|2
)

dx (5.9)

holds with δ(ω) a positive function of the material constants for any ω ∈ R.

Proof Application of Fourier’s transform to the system (5.1) – (5.3), taking account
of (5.6)1 and (5.4), yields

iωεÊ(x, ω) −∇× Ĥ(x, ω) + Ĵ(x, ω) = F̂(x, ω), (5.10)

iωµĤ(x, ω) + ∇× Ê(x, ω) = Ĝ(x, ω), (5.11)

(1 + iωα)Ĵ(x, ω) − σÊ(x, ω) = Î(x, ω). (5.12)

From this system, the integrals over Ω of the inner products of the first equation with

Ê∗, Ĵ∗ and ∇× Ĥ∗ yield

iωε

∫

Ω

|Ê|2 dx−
∫

Ω

∇× Ĥ · Ê∗ dx +

∫

Ω

Ĵ · Ê∗ dx =

∫

Ω

F̂ · Ê∗ dx, (5.13)

iωε

∫

Ω

Ê · Ĵ∗ dx−
∫

Ω

∇× Ĥ · Ĵ∗ dx+

∫

Ω

|Ĵ|2 dx =

∫

Ω

F̂ · Ĵ∗ dx, (5.14)

iωε

∫

Ω

Ê ·∇ × Ĥ∗ dx−
∫

Ω

|∇ × Ĥ|2 dx+

∫

Ω

Ĵ ·∇ × Ĥ∗ dx =

∫

Ω

F̂ ·∇ × Ĥ∗ dx; (5.15)
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analogously, the inner products of the conjugate of the second equation with Ĥ and

∇× Ê give

−iωµ
∫

Ω

|Ĥ|2 dx+

∫

Ω

∇× Ê∗ · Ĥ dx =

∫

Ω

Ĝ∗ · Ĥ dx, (5.16)

−iωµ
∫

Ω

Ĥ∗ · ∇ × Ê dx+

∫

Ω

|∇ × Ê|2 dx =

∫

Ω

Ĝ∗ · ∇ × Ê dx, (5.17)

and finally from the inner products of the conjugate of the third equation with Ĵ and Ê

it follows that

(1 − iωα)

∫

Ω

|Ĵ|2 dx− σ

∫

Ω

Ê∗ · Ĵ dx =

∫

Ω

Î∗ · Ĵ dx, (5.18)

(1 − iωα)

∫

Ω

Ĵ∗ · Ê dx− σ

∫

Ω

|Ê|2 dx =

∫

Ω

Î∗ · Ê dx. (5.19)

Let ω 6= 0. The real parts of (5.19), (5.18), (5.17) and (5.15) yield

σ

∫

Ω

|Ê|2 dx = −Re

∫

Ω

Î∗ · Ê dx + Re

∫

Ω

Ĵ∗ · Ê dx+ ωα Im

∫

Ω

Ĵ∗ · Ê dx, (5.20)

∫

Ω

|Ĵ|2 dx = Re

∫

Ω

Î∗ · Ĵ dx+ σRe

∫

Ω

Ê∗ · Ĵ dx, (5.21)

∫

Ω

|∇ × Ê|2 dx = Re

∫

Ω

Ĝ∗ · ∇ × Ê dx− ωµ Im

∫

Ω

Ĥ∗ · ∇ × Ê dx, (5.22)

∫

Ω

|∇ × Ĥ|2 dx = −Re

∫

Ω

F̂ · ∇ × Ĥ∗ dx

− ωε Im

∫

Ω

Ê · ∇ × Ĥ∗ dx+ Re

∫

Ω

Ĵ · ∇ × Ĥ∗ dx;

(5.23)

while the imaginary part of (5.16) gives

µ

∫

Ω

|Ĥ|2 dx =
1

ω

(

− Im

∫

Ω

Ĝ∗ · Ĥ dx + Im

∫

Ω

∇× Ê∗ · Ĥ dx

)

. (5.24)

In (5.20) – (5.24) we have some quantities to be derived.
First, from the real part of (5.16) we have at once

Re

∫

Ω

∇× Ê∗ · Ĥ dx = Re

∫

Ω

Ĝ∗ · Ĥ dx, (5.25)
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which, taking account of (5.7), allows us to derive from the real part of (5.13)

Re

∫

Ω

Ĵ · Ê∗ dx = Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da; (5.26)

therefore, (5.21) becomes
∫

Ω

|Ĵ|2 dx = Re

∫

Ω

Î∗ · Ĵ dx+ σ

(

Re

∫

Ω

F̂ · Ê∗ dx

+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

.

(5.27)

Then, we consider (5.19), whose imaginary part, on account of (5.26), yields

Im

∫

Ω

Ĵ∗ · Ê dx = Im

∫

Ω

Î∗ · Ê dx+ ωα

(

Re

∫

Ω

F̂ · Ê∗ dx

+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

,

(5.28)

whence, taking account of (5.26) too, (5.20) assumes the following form

σ

∫

Ω

|Ê|2 dx = −Re

∫

Ω

Î∗ · Ê dx+ ωα Im

∫

Ω

Î∗ · Ê dx

+ (1 + ω2α2)

[

Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
]

.

(5.29)

Substituting this relation into the imaginary part of (5.13) we get

Im

∫

Ω

∇× Ĥ · Ê∗ dx = − Im

∫

Ω

F̂ · Ê∗ dx+

(

ω2 αε

σ
− 1

)

Im

∫

Ω

Î∗ · Ê dx

− ω
ε

σ
Re

∫

Ω

Î∗ · Ê dx+ ω

[

ε

σ
(1 + ω2α2) − α

](

Re

∫

Ω

F̂ · Ê∗ dx

+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

(5.30)

useful to rewrite (5.24) and (5.22) as follows

µ

∫

Ω

|Ĥ|2 dx = − 1

ω

(

Im

∫

Ω

Ĝ∗ · Ĥ dx+ Im

∫

Ω

F̂ · Ê∗ dx

)

− ε

σ
Re

∫

Ω

Î∗ · Ê dx

+
1

ω

(

ω2αε

σ
− 1

)

Im

∫

Ω

Î∗ · Ê dx+

[

ε

σ
(1 + ω2α2) − α

](

Re

∫

Ω

F̂ · Ê∗ dx

+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

,

(5.31)
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∫

Ω

|∇ × Ê|2 dx = Re

∫

Ω

Ĝ∗ · ∇ × Ê dx + ωµ

{

− Im

∫

Ω

F̂ · Ê∗ dx

− ω
ε

σ
Re

∫

Ω

Î∗ · Ê dx +

(

ω2 αε

σ
− 1

)

Im

∫

Ω

Î∗ · Ê dx+ ω

[

ε

σ
(1 + ω2α2) − α

]

×
(

Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)}

.

(5.32)

Finally, for (5.23) we must derive its last term, which follows from the real part of
(5.14), using (5.27) and (5.28), i.e.

Re

∫

Ω

∇× Ĥ · Ĵ∗ dx = −Re

∫

Ω

F̂ · Ĵ∗ dx − ωε Im

∫

Ω

Î∗ · Ê dx + Re

∫

Ω

Î∗ · Ĵ dx

+ (σ − ω2εα)

(

Re

∫

Ω

F̂ · Ê∗ dx + Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

,

(5.33)

hence, we have

∫

Ω

|∇ × Ĥ|2 dx = −Re

∫

Ω

F̂ · ∇ × Ĥ∗ dx+ ωε

[

− Im

∫

Ω

F̂ · Ê∗ dx

+ ω
ε

σ

(

− Re

∫

Ω

Î∗ · Ê dx+ ωα Im

∫

Ω

Î∗ · Ê dx

)]

− Re

∫

Ω

F̂ · Ĵ∗ dx

− 2ωε Im

∫

Ω

Î∗ · Ê dx+ Re

∫

Ω

Î∗ · Ĵ dx+

{

σ + ω2ε

[

ε

σ
(1 + ω2α2) − 2α

]}

×
(

Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

.

(5.34)

Thus, from (5.29) multiplied by ε/σ, (5.31), (5.27), (5.32) and (5.34) we have

∫

Ω

(

ε|Ê|2 + µ|Ĥ|2 + |Ĵ|2 + |∇ × Ê|2 + |∇ × Ĥ|2
)

dx =

{

ε

σ
(1 + α2ω2)[2 + (ε+ µ)ω2]

+ 2σ − α[1 + (2ε+ µ)ω2]

}(

Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx

−
∫

∂Ω

Ê∗ × Ĥ · n da
)

− 1

ω
[1 + (ε+ µ)ω2] Im

∫

Ω

F̂ · Ê∗ dx− Re

∫

Ω

F̂ · Ĵ∗ dx (5.35)

− Re

∫

Ω

F̂ · ∇ × Ĥ∗ dx− 1

ω
Im

∫

Ω

Ĝ∗ · Ĥ dx+ Re

∫

Ω

Ĝ∗ · ∇ × Ê dx
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− ε

σ
[2 + (ε+ µ)ω2] Re

∫

Ω

Î∗ · Ê dx+
1

ω

{

εα

σ
ω2[2 + (ε+ µ)ω2]

− [1 + (2ε+ µ)ω2]

}

Im

∫

Ω

Î∗ · Ê dx+ 2 Re

∫

Ω

Î∗ · Ĵ dx.

In this equality we have the presence of a surface integral, which must satisfy the
boundary condition (5.7). This term can be neglected if its coefficient is not positive,
that is when

ϕ(ξ) ≡ ε

σ
α2(ε+ µ)ξ2 +

[

ε

σ
(ε+ µ+ 2α2) − α(2ε+ µ)

]

ξ + 2
ε

σ
+ 2σ − α ≥ 0 (5.36)

for all ω ∈ R, with ξ = ω2.

We give some sufficient conditions to can neglect this boundary term in (5.35).

We first examine the case when all the coefficients in (5.36) are positive or null; thus,
we impose that the following system

{

2εα2 − (2ε+ µ)σα+ ε(ε+ µ) ≥ 0,

2σ2 − ασ + 2ε ≥ 0
(5.37)

must be satisfied for all positive values of the material constants.

If we consider the first inequality in function of α and the second of σ, the system is
always satisfied if the discriminants are not greater than zero, i.e. when σ and α satisfy
these inequalities

σ ≤ 2ε

2ε+ µ

√

2(ε+ µ), α ≤ 4
√
ε. (5.38)

Moreover, some other particular cases can be considered by imposing that be positive
or null the sum of the first two terms or the sum of the second and the third term of
each inequality in (5.37). Thus, we see that if one of the following conditions, relative
to (5.37)1,

α

σ
≥ 2ε+ µ

2ε
or ασ ≤ ε(ε+ µ)

2ε+ µ
(5.39)

is satisfied together with one of the other two conditions, corresponding now to the second
inequality of (5.37),

α ≤ 2σ or ασ ≤ 2ε, (5.40)

then the system (5.37) holds and the boundary term is negligible in (5.35).

Finally, another interesting condition on the parameters can be easily derived by
neglecting the boundary terms in (5.27) and (5.29), since their coefficients are negative
for all ω ∈ R, and by assuming ε/σ ≥ α, which allows us to neglect the boundary terms
also in (5.31) and (5.32), while in (5.34) we can consider ε/σ ≥ 2α. Therefore, the other
sufficient condition is the following one

ασ ≤ ε

2
. (5.41)
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This inequality is a simpler restriction on the product of α and σ for it is expressed
in term of ε only. However, if we consider that the previous case, when (5.39)2 holds

together with (5.40)2, since 2ε > ε(ε+µ)
2ε+µ , is expressed by the unique condition

ασ ≤ ε(ε+ µ)

2ε+ µ
, (5.42)

we see that (5.41) is more restrictive than (5.42), where also µ is interested,

being
ε

2
<
ε(ε+ µ)

2ε+ µ
.

Thus, the equality (5.35) becomes an inequality whenever the boundary term can be
neglected. In these cases, let us consider the sum of the moduli of the coefficients of the
real and imaginary parts of the same integral; then we denote by γ(ω) the maximum of
these quantities and we get

min{ε, µ}I(ω) ≤ γ(ω)

[(
∫

Ω

|F̂|2 dx
)1/2( ∫

Ω

|Ê|2 dx
)1/2

+

(
∫

Ω

|F̂|2 dx
)1/2( ∫

Ω

|Ĵ|2 dx
)1/2

+

(
∫

Ω

|F̂|2 dx
)1/2( ∫

Ω

|∇ × Ĥ|2 dx
)1/2

+

(
∫

Ω

|Ĝ|2 dx
)1/2( ∫

Ω

|Ĥ|2 dx
)1/2

+

(
∫

Ω

|Ĝ|2 dx
)1/2( ∫

Ω

|∇ × Ê|2 dx
)1/2

+

(
∫

Ω

|Î|2 dx
)1/2( ∫

Ω

|Ê|2 dx
)1/2

+

(
∫

Ω

|Î|2 dx
)1/2( ∫

Ω

|Ĵ|2 dx
)1/2]

≤ 7γ(ω)

[
∫

Ω

(

|F̂|2 + |Ĝ|2 + |Î|2
)

dx

]1/2

[I(ω)]1/2.

(5.43)

Hence we have (5.9) immediately.
Let ω = 0. In this case we are interested in finding static solutions, consequently

(5.10) – (5.12) must be considered with ω = 0, as well as (5.13) – (5.19). Proceeding as
we have done previously, we see that (5.35) reduces to

I0(0) ≡
∫

Ω

(

|Ê|2 + |Ĵ|2 + |∇ × Ê|2 + |∇ × Ĥ|2
)

dx

=

(

1

σ
+ 2σ

)(

Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx

)

− Re

∫

Ω

F̂ · Ĵ∗ dx

− Re

∫

Ω

F̂ · ∇ × Ĥ∗ dx + Re

∫

Ω

Ĝ∗ · ∇ × Ê dx− 1

σ
Re

∫

Ω

Î∗ · Ê dx (5.44)

+ 2 Re

∫

Ω

Î∗ · Ĵ dx −
(

2σ +
1

σ

)
∫

∂Ω

Ê∗ × Ĥ · n da
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≤ c

[
∫

Ω

(

|F̂|2 + |Ĝ|2 + |Î|2
)

dx

]1/2

[I0(0)]1/2,

where all the fields are functions of (x, 0) and c is a constant [9]. Hence it follows that

I0(0) ≤ C

∫

Ω

[

|F̂(x, 0)|2 + |Ĝ(x, 0)|2 + |Î(x, 0)|2
]

dx, (5.45)

i.e. a relation similar to (5.9) with a constant C.

Theorem 5.2 Let the sources be (F,G, I) ∈ W2(Ω,R
+), then the inverse Fourier

transforms of (Ê, Ĥ, Ĵ) ∈ Ĥ(Ω,R) exist and are L2-functions with zero initial data.

Proof In (5.9) δ(ω) is a positive function of ω ∈ R and approaches infinity as ω4;
such a condition, together with the hypotheses on the sources, states that the integral
on R exists for the right-hand side of (5.9), that is

+∞
∫

−∞

∫

Ω

δ2(ω)
(

|F̂|2 + |Ĝ|2 + |Î|2
)

dx dω < +∞. (5.46)

Therefore, (5.9) gives

+∞
∫

−∞

I(ω) dω ≤
+∞
∫

−∞

∫

Ω

(

δ(ω)

min{ε, µ}

)2
(

|F̂|2 + |Ĝ|2 + |Î|2
)

dx dω, (5.47)

i.e. there exists finite the integral over R of I(ω).
Application of Plancherel’s theorem yields the existence of the inverse Fourier trans-

forms of (Ê, Ĥ, Ĵ); moreover, these solutions have the asymptotic behaviour which follows

by belonging to the space Ĥ(Ω,R).
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Abstract: In this paper we study a gauge-invariant Ginzburg-Landau model
which describes the phenomenon of the superconductivity, characterizing the
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of weak solutions for the steady and the time-dependent Ginzburg-Landau
equations and prove theorems of existence and uniqueness.
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1 Introduction

The Ginzburg-Landau theory gives a macroscopic model which explains the main ex-
perimental phenomena related to the superconductivity, i.e. the absence of electrical
resistance and the Meissner effect ([5, 13]). In their model, Ginzburg and Landau de-
scribe the behaviour of a superconducting material in steady conditions, through the
introduction of a free energy functional and assume that the state of the system min-
imizes such a functional. They identify the state of the superconductor with the pair
(ψ,A), where ψ is a complex order parameter, whose squared modulus coincides with the
number density of the superconducting electrons and A is the vector magnetic potential.

Later, the model was extended to the non stationary case by Gor’kov and Èliash-
berg [8], who deduce the time-dependent Ginzburg-Landau equations from the micro-
scopic theory BCS. Such equations constitute a non linear differential system for which
theorems of existence and uniqueness are proved ([4, 12, 15]).

Recently, Fabrizio [6, 7] has proposed a macroscopic model which characterizes the
state of the material by means of real and observable variables. Therefore, while in the
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M.I.U.R. through the project “Mathematical Methods in Continuum Mechanics”.
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classical formulation the unknown quantities are defined up to a gauge transformation,
the variables involved in this model have a well determined physical meaning, so that
they are gauge-invariant.

In this paper, the real Ginzburg-Landau equations are studied both in the steady and
in the time-dependent case. The two models are presented in Section 2. In Section 3, we
introduce a new definition of weak solutions which allows to prove existence and unique-
ness theorems. In the steady case, the uniqueness of the weak solution is shown, provided
that the coefficients of the equations and the domain occupied by the superconducting
material are sufficiently small. In the time-dependent case, the uniqueness is proved in
two-dimensional domains, with L2 initial data.

Both in the stationary and in the time-dependent problem the results are obtained
with the same method used in [1] and [2], namely by introducing a suitable decomposition
of the unknown variables and reducing the original system to an equivalent one.

2 Ginzburg-Landau Model of Superconductivity

The electromagnetic behaviour of a superconducting material is described by Maxwell
equations

ε
∂E

∂t
= ∇× H − J, ∇ ·E = ρ, (2.1)

µ
∂H

∂t
= −∇× E, ∇ ·H = 0, (2.2)

where ε, µ, ρ are respectively the dielectric constant, the magnetic permeability and the
charge density. For simplicity ε and µ are assumed constant.

According to London theory, the electrons in a superconductor behave like a fluid
which may appear either in the normal or in the superconducting phase. Therefore, the
current density J inside the material can be expressed through the sum

J = Jn + Js (2.3)

of the normal and the superconducting current. The conduction current Jn is required
to obey Ohm’s law

Jn = σE, (2.4)

while the superconducting current satisfies London constitutive equation

∇× (ΛJs) = −µH, L =
m

e2f2
, (2.5)

where m, e, f2 denote respectively the mass, the charge and the number density of the
superconducting electrons.

By means of the equation (2.5), London theory describes the superconducting features
of a material in the hypothesis that the parameter Λ is constant, so that the density of
superconducting electrons is uniform. However, near the transition temperature there
occurs a mixed state consisting of alternating domains of normal and superconducting
phase. Therefore the material cannot be considered spatially homogeneous.
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The Ginzburg-Landau model extends London theory since it allows spatial variations
of the density of superconducting electrons. In the stationary case and without free
charge, Maxwell equations (2.1)2, (2.2)1 together with the boundary condition

E · n|∂Ω = 0, (2.6)

imply E = 0, so that the system (2.1) – (2.2) reduces to

∇× H = Js, ∇ ·H = 0. (2.7)

Since the electric field can be neglected, the state of the material is identified with the
pair (f,Js).

According to the Ginzburg-Landau theory, the material is in a state which minimizes
the free energy. If we denote by Ω the domain occupied by the superconductor and by
∂Ω its boundary, the free energy can be written as a functional of the variables (f,Js)
in the form ([6, 7])

E(f,Js) =

∫

Ω

[

− αf2 +
β

2
f4 +

1

2µ
|∇ × (Λ(f)Js)|2 +

~
2

2m
|∇f |2

]

dx

+

∫

Ω

1

2
Λ(f)J2

s dx− 2

∫

∂Ω

Λ(f)Js × Hτ
ex · n dσ,

(2.8)

where α, β are positive constants depending on the temperature, ~ is the Planck constant
and Hτ

ex is the tangential component of the external magnetic field.
Henceforth, we consider external magnetic fields Hex which satisfy the relation

∫

∂Ω

∇ϕ× Hex · n dσ = 0, (2.9)

where ϕ is the trace on ∂Ω of an arbitrary function ϕ.
By introducing the quantity

ps = Λ(f)Js =
mvs

e
, (2.10)

identified with the linear momentum of the superconducting electrons per unit charge,
the free energy (2.8) can be expressed in terms of the variables (f,ps) in the form

E(f,ps) =

∫

Ω

[

− αf2 +
β

2
f4 +

1

2µ
|∇ × ps|2 +

~
2

2m
|∇f |2 +

e2

2m
f2p2

s

]

dx

− 2

∫

∂Ω

ps · Hτ
ex × n dσ.

(2.11)

The stationariety of the functional (2.11) with respect to (f,ps) leads to the system

~
2

2m
∇2f − e2

2m
fp2

s + αf − βf3 = 0, (2.12)

∇×∇× ps +
µe2

m
f2ps = 0, (2.13)

∇f · n|∂Ω = 0, (∇× ps) × n|∂Ω = µHex × n|∂Ω. (2.14)
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In order to reduce our notations, we introduce the following non-dimensional quantities

f =

(

α

β

)1/2

f ′, ps =

(

2mα

e2

)1/2

p′
s, (2.15)

x =

(

mβ

e2αµ

)1/2

x′, Hex =

(

2α2

βµ

)1/2

H′
ex, (2.16)

E =

(

mα3

β2µ

)1/2

E ′, k =

(

2m2β

~2e2µ

)1/2

. (2.17)

With such positions, dropping the primes, the free energy (2.11) assumes the form

E(f,ps) =

∫

Ω

[

1

2
(f2 − 1)2 + |∇ × ps|2 +

1

k2
|∇f |2 + f2p2

s

]

dx

− 2

∫

∂Ω

ps ·Hτ
ex × n dσ

(2.18)

and the ensuing Ginzburg-Landau system is

1

k2
∇2f − fp2

s + f − f3 = 0, (2.19)

∇×∇× ps + f2ps = 0, (2.20)

∇f · n|∂Ω = 0, (∇× ps) × n|∂Ω = Hτ
ex × n|∂Ω. (2.21)

Moreover, we assume the boundary condition

ps · n|∂Ω = 0.

The generalization of the Ginzburg-Landau model to the time-dependent case is ob-
tained by introducing a further variable φs which is related to the charge density ρ. In
non-dimensional variables the time-dependent Ginzburg-Landau equations are ([6, 7])

∂f

∂t
−∇2f + k2(f2 − 1)f + fp2

s = 0, (2.22)

η
∂ps

∂t
+ ∇×∇× ps + η∇φs + f2ps = 0, (2.23)

with boundary conditions

∇f · n|∂Ω = 0, ps · n|∂Ω = 0, (∇× ps − Hτ
ex) × n|∂Ω = 0 (2.24)

and initial data
f(x, 0) = f0(x), ps(x, 0) = ps0(x). (2.25)

As in the steady model, the equation (2.23) can be obtained from Maxwell equation
(2.1)1. However, (2.23) coincides with (2.1)1 only if the time derivative of the electric
field is negligible. In such a case, the equation (2.1)1 assumes the form

∇× H = σE + Js (2.26)
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and, by using London equation (2.5), we get

∇×∇× ps + µσE +
µe2

m
f2ps = 0. (2.27)

On the other hand, the equation (2.2)1 yields

∂

∂t
(∇× ps) −∇× E = 0,

hence there exists a function φs such that

E =
∂

∂t
ps + ∇φs. (2.28)

Substitution in (2.23) leads to the equation

µσ
∂

∂t
ps + ∇×∇× ps + µσ∇φs +

µe2

m
f2ps = 0,

which coincides (in non-dimensional form) with (2.23).
We assume the following constitutive equation for φs

f2φs = − ~
2

2mτ
∇ · (f2ps), (2.29)

or in non-dimensional form
f2φs = −∇ · (f2ps). (2.30)

The choice of the equation (2.29) corresponds to a particular choice of the charge density
ρ. Indeed, the relation (2.26) implies

∇ · Js = −∇ · Jn = −σ∇ ·E = −σ
ε
ρ,

so that, by substituting in (2.29), we obtain

f2φs = − ~
2

2e2τ
∇ · Js =

σ~
2

2e2ετ
ρ.

3 Existence and Uniqueness of Solutions

3.1 The stationary case

In this section we prove that the functional (2.18) admits at least a minimizer and, under
suitable hypotheses on the coefficients of the equations, such a minimizer is unique.

Let D(Ω) be the domain of the functional (2.18), constituted by the pairs (f,ps) such
that the free energy is finite, namely

D(Ω) =
{

(f,ps) : f ∈ H1(Ω), ∇× ps ∈ L2(Ω), fps ∈ L2(Ω)
}

.
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We introduce a new variable p1 which satisfies

∇× p1 = ∇× ps, ∇ · p1 = 0, p1 · n|∂Ω = 0. (3.1)

Therefore ps can be decomposed as

ps = p1 +
1

k
∇θ, (3.2)

with p1 ∈ R0(Ω) = {v : ∇× v ∈ L2(Ω), ∇ · v = 0, v · n|Ω = 0}.
Observe that for each ps such that ∇ × ps ∈ L2(Ω), there exist unique p1 and ∇θ

which satisfy (3.1), (3.2) and ∇θ · n|Ω = 0. Moreover, the condition p1 ∈ R0(Ω)
implies p1 ∈ H1(Ω).

With such positions, the functional (2.11) can be expressed in terms of the variables
(f, θ,p1) as

E(f, θ,p1) =

∫

Ω

[

1

2
f4 − f2 + |∇ × p1|2 +

1

k2
|∇f |2 + f2

∣

∣

∣

∣

p1 +
1

k
∇θ

∣

∣

∣

∣

2]

dx

− 2

∫

∂Ω

p1 · Hτ
ex × n dσ

(3.3)

and the Ginzburg-Landau system (2.19) – (2.21) assumes the form

1

k2
∇2f − f

∣

∣

∣

∣

p1 +
1

k
∇θ

∣

∣

∣

∣

2

+ f − f3 = 0, (3.4)

∇×∇× p1 + f2

(

p1 +
1

k
∇θ

)

= 0, (3.5)

∇f · n|∂Ω = 0, (∇× p1) × n|∂Ω = Hτ
ex × n|∂Ω. (3.6)

Lemma 3.1 A pair (f,ps) ∈ D(Ω) is a minimizer of the functional (2.18) if and
only if the triplet (f, θ,p1) ∈ D1(Ω), with

D1(Ω) = {(f, θ,p1) : f ∈ H1(Ω), p1 ∈ R0(Ω), f∇θ ∈ L2(Ω)}

and θ, p1 satisfying (3.2), is a minimizer of the functional (3.3).

Proof It suffices to prove that (f,ps) ∈ D(Ω) if and only if (f, θ,p1) ∈ D1(Ω).

Let (f,ps) ∈ D(Ω). In view of the embedding H1(Ω) →֒ L4(Ω), we have f ∈ L4(Ω)
and p1 ∈ L4(Ω), thus fp1 ∈ L2(Ω). In this way, f∇θ = k(fps − fp1) ∈ L2(Ω), so
that (f, θ,p1) ∈ D1(Ω).

Conversely, if (f, θ,p1) ∈ D1(Ω), it results fp1 ∈ L2(Ω). Therefore, by (3.2), we
obtain fps ∈ L2(Ω).

As shown in [1], the functional (3.3) admits at least a minimizer, so that, in view of
Lemma 3.1, the existence theorem can be proved.

Theorem 3.1 For each Hτ
ex ∈ H−1/2(∂Ω), satisfying the relation (2.9), there exists

at least a pair (f,ps) ∈ D(Ω) which minimizes the free energy (2.18).
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Definition 3.1 A triplet (f, θ,p1) ∈ D1(Ω) is a weak solution of the Ginzburg-
Landau problem if it satisfies

∫

Ω

cos(θ − ϕ)

[

1

k2
∇f · ∇h+ fh

(

p1 +
1

k
∇θ

)

·
(

p1 +
1

k
∇ϕ

)

+ h(f3 − f)

]

dx

+
1

k

∫

Ω

sin(θ − ϕ)

[

h∇f ·
(

p1 +
1

k
∇ϕ

)

− f∇h ·
(

p1 +
1

k
∇θ

)]

dx = 0,

(3.7)

∫

Ω

[

∇× p1 · ∇ × q1 + f2

(

p1 +
1

k
∇θ

)

· q1

]

dx+

∫

∂Ω

q1 × Hτ
ex · n dσ = 0, (3.8)

for each (h, ϕ,q1) ∈ D1(Ω).

Remark It is possible to give a different definition of weak solution for the problem
(3.4) – (3.6), by replacing the equations (3.7) – (3.8) with the following

∫

Ω

[

1

k2
∇f · ∇g + fg

∣

∣

∣

∣

p1 +
1

k
∇θ

∣

∣

∣

∣

2

+ (f3 − f)g

]

dx = 0, (3.9)

∫

Ω

[

∇× p1 · ∇ × q1 + f2

(

p1 +
1

k
∇θ

)

· q1

]

dx+

∫

∂Ω

q1 × Hτ
ex · n dσ = 0. (3.10)

Though the equations (3.9) – (3.10) can be obtained by (3.7) – (3.8), choosing suitably
the functions (g,q1), the definitions are not equivalent, since the spaces of test functions
are different.

Proposition 3.1 If (f, θ,p1) is a regular solution of the Ginzburg-Landau problem
(3.4) – (3.6), then it is a weak solution in the sense of Definition 3.1.

Proof By taking the divergence of (3.5), we obtain

∇ ·
[

f2

(

p1 +
1

k
∇θ

)]

= 0.

Hence

f

[

2∇f ·
(

p1 +
1

k
∇θ

)

+ f∇ ·
(

p1 +
1

k
∇θ

)]

= 0,

which leads to

∫

Ω

[

2∇f ·
(

p1 +
1

k
∇θ

)

+ f∇ ·
(

p1 +
1

k
∇θ

)]

h sin(θ − ϕ)dx = 0

for each (h, ϕ) such that h ∈ H1(Ω), h∇ϕ ∈ L2(Ω). An integration by parts yields

1

k

∫

Ω

[(h∇f − f∇h) sin(θ − ϕ) − fh(∇θ −∇ϕ) cos(θ − ϕ)] ·
(

p1 +
1

k
∇θ

)

dx = 0. (3.11)
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Moreover, multiplying (3.4) by h cos(θ − ϕ) and integrating on Ω, it results
∫

Ω

1

k2
∇f · (∇ϕ−∇θ) sin(θ − ϕ) dx

+

∫

Ω

[

1

k2
∇f · ∇h+ fh

∣

∣

∣

∣

p1 +
1

k
∇θ

∣

∣

∣

∣

2

− fh(1 − f2)

]

cos(θ − ϕ) dx = 0.

(3.12)

By adding (3.11) and (3.12), we obtain (3.7). Finally, the relation (3.8) can be proved
by multiplying (3.5) by an arbitrary function q1 ∈ R0(Ω) and integrating by parts.

Denoting by fc = f cos θ, fs = f sin θ, hc = h cosϕ, hs = h sinϕ, the equations (3.7)
and (3.8) can be written in the form

∫

Ω

[

1

k2
(∇fc · ∇hc + ∇fs · ∇hs) +

1

k
(hc∇fs − fs∇hc + fc∇hs) · p1

]

dx

−
∫

Ω

[

1

k
hs∇fc · p1 − (p2

1 + f2
c + f2

s − 1)(fchc + fshs)

]

dx = 0,

(3.13)

∫

Ω

[

∇× p1 · ∇ × q1 + (f2
c + f2

s )p1 · q1 +
1

k
(fc∇fs − fs∇fc) · q1

]

dx

+

∫

∂Ω

q1 × Hτ
ex · n dσ = 0.

(3.14)

It is easy to verify that (f, θ,p1) ∈ D(Ω) if and only if (fc, fs,p1) ∈ H1(Ω)×H1(Ω)×
R0(Ω). Moreover the equations (3.13) – (3.14) can be obtained by writing the free energy
(3.3) as a functional of the variables (fc, fs,p1)

E(fc, fs,p1) =

∫

Ω

[

1

2
(f2

c + f2
s )2 − f2

c − f2
s +

1

2
(|∇fc|2 + |∇fs|2) + |∇ × p1|2

]

dx

+

∫

Ω

[

p2
1(f

2
c + f2

s ) +
2

k
p1 · (fc∇fs − fs∇fc)

]

dx+ 2

∫

∂Ω

p1 ·Hτ
ex × n dσ

and then by computing the first variation with respect to such variables.
To reduce our notations, we put Π = (fc, fs,p1), Σ = (gc, gs, r1), Θ = (hc, hs,q1)

and define

a(Π,Θ) =

∫

Ω

[

1

k2
(∇fc · ∇hc + ∇fs · ∇hs) + ∇× p1 · ∇ × q1

]

dx, (3.15)

l(Σ,Θ) = −
∫

Ω

1

k
(hc∇gs − gs∇hc + gc∇hs − hs∇gc) · r1 dx

−
∫

Ω

[(r2
1 + g2

c + g2
s − 1)(gchc + gshs) + (g2

c + g2
s)r1 · q1]dx

(3.16)

−
∫

Ω

1

k
(gc∇gs − gs∇gc) · q1 dx−

∫

∂Ω

q1 × Hτ
ex · n dσ = 0.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(1) (2003) 23–41 31

Hence (3.13) and (3.14) can be written as

a(Π,Θ) = l(Π,Θ). (3.17)

Consider now the equation
a(Π,Θ) = l(Σ,Θ), (3.18)

for each Θ ∈ V(Ω), where V(Ω) ⊂ H1(Ω) × H1(Ω) ×R0(Ω) is a closed subspace which
does not contain triplets (hc, hs,q1) with constant hc and hs. It can be proved ([10])
that V(Ω) is a Hilbert space with respect to the norm

‖(hc, hs,q1)‖2
V =

1

k2
(‖∇hc‖2

2 + ‖∇hs‖2
2) + ‖q1‖2

R0
, (3.19)

where ‖ · ‖p denotes the norm in Lp(Ω) and ‖q1‖R0
= ‖∇ × q1‖2.

We will prove that the equation (3.18) admits a unique solution Π = T (Σ) ∈ V(Ω).
Moreover, with suitable hypotheses, T is a contraction, whose fixed point satisfies the
relation (3.17).

Lemma 3.2 For each Σ ∈ V(Ω) there exists a unique T (Σ) ∈ V(Ω) such that

a(T (Σ),Θ) = l(Σ,Θ) (3.20)

for all Θ ∈ V(Ω).

Proof In view of the definition (3.16), for each Σ ∈ V(Ω), the map

l(Σ, ·) : V(Ω) → IR

is linear. Moreover, the following inequalities can be easily proved

∣

∣

∣

∣

∫

Ω

r1 · (hc∇gs − gs∇hc + gc∇hs − hs∇gc) dx

∣

∣

∣

∣

≤ ‖r1‖4(‖hc‖4‖∇gs‖2 + ‖gs‖4‖∇hc‖2 + ‖gc‖4‖∇hs‖2 + ‖hs‖4‖∇gc‖2)

≤ (c1 + 1)‖r1‖4[(‖∇gs‖2 + ‖gs‖4)‖hc‖H1(Ω) + (‖∇gc‖2 + ‖gc‖4)‖hs‖H1(Ω)],
∣

∣

∣

∣

∫

Ω

(gchc + gshs)r
2
1 dx

∣

∣

∣

∣

≤ c1‖r1‖2
4(‖gc‖4‖hc‖H1(Ω) + ‖gs‖4‖hs‖H1(Ω)),

∣

∣

∣

∣

∫

Ω

(gchc + gshs)(1 − g2
c − g2

s) dx

∣

∣

∣

∣

≤ (‖gc‖2 + ‖gc‖3
6

+ c1‖gc‖4‖gs‖2
4)‖hc‖H1(Ω) + (‖gs‖2 + c1‖gc‖2

4‖gs‖4 + ‖gs‖3
6)‖hs‖H1(Ω),

∣

∣

∣

∣

∫

Ω

(g2
c + g2

s)r1 · q1 dx

∣

∣

∣

∣

≤ c2(‖gc‖2
4 + ‖gs‖2

4)‖r1‖4‖q1‖R0(Ω),

∣

∣

∣

∣

∫

Ω

(gc∇gs − gs∇gc) · q1 dx

∣

∣

∣

∣

≤ c2(‖gc‖4‖∇gs‖2 + ‖gs‖4‖∇gc‖2)‖q1‖R0(Ω),
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∣

∣

∣

∣

∫

∂Ω

q1 × Hτ
ex · n dσ

∣

∣

∣

∣

≤ ‖Hτ
ex‖H−1/2(∂Ω)‖q1 × n‖

H1/2(∂Ω)

≤ c3‖Hτ
ex‖H−1/2(∂Ω)‖q1‖R0(Ω),

where c1, c2, c3 satisfy respectively the inequalities

‖f‖4 ≤ c1‖f‖H1(Ω), ‖p1‖H1(Ω) ≤ c2‖p1‖R0
, ‖p1 × n‖

H1/2(Ω) ≤ c3‖p1‖R0
. (3.21)

Therefore, keeping the definition (3.19) into account, we get

l(Σ,Θ) ≤ C(Σ)‖Θ‖V ,

where C(Σ) denotes a positive constant depending on Σ.
Since l(Σ, ·) is continuous, the Riesz theorem ensures the existence of a unique Θ(Σ) ∈

V(Ω) such that
a(T (Σ),Θ) = l(Σ,Θ), ∀Θ ∈ V(Ω). (3.22)

Lemma 3.3 For each M > 0 and Σ1, Σ2 ∈ V(Ω) satisfying ‖Σi‖V ≤ M , i = 1, 2,
there exists a constant δM > 0 such that

‖T (Σ1) − T (Σ2)‖V ≤ δM‖Σ1 − Σ2‖V .

Proof From the equation (3.22) we obtain the identity

‖T (Σ1) − T (Σ2)‖V = sup
‖Θ‖V=1

[a(T (Σ1),Θ) − a(T (Σ2),Θ)] = sup
‖Θ‖V=1

[l(Σ1,Θ) − l(Σ2,Θ)]

= sup
‖Θ‖V=1

[I1(Θ) + I2(Θ) + I3(Θ) + I4(Θ) + I5(Θ) + I6(Θ)],

where

I1(Θ) =
1

k

∫

Ω

[(∇gc1 · r11 −∇gc2 · r12)hs − (∇gs1 · r11 −∇gs2 · r12)hc]dx,

I2(Θ) =
1

k

∫

Ω

[(gs1r11 − gs2r12) · ∇hc − (gc1r11 − gc2r12) · ∇hs]dx,

I3(Θ) = −
∫

Ω

(r2
11gc1 + g3

c1 + gc1g
2
s1 − gc1 − r2

12gc2 − g3
c2 − gc2g

2
s2 + gc2)hcdx

I4(Θ) = −
∫

Ω

(r2
11gs1 + g3

s1 + gs1g
2
c1 − gs1 − r2

12gs2 − g3
s2 − gs2g

2
c2 + gs2)hsdx

I5(Θ) = −
∫

Ω

(g2
c1r11 + g2

s1r11 − g2
c2r12 − g2

s2r12) · q1dx

I6(Θ) =
1

k

∫

Ω

(gc1∇gs1 − gs1∇gc1 − gc2∇gs2 + gs2∇gc2) · q1 dx.
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Since ‖Σi‖V ≤M , i = 1, 2, we have the inequalities

‖∇gci‖2 ≤ kM, ‖∇gsi‖2 ≤ kM, ‖r1i‖R0
≤M

Therefore, by the definition of V(Ω), gci and gsi satisfy the estimates

‖gci‖H1(Ω) ≤ c4kM, ‖gsi‖H1(Ω) ≤ c4kM.

Let δgc = gc1 − gc2, δgs = gs1 − gs2, δr1 = r11 − r12. We deduce the estimates

|I1(Θ)| ≤Mc1c2[(‖hc‖H1(Ω) + ‖hs‖H1(Ω))‖δr1‖R0

+
1

k
(‖hc‖H1(Ω)‖∇(δgs)‖2 + ‖hs‖H1(Ω)‖∇(δgc)‖2)],

|I2(Θ)| ≤Mc1c2[c4(‖hc‖H1(Ω) + ‖hs‖H1(Ω))‖δr1‖R0

+
1

k
(‖hc‖H1(Ω)‖δgs‖H1(Ω) + ‖hs‖H1(Ω)‖δgc‖2)]

|I3(Θ)| ≤M2c21c2[c2‖δgc‖H1(Ω) + 2c2c4k‖δr1‖R0
+ 2c1c

2
4k

2‖δgs‖H1(Ω)

+ 4c1c
2
4k

2‖δgc‖H1(Ω)]‖hc‖H1(Ω) + ‖δgc‖2‖hc‖2

|I4(Θ)| ≤M2c21c2[c2‖δgs‖H1(Ω) + 2c2c4k‖δr1‖R0
+ 2c1c

2
4k

2‖δgc‖H1(Ω)

+ 4c1c
2
4k

2‖δgs‖H1(Ω)]‖hs‖H1(Ω) + ‖δgs‖2‖hs‖2

|I5(Θ)| ≤ 2M2c21c
2
2c4k(‖δgc‖H1(Ω) + ‖δgs‖H1(Ω) + c4k‖δr1‖R0

)‖q1‖R0

|I6(Θ)| ≤Mc1c2k(1 + c4)(‖δgs‖H1(Ω) + ‖δgc‖H1(Ω))‖q1‖R0
.

Thus
‖T (Σ1) − T (Σ2)‖V ≤ A‖δr1‖R0

+ B(‖δgc‖H1(Ω) + ‖δgs‖H1(Ω)),

where

A = 2Mc1c2c4k(1 + c4 + 3Mc1c2c4k)

B = Mc1c2(Mc2c4k + 6Mc21c
3
4k

3 + 2Mc1c2c4k + 1 + 3c4) + c4k.

By using the inequality 2xy ≤ εx2 + 1
ε y

2, we obtain

‖T (Σ1) − T (Σ2)‖2
V ≤ [A‖δr1‖R0

+B(‖δgc‖H1(Ω) + ‖δgs‖H1(Ω))]
2

≤ A2(1 + ε)‖δr1‖2
R0

+B2 1 + ε

ε
(‖δgc‖H1(Ω) + ‖δgs‖H1(Ω))

2

≤ A2(1 + ε)‖δr1‖2
R0

+ 2B2c2
1 + ε

ε
(‖∇(δgc)‖2

2 + ‖∇(δgs)‖2
2).

Hence, the choice

δ2M = max

{

A2(1 + ε), 2B2c2k2 1 + ε

ε

}

yields
‖T (Σ1) − T (Σ2)‖V ≤ δM‖Σ1 − Σ2‖V .
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Lemma 3.4 If the following inequalities

2Mc4k[2Mc1c2 +M2c21c4k(c
2
2 + 2c21c

2
4k

2) + c4k] ≤M, (3.23)

4M2c1c2c4k(Mc1c2k + 1) + 2c3‖Hex‖H−1/2(∂Ω) ≤M, (3.24)

hold, T defined through (3.20), maps BM = {Σ ∈ V(Ω): ‖Σ‖V ≤M} in itself.

Proof By the definition (3.22) we have

‖T (Σ)‖2
V = l(Σ, T (Σ)).

Therefore, proceeding as in the proof of Lemma 3.4, it results

‖T (Σ)‖2
V ≤ D

k
(‖∇fc‖2 + ‖∇fs‖2) + E‖p1‖R0

,

where

D = Mc4k[2Mc1c2 +M2c21c4k(c
2
2 + 2c21c

2
4k

2) + c4k],

E = 2M2c1c2c4k(Mc1c2k + 1) + c3‖Hex‖H−1/2(∂Ω).

The hypotheses (3.23) and (3.24) imply

‖T (Σ)‖2
V ≤M‖T (Σ)‖V ,

so that T (Σ) ∈ BM .

By applying the previous lemmas, we get the uniqueness result.

Theorem 3.2 Let (fc, fs,p1) ∈ BM and (gc, gs,q1) ∈ BM , satisfying the Defini-
tion 3.1. If the inequalities (3.23) and (3.24) hold and there exists ε > 0 such that
δM < 1, then (fc, fs,p1) = (gc, gs,q1).

The Theorem 3.2 ensures the uniqueness of weak solutions, provided that the parame-
ter k, the external field and the domain Ω are sufficiently small. A non-uniqueness result
can be obtained with the same method used in [9, 11], if the domain Ω is sufficiently
large.

3.2 The time-dependent case

The weak formulation of the evolution problem (2.22) – (2.25) is obtained by introducing
the functional space

H(Q) =
{

(f,ps, φs) : f ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′),

∇× ps ∈ L2(0, T ;L2(Ω)), ṗs + ∇φs ∈ L2(0, T ; (H1
n
(Ω))′),

fps ∈ L2(0, T ;L2(Ω)), fφs ∈ L2(0, T ; (H1(Ω))′), ps · n|∂Ω = 0
}

,

where Q = Ω × (0, T ), H1
n
(Ω) = {v ∈ H1(Ω): v · n|∂Ω = 0} and X ′ denotes the dual

space of X .
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Proceeding as in the stationary case, in order to prove existence and uniqueness the-
orems, we decompose ps and φs in the following form

ps = p1 −∇θ, (3.25)

φs = φ+ θ̇, (3.26)

with p1 ∈ L2(0, T ;H1
n
(Ω)) and

φ = −1

η
∇ · p1. (3.27)

By means of the positions (3.25) – (3.26), the system (2.22) – (2.25) can be written in
the form

ḟ −∇2f + k2(f2 − 1)f + f(p1 −∇θ)2 = 0, (3.28)

ηṗ1 + ∇×∇× p1 + η∇φ+ f2(p1 −∇θ) = 0, (3.29)

∇f · n|∂Ω = 0, (∇× p1 + Hτ
ex) × n|∂Ω = 0, (3.30)

∇θ · n|∂Ω = 0, p1 · n|∂Ω = 0, (3.31)

f(x, 0) = f0(x), p1(x, 0) −∇θ(x, 0) = ps0(x). (3.32)

Let

K(Q) =
{

(f, θ,p1) : f ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′),

f∇θ ∈ L2(0, T ;L2(Ω)), f θ̇ ∈ L2(0, T ; (H1(Ω))′),

p1 ∈ L2(0, T ;H1
n
(Ω)) ∩H1(0, T ; (H1

n
(Ω))′)

}

.

From the definition of H(Q), it follows that if p1 satisfies (3.25) – (3.27), then the
following equation holds

ṗ1 −
1

η
∇2p1 = F, (3.33)

where F = ṗs + ∇φs + 1
η ∇ × ∇ × ps ∈ L2(0, T ; (H1

n
(Ω))′). The equation (3.33), with

the boundary and initial conditions (3.30)2, (3.31)2, (3.32)2 admits a unique solution

p1 ∈ L2(0, T ;H1
n
(Ω)) ∩H1(0, T ; (H1

n
(Ω))′) (see [14]). Hence, by putting φ = − 1

η ∇ ·p1,

we have that for each (f,ps, φs) ∈ H(Q), there exists a unique triplet (f, θ,p1) ∈ K(Q)
which satisfies (3.25) – (3.27).

Definition 3.2 A triplet (f, θ,p1) ∈ K(Q) is a weak solution of the problem (3.28) –

(3.32), with Hτ
ex ∈ H−1/2(∂Ω) if

∫

Ω

[ḟg + k2(f2 − 1)fg + ∇f · ∇g + fg(p1 −∇θ) · (p1 −∇ϕ)] cos(θ − ϕ) dx (3.34)

−
∫

Ω

[fgθ̇ − 1

η
fg∇ · p1 + g∇f · (p1 −∇ϕ) − f∇g · (p1 −∇θ)] sin(θ − ϕ) dx = 0,

∫

Ω

{

∇× p1 · ∇ × q1 + ∇ · p1∇ · q1 + [ηṗ1 + f2(p1 −∇θ)] · q1

}

dx

−
∫

∂Ω

Hτ
ex × q1 · n dσ = 0,

(3.35)
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for each (g, ϕ,q1) ∈ K(Q), a.e. t ∈ (0, T ) and

f(x, 0) = f0(x), p1(x, 0) −∇θ(x, 0) = ps0(x).

By means of the decomposition (3.25) – (3.26), the constitutive equation (2.30) yields

f2θ̇ +

(

1 − 1

η

)

f2∇ · p1 + 2f∇f · (p1 −∇θ) − f2∇2θ = 0. (3.36)

Proposition 3.2 Every regular solution (f, θ,p1) of the Ginzburg-Landau equations
(3.28) – (3.32) is a weak solution in the sense of Defintion 3.2.

Proof By multiplying (3.28) by g cos(θ − ϕ) and integrating on Ω, it results

∫

Ω

[ḟ g + ∇f · ∇g + k2fg(f2 − 1) + fg|p1 −∇θ|2] cos(θ − ϕ) dx

−
∫

Ω

g∇f · (∇θ −∇ϕ) sin(θ − ϕ) dx = 0.

(3.37)

On the other hand, from (3.36), we obtain

∫

Ω

[f θ̇ +

(

1 − 1

η

)

fg∇ · p1 + 2g∇f · (p1 −∇θ)] sin(θ − ϕ) dx

+

∫

Ω

[(f∇g + g∇f) · ∇θ sin(θ − ϕ) + fg(∇θ −∇ϕ) · ∇θ cos(θ − ϕ)] dx = 0.

(3.38)

By subtracting (3.37) and (3.38), we get (3.34).
Finally, inner multiplication of (3.29) by q1 and an integration by parts, lead to (3.35).

Let (f, θ,p1) be a weak solution of the problem (3.28) – (3.32). The choice g = f ,
ϕ = θ in the Definition 3.2 yields

∫

Ω

[

1

2

∂f2

∂t
+ |∇f |2 + f2|p1 −∇θ|2 + k2f4

]

dx =

∫

Ω

k2f2 dx. (3.39)

Therefore, by applying Gronwall’s inequality, we obtain

‖f(t)‖2 ≤ ‖f0‖2 exp (2k2t) 0 ≤ t ≤ T. (3.40)

By integrating (3.39) in the interval (0, t), with 0 ≤ t ≤ T , it follows1

t
∫

0

∫

Ω

[|∇f |2 + f2|p1 −∇θ|2 + k2f4] dx dτ ≤ k1‖f0‖2
2, (3.41)

1Henceforth ki denotes a function of the variable t, belonging to L1(0, T ).
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so that ‖f‖2
H1(Ω) and ‖f(p1 −∇θ)‖2

2 are L1(0, T )-functions.

Analogously, by choosing q1 = p1 in (3.35) and integrating on (0, t), we obtain the
identity

η

2
‖p1(t)‖2

2 +

t
∫

0

∫

Ω

[|∇ × p1|2 + |∇ · p1|2] dx dτ

=
η

2
‖p10‖2

2 −
t

∫

0

∫

Ω

f2p1 · (p1 −∇θ) dx dτ −
t

∫

0

∫

∂Ω

Hτ
ex × p1 · n dσ dτ,

so that

η

2
‖p1(t)‖2

2 +

t
∫

0

∫

Ω

[|∇ × p1|2 + |∇ · p1|2] dx dτ

≤ η

2
‖p10‖2

2 +

t
∫

0

‖Hτ
ex × n‖H−1/2(Ω)‖p1 × n‖H1/2(Ω) dτ

+

t
∫

0

[

k2

2
‖f‖2

4 +
1

2k2
‖p1‖2

4 + ‖f(p1 −∇θ)‖2
2

]

dτ.

The inequality (3.41), implies

η

2
‖p1(t)‖2

2 + k3

t
∫

0

∫

Ω

[|∇ × p1|2 + |∇ · p1|2] dx dτ

≤ η

2
‖p10‖2

2 +

t
∫

0

[

k2

2
‖f‖2

4 + k4‖p1‖2
2 + ‖f(p1 −∇θ)‖2

2

]

dτ

+

t
∫

0

k5‖Hτ
ex × n‖2

H−1/2(Ω) dτ ≤ k6 + k4

t
∫

0

‖p1‖2
2 dτ.

(3.42)

Thus Gronwall’s inequality yields

‖p1(t)‖2 ≤ k6(1 + k4t exp(k4t)), 0 ≤ t ≤ T. (3.43)

Therefore ‖p1‖2
H1(Ω) ∈ L1(0, T ).

Theorem 3.3 If Ω ⊂ IR2, Hτ
ex ∈ H−1/2(∂Ω), f0 ∈ L2(Ω) and ps0 = p10 − ∇θ0

with p10 ∈ L2(Ω), there exists a unique triplet (f, θ,p1) satisfying the Definition 3.2.

Proof Let (f1, θ1,p11) and (f2, θ2,p12) be weak solutions of the problem (3.28) –
(3.32).
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Denote by δfc = fc1−fc2 = f1 cos θ1−f2 cos θ2, δfs = fs1−fs2 = f1 sin θ1−f2 sin θ2
and δp1 = p11 −p12. Write the equation (3.34), first with (f, θ,p1) = (f1, θ1,p11), then
with (f, θ,p1) = (f2, θ2,p12) and subtract the ensuing relations. By choosing (g, ϕ) such
that g cosϕ = δfc, g sinϕ = δfs, we obtain

∫

Ω

[

1

2

d

dt
(δfc)

2 +
1

2

d

dt
(δfs)

2 + |∇(δfc)|2 + |∇(δfs)|2
]

dx

=

∫

Ω

k2[(δfc)
2 + (δfs)

2] dx+ J1 + J2 + J3 + J4,

(3.44)

where

J1 = −1

η

∫

Ω

(∇ · p11f1 sin θ1 −∇ · p12f2 sin θ2)δfc dx

+
1

η

∫

Ω

(∇ · p11f1 cos θ1 −∇ · p12f2 cos θ2)δfs dx

= −1

η

∫

Ω

[f1 sin θ1∇ · (δp1)δR− f1 cos θ1∇ · (δp1)δfs] dx,

J2 = −k2

∫

Ω

[(f3
1 cos θ1 − f3

2 cos θ2)δfc + (f3
1 sin θ1 − f3

2 sin θ2)δfs] dx

= −k2

∫

Ω

{f2
1 [(δfc)

2 + (δfs)
2] + (f2

1 − f2
2 )(f2 cos θ2δfc + f2 sin θ2δfs)} dx

J3 = −
∫

Ω

[(p2
11f1 cos θ1 − p2

12f2 cos θ2)δfc + (p2
11f1 sin θ1 − p2

12f2 sin θ2)δfs] dx

+

∫

Ω

[∇(f1 sin θ1) · p11 −∇(f2 sin θ2) · p12]δfc dx

−
∫

Ω

[∇(f1 cos θ1) · p11 −∇(f2 cos θ2) · p12]δfs dx

= −
∫

Ω

(f1 cos θ1δfc + f1 sin θ1δfs)(p11 + p12) · δp1 dx

+

∫

Ω

{p2
12[(δR)2 + (δI)2] + [∇(f1 sin θ1)δfc −∇(f1 cos θ1)] · δp1} dx

+

∫

Ω

p12 · [∇(δfs)δfc −∇(δfc)δfs] dx,

J4 = −
∫

Ω

(p11f1 sin θ1 − p12f2 sin θ2) · ∇(δR) dx
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+

∫

Ω

(p11f1 cos θ1 − p12f2 cos θ2) · ∇(δI) dx

= −
∫

Ω

(δfsp11 + f2 sin θ2δp1) · ∇(δfc)

−
∫

Ω

(δfcp11 + f2 cos θ2δp1) · ∇(δfs) dx.

Keeping the estimates (3.40) and (3.43) into account, we deduce the following inequal-
ity

|J1| ≤
1

η
‖f1‖4‖∇ · δp1‖2(‖δfc‖4 + ‖δfs‖4)

≤ ε

2
‖∇ · δp1‖2

2 +
C

2ε
‖f1‖2

4(‖δfc‖2‖δfc‖H1(Ω) + ‖δfs‖2‖δfs‖H1(Ω))

≤ C(ε)[‖∇ · (δp1)‖2
2 + ‖∇(δfc)‖2

2 + ‖∇(δfs)‖2
2] + C(t)[‖δfc‖2

2 + ‖δfs‖2
2],

where ε > 0, C(ε) is a positive constant and C(t) is a L1-function.

Analogously, we can prove the estimates

|J2| ≤ C(ε)
(

‖∇(δfc)‖2
2 + ‖∇(δfs)‖2

2

)

+ C(t)
(

‖δfc‖2
2 + ‖δfs‖2

2

)

,

|J3| ≤ C(t)
(

‖δfc‖2
2 + ‖δfs‖2

2 + ‖δp1‖2
2

)

+ C(ε)
(

‖∇(δfc)‖2
2 + ‖∇(δfs)‖2

2 + ‖∇ · (δp1)‖2
2 + ‖∇ × (δp1)‖2

2

)

,

|J4| ≤ C(t)
(

‖δfc‖2
2 + ‖δfs‖2

2 + ‖δp1‖2
2

)

+ C(ε)
(

‖∇(δfc)‖2
2 + ‖∇(δfs)‖2

2 + ‖∇ · (δp1)‖2
2 + ‖∇ × (δp1)‖2

2

)

.

Therefore, from (3.44) we get

∫

Ω

[

1

2

d

dt
(δfc)

2 +
1

2

d

dt
(δfs)

2 + |∇(δfc)|2 + |∇(δfs)|2
]

dx

≤ C(ε)
[

‖∇(δfc)‖2
2 + ‖∇(δfs)‖2

2 + ‖∇ · (δp1)‖2
2 + ‖∇× (δp1)‖2

2

]

+ C(t)[‖δfc‖2
2 + ‖δfs‖2

2 + ‖δp1‖2
2].

(3.45)

With the same technique, from (3.35), we have

∫

Ω

[

η

2

d

dt
(δp1)

2 + |∇ × (δp1)|2 + |∇ · (δp1)|2
]

dx = −J5 + J6, (3.46)
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with

J5 =

∫

Ω

(f2
1p11 − f2

2p12) · δp1 dx

=

∫

Ω

[f2
1 δp1 + p12(f1 − f2)(f1 + f2)] · δp1 dx,

J6 =

∫

Ω

(f2
1∇θ1 − f2

2∇θ2) · δp1 dx

=

∫

Ω

[f1(f1∇θ1 − f2∇θ2) + f2∇θ2(f1 − f2)] · δp1 dx.

Therefore

∫

Ω

[

η

2

d

dt
(δp1)

2 + |∇ × (δp1)|2 + |∇ · (δp1)|2
]

dx

≤ C(ε)
[

‖∇(δfc)‖2
2 + ‖∇(δfs)‖2

2 + ‖∇ · (δp1)‖2
2 + ‖∇× (δp1)‖2

2

]

+ C(t)
[

‖δfc‖2
2 + ‖δfs‖2

2 + ‖δp1‖2
2

]

.

(3.47)

From the relations (3.45) and (3.47) we have

∫

Ω

1

2

d

dt
(δfc)

2 + (δI)2 + η(δp1)
2] dx

+

∫

Ω

[|∇(δfc)|2 + |∇(δfs)|2 + |∇ × (δp1)|2 + |∇ · (δp1)|2] dx

≤ C(ε)
[

‖∇(δfc)‖2
2 + ‖∇(δfs)‖2

2 + ‖∇ · (δp1)‖2
2

+ ‖∇× (δp1)‖2
2

]

+ C(t)[‖δfc‖2
2 + ‖δfs‖2

2 + ‖δp1‖2
2]

so that, by a suitable choice of the constant C(ε), we conclude

∫

Ω

1

2

d

dt
[(δfc)

2 + (δI)2 + η(δp1)
2] dx ≤ C(t)[‖δfc‖2

2 + ‖δfs‖2
2 + ‖δp1‖2

2].

Gronwall’s inequality yields δfc = 0, δfs = 0, δp1 = 0. Hence f1 = f2, ∇θ1 = ∇θ2,
p11 = p12.
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Abstract: We discuss the design and behaviour of families of neural networks
which grow out of a small set of “mother” neurons in response to external
stimuli and to the activities present in various parts of the net at a given
time. The growth process is subject to a few fundamental rules, like

• the ability of neurons to grow new neurons or connections is gradually
exhausted with the number of generations

• neurons are either of excitatory or inhibitive type
• inhibitive neurons have a tendency to form long-range connections,

whereas excitatory neurons “prefer” short-range connections.

In addition, there are a number of free parameters in the equations driving
the time evolution of the neural activities. Our design is implemented using
Matlab, such that the growth process of the network and its activity can be
observed and controlled interactively on the computer screen.

Once the networks are grown both periodic attractors and fixed points are
observed generically in response to external input. The inputs used in the
network’s formation are typically distinguished by characteristic responses,
but the resulting networks are capable of other behaviour in response to other
inputs.

Keywords: Neural networks; growth rules.

Mathematics Subject Classification (2000): 92B20, 68T05, 37N25.

1 Introduction

Standard artificial neural networks are either feed-forward nets of perceptron type, or
they allow feedback between the various layers of neurons. The latter type is usually

c© 2003 Informath Publishing Group. All rights reserved. 43
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described as a dynamical system, and the equations for the membrane potential (or
firing rate, or activity) of the individual neurons form a coupled system of nonlinear
differential equations. For surveys on the theory of these nets, we refer the reader to the
books by Arbib [2], Hertz, et al. [11], Amit [1], or the (older) papers by Grossberg [8] or
Lippmann [12].

What all these nets have in common is that their graph structure is fixed once and for
all. Connections exist or not, and training or learning of the net is done by adjusting the
connection weights. This imitates the biological process of changing synaptic efficacies;
various learning rules are used, the most common being variants of the Hebb Rule ([9]).
In essence, a neural net consists of the following three elements:

1. A set of neurons at certain locations; each neuron can send output or receive input
via connections. A connection is a one-way street; from the point of view of the
sending neuron, we will call it an axonal (output) connection; from the point of
view of the receiving neuron, we will call it a synaptic (input) connection. In
simple additive networks, the rate of change of a neuron’s membrane potential is
determined by a sum of synaptic inputs, each of which is a nonlinear function of
a presynaptic neuron’s membrane potential (which may be interpreted as a firing
rate), modulated by a “synaptic efficacy” (connection strength).

2. A set of existing connections between the various neurons, which gives the whole
object the structure of a directed graph.

3. A matrix of connectivity (synaptic) strengths, which can change in the learning
process.

In these standard nets, the first two of these elements are fixed; only the third is subject
to change. Because of this, the traditional method of developing an artificial network is
to connect every neuron to every other neuron with some initial connection weight (if
the network is layered then typically only neighbouring layers are fully connected) and
then to evolve the connection weights according to some training process. For nets that
consist of a large number of neurons, this training process can become quite awkward.

In any case, biological evidence points in a different direction. Complicated biological
neural networks, i.e., brains and nervous systems, evolved from simpler ones in an evo-
lutionary process, a process which is repeated following a genetic blueprint with some
accuracy in each individual as the brain develops. The end results are large brains, with
as many as billions of neurons but a relatively sparse connection matrix. Even small sub-
systems of the brain are far from fully connected. These natural neural networks display
a wide variety of principles of organization ([14]) including “layered” structures (e.g.,
separation between “processing” neurons and data gathering neurons, with relatively
few intermediate layers, cortical layers and columns, or different ‘nuclei’ or structures in
the brain), interplay between excitation and inhibition (sometimes “short-range excita-
tion, long-range inhibition” to produce “cell assemblies”, sometimes pairs with negative
feedback, such as motor neurons and Renshaw cells), and dynamic responses (e.g., oscil-
lations) to inputs.

Neurons differ from other body cells in the sense that they do not split. As a con-
sequence, a mature brain is a more stable biological structure than, say, a muscle or
any other organ, where the individual cells are not so important. Neurons, once they
die, can possibly be replaced, but the functionality of the brain is mostly maintained by
the sharing of tasks by many neurons. This redundancy is indeed a central feature of
biological neural nets.
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It is easy to think of reasons why neurons in the mature brain might not have been
designed to split. Brain functions are more complex than the functions of other organs,
and the way that neurons interact is crucial for this function. Neural cell division on a
large scale would presumably alter brain function in ways incompatible with maintaining
the multiple specific tasks assigned to the brain by nature.

In the process of evolution, however, such splitting must have occurred in one way or
the other, because otherwise there would be no sophisticated brains at all (when we use
the word “brain” here, we mean any biological neural structure with at least a few dozen
interconnected neurons). Splitting of some kind must also occur in the growing brain,
albeit controlled by the genetic code.

The objective of the project described in this article is to attempt a simulation of
an evolutionary growth processes for neural networks. Although not truly evolution, the
process used has been inspired by the biological idea. Our purpose is to develop a network
displaying characteristic responses to inputs used to guide the growth. We start with a
network of very simple type, namely a few neurons which are present from the outset and
whose activity is interpreted as the information processing done by the emerging network
(we call these neurons the “mother neurons”). The mother neurons have the ability
to split, or, more accurately in our implementation, “sprout” new neurons, which can
themselves sprout again, or alternatively, form connections to already existing neurons.
The resulting “child” neurons, “grandchild” neurons etc. are connected to their parent by
a synaptic connection, and they can, with some randomness in the process, grow axonal
connections to other neurons and “share” their activity, as measured by their membrane
potentials. The whole process is driven by external inputs and by the activity levels of
the existing neurons at any given time. The decision as to when and where to connect or
sprout is deterministic. However, when the “best” receiving location is not unique, one is
chosen randomly. Synaptic connection strengths change over time and can be excitatory
or inhibitive, but a given neuron can grow either excitatory or inhibitive connections, not
both. We shall therefore classify neurons as either excitatory or inhibitive, depending
on what type of connections they grow. Inhibitive neurons are never allowed to sprout,
because the activity of a “child” of such a neuron would be immediately suppressed and
therefore would contribute little to the information processing ability of the net. Instead,
when an inhibitive neuron grows a connection, this connection must lead to an already
existing neuron.

We implemented limits on the size of the net by setting low upper limits on how many
axonal connections to new or existing neurons a given neuron can form and how many
synaptic connections it can receive. For all the details of the process, see Sections 2
and 3.

The growth process of the neural networks presented here is dependent on the current
spatial configuration. As a courtesy to the human visual system, the system evolves on a
two-dimensional grid, and the direction in which a new neuron sprouts from an existing
one depends on a “potential” created by the neurons already in place. Neurons sprout
downward from a top layer (occupied by the mother neurons), and the generation number
of a neuron is identical to the number of its layer. In this sense, all of the mother neurons
are first generation neurons. The potential has the effect of allowing neurons to “feel”
each others presence even without being connected. As well as depending on the location
and type of the neurons in the network, the potential is also dependent upon both the
number of available synaptic connections left in other neurons and the generation number
of each neuron. This latter dependence was introduced after a number of numerical ex-
periments indicated that a sufficient number of inhibitive back-connections are required
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for the network to exhibit interesting behaviour. Depending upon the neuron-type (ex-
citatory vs. inhibitive) the neuron can either sprout or connect. Recall that inhibitive
neurons can only connect. Rather than searching the complete two-dimensional grid for
viable locations, the sprouting/connecting is only allowed inside a certain window whose
size depends on the generation (level) and on the neuron-type. Connections are allowed
anywhere inside this window but sprouting is further restricted by allowing each neuron
to only sprout down one level. Inhibitive neurons differ from excitatory neurons in the
sense that they connect preferably over longer distances, and preferably to neurons of
earlier generations.

We dwell further on the problem of why the mathematical analysis of complex neural
networks seems so hard if attempted directly. A network of, say, 100 neurons, in which
each neuron is connected to 10 others, will be described by 100 coupled nonlinear ordinary
differential equations, with 10 coupling terms on the right hand side of each equation.
If equations for the connectivities (on a slower time scale) are added, the number of
equations will grow by another thousand. Even if we disregard these latter equations for
the modeling of the neural dynamics, the state space of the system has 100 dimensions,
and it seems nearly hopeless to predict the dynamical behaviour of such a system in the
general case without some structural principle, or its response to external inputs (modeled
as force terms on the right-hand sides of the equations). Even for much simpler systems
of differential equations, with only 3 or 4 dependent variables, prediction of the dynamic
response to inputs is a real challenge (for a case study on the Lorenz system of equations,
see Evans, et al. [7]). Attempts to simplify the description of such systems by nonlinear
diffusion equations were made by Cottet [4] and, in greater generality, by Edwards [5],
but the analysis done in these papers shows that such mean field approximations are
only feasible under very special assumptions on the connection matrix (in Edwards [5]),
connections are local, predominantly excitatory, and nearby connections cannot have
very different strengths). Other structural principles, such as symmetry of connections
(Hopfield [10]), tend to be overly restrictive and un-biological.

Yet nature has found ways to design much larger networks, described by systems of
equations of unimaginable complexity, which display highly complex yet highly organized
behaviour. Our paper is an attempt to repeat such an organic design process in a
computer.

2 The Model

We now describe, in a series of steps, how our network starts from the mother neurons
and grows in response to external stimuli and, eventually, internal activity. The activity
of a given neuron is identified with the membrane potential of that neuron. External
inputs are identified with force terms on the right-hand sides of the equations. For a
given size of the net (say n neurons), the evolution of the membrane potentials with
respect to time is given by network equations of the form

u̇i = −ui +

n
∑

j=1
j 6=i

Tij sgm(µ(uj − wj)) + Ii, i = 1, 2, . . . , n, (2.1)

where ui is the membrane potential of the i-th neuron. The three terms on the right hand
side are respectively: a leakage term, the contribution from all the neurons connected
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to the i-th neuron and an external force term. The connection strength between the
neurons with label j and i is denoted as Tij , where j is the label of the sender and i is
the label of the receiver. The external force term is denoted as Ii and is interpreted as
a temporary input upon neuron i. This can be switched on or off, and can take any real
value inside an interval [−Imax, Imax], thereby enhancing or inhibiting the activity of the
i-th neuron. The symbol sgm denotes a sigmoid function and for this paper, we take

sgm(x) =
1

2
(1 + tanhx) =

1

1 + e−2x
, (2.2)

which assumes values in (0,1). Other sigmoids are certainly possible. The constants
wj are inserted as firing thresholds which further differentiate the activity of inhibitive
from that of excitatory neurons. In our experiments, we chose wj = 0 for all excitatory
neurons, wj = 0.5 for all inhibitive neurons. The rationale for this, in a discrete time
context, is explained in [6] and [13]. In essence, by first choosing the constant µ sufficiently
large and then combining inhibitive neurons with a positive threshold with excitatory
neurons with threshold at zero creates conditions that are likely to lead to oscillatory
and perhaps even chaotic behaviour of the net in the absence of external input. The
experiments discussed in Section 4 confirm this. The constant µ is known as the gain,
and

vi = sgm(µ(ui − wi)) (2.3)

is the firing rate of the ith neuron. By construction, the membrane potential takes values
in R, whereas the firing rate takes only values in (0,1).

We will also need a rule to initialize the connection strengths Tij . Once a connection
strength is determined, we could apply a learning rule to adjust it dynamically, but we
chose to leave it fixed for the lifetime of the network so that effects of the growth process
would not be confounded by subsequent learning effects.

The basic plan behind the development of the network can be encapsulated with a
few simple rules.

1) Neurons are grown in layers.
2) Excitatory neurons form in locations of low activity.
3) Inhibitive neurons form in locations of high activity.
4) Input that changes in time modulates the activity.
5) Input is distributed on the x-axis, while layers are formed in the y direction.

Because of this design plan, the network is grown on an M ×M grid in response to a
series of inputs which are visualized as being applied from the bottom. The position of
a neuron is therefore given by a pair of numbers (a, b), a ∈ 1, . . . , M , b ∈ 1, . . . , M . The
horizontal coordinate a is cyclic in that the position (a + kM, b) is identified with (a, b)
for all k ∈ Z. The vertical coordinate is grouped into a set of equally spaced disjoint
intervals the size and number of which depends on the size of the grid, M , and the
maximum number of neurons that could be placed. These vertical intervals are referred
to as layers, levels or even generations. If we denote the width of a level as ∆l and the
width of the gap between levels as ∆g then level k +1 is defined as the points (a, b) with

M − k(∆g + ∆l) ≤ b < M − k(∆g + ∆l) + ∆l.

In the special case of level one, k = 0, we take b = M . One additional (arbitrary)
constraint is that the bottom of the last layer must lie at b = 2. This implies that the
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number of layers is 1 + (M − 2)/(∆g + ∆l). For the numerical experiments we chose
M = 30 and because of the maximum number of expected neurons, the vertical position
is partitioned into five disjoint subsets each with a width of ∆l = 3 grid points and
separated by a gap of ∆g = 4 grid points. This is illustrated in Figure 2.1. To start
the net, we place N mother neurons equidistant from each other on level one. In the
case of N = 3 these are placed at (5,30), (15,30), (25,30). The growth process is then
driven by inputs located in the lowest layer. When the system is first defined, no neurons
exist at this input layer. Therefore during the training process each neuron experiences
a weighted average of the signal applied at the input layer according to the expression

Ii =
1

ni

ni
∑

j=1

f(xj), xj = xi −
ni − 1

2
, . . . , xi +

ni − 1

2
.

Figure 2.1. Shown here is the location of the various layers of the network used

in the numerical experiments. It depicts the location of the mother neurons, the

various levels and the location of the input layer. Also included is the vertical cone

extending from an external input located at (a, b) = (15, 1).

Here Ii is the external force that appears in equation (2.1) and is applied to neuron i by
the input vector f . The number of points over which to average, ni, is governed by the
layer of the i-th neuron and in the case of our 30 × 30 array we chose {ni}5

i=1 = 11, 7,
5, 3, 1 for layers 1 thru 5 respectively. Consequently, the inputs applied at the bottom
layer are felt by all of the neurons that lie inside a vertical cone that emanates from the
location where the input is applied. Once again, refer to Figure 2.1. After the training
process, the input level for all of the layers is divided by a factor 5− l + 1, where l is the
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layer of the neuron under consideration. Ultimately, this means that the external input
I to the mother neurons is suppressed by a factor of one over the maximum number of
layers while the neurons at the bottom of the network, l = 5, feel the external input
directly.

3 The Growth Process

3.1 The mother neurons

The mother neurons are really just ordinary neurons, but they have the ability to sprout
new neurons, to which they will be connected via axonal connections, in response to
their own activity. Specifically, the mother neurons can initially receive an input, i.e., be
stimulated externally from the bottom, and if their activities rise above a predetermined
threshold τ , they will sprout an axon with a child neuron. The mother neurons are by
definition excitatory neurons, meaning that the axonal connection which connects them
with children is excitatory. The child neurons can be either inhibitive or excitatory; the
choice is made randomly, and the probability that a sprouted neuron is inhibitive is a
free parameter in the program, denoted by ρ. We varied ρ from layer to layer, starting
with ρ = 0.2 for the second layer and rising to ρ = 0.6 for the bottom layer.

If a child neuron is excitatory, it has again the ability to sprout new neurons in response
to sufficient activity. Recall that the sprouting takes place when the activity is above the
threshold; for a sufficiently large network, this can happen even when the neuron receives
no external input. If the child is inhibitive, we do not allow it to sprout “grandchildren”;
its only way to build connections is to connect back to the mother neuron or, later, to
other neurons already in existence.

We require that the mother neurons can sprout child neurons, or connect via axonal
connections to other neurons (e.g., grandchildren), only a finite number of times; the
mechanism which we use to enforce this is to define an integer G which is the maximal
possible number of generations that can sprout from the mother neurons. So that we
generate a nontrivial network, we require that G > 1. The total number of axonal
connections for any neuron is G+1 so that even if a mother neuron has sprouted G times,
there is still one axonal connection available to connect to an already existing neuron.
For the next generation, only G− 1 of the total G + 1 potential axonal connections are
allowed to sprout, etc. This rule implies that every subsequent generation can have one
fewer sprouted connection than the previous generation and is a convenient (and natural)
way to limit the size of the net. Indeed for our 30× 30 array we have five layers so that
G = 4 and therefore using the above conditions, the network can have a maximum of 195
neurons. Since ρ 6= 0, we usually have inhibitive neurons and as a result the expected
number of total neurons is less.

If gi is the generation label of the i-th neuron, then gi is an integer between 1 and
G + 1. By ai(t) we denote the number of remaining potential axonal connections of the
i-th neuron at time t. If t∗ is the moment of creation of this neuron, then ai(t∗) = G+1
and the number of these potential connections that can sprout is G − gi + 1.

The third characteristic number associated with each mother neuron is again an in-
teger, which we denote by S, the maximal number of synaptic connections which the
mother neuron (or any other neuron) can potentially accommodate. We choose S = G.

We summarize: In the beginning, we create N mother neurons which are characterized
by three parameters, τ (threshold for sprouting or connecting), G, the number of admis-
sible axons that can sprout from the mother, and S, the number of possible synaptic
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Figure 3.1. Illustrated above is a sample network showing a few mother neurons

along with their children. When a new neuron is created in the i-th layer (generation

gi = i) it is assigned ai = G + 1 potential axonal connections (G + 1 − gi can

sprout) and S potential synaptic connections. As the network evolves both of these

values can decrease. The horizontal dashed lines divide the net into the five levels

while the vertical dashed line indicates, where the net wraps around so that the

neuron at (35,30) is another image of the neuron at (5,30). Solid connections are

excitatory; dashed connections are inhibitive.

connections. Both S and τ are the same for all neurons while the number of admissible
axonal connections that can sprout depends on the layer in which a particular neuron
finds itself. Figure 3.1 gives a simple network that has begun to evolve under these
assumptions.

3.2 The next generations

The neurons of the next generation (the children of the mother neurons) are set to
have essentially the same properties as the mother neurons: They have again room for S
synaptic connections, and their threshold for sprouting or connecting is again τ . However,
we allow them to sprout only G − 1 times, and the next generation will be allowed to
sprout only G − 2 times, etc. This is a built-in mechanism to limit the size of the net,
and it follows that the net can never grow to more than

NG = N

G
∑

k=0

G!

(G − k)!
= N

G
∑

k=0

(

G

k

)

k!

neurons, where N is the number of mother neurons (which are also thought of as the
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information processing neurons). For the situation N = 3 mother neurons and G = 4,

there is a total of NG = 195 possible neurons.

Once a few neurons are in place, neurons which receive an input above the chosen

threshold do not necessarily have to sprout a new neuron. We also give them the option

to build a connection to an already existing neuron, e.g., to a mother neuron, a sister

neuron, or any other neuron with room for synaptic connections. In fact, as already

mentioned above for the first child of the mother neuron, inhibitive neurons have only

this option.

We have so far only briefly discussed the geometric structure of the emerging net. In

fact, it is conceivable to ignore this aspect completely and simply not assign the new

neurons a spatial location at all; in such a model, every neuron will consider every other

one as a candidate for a possible connection, and may make a random choice among

these candidates. Numerical and graphical experiments with such a setup proved messy

and showed that it was all but impossible to explore interesting correlations between the

given input, the structure of the net and the output.

Therefore, we postulated that our neurons actually had to have a spatial location as

described above. As a simple mechanism to record which sites in the array are occupied

and by which type of neuron, we introduce two matrices. The first is an occupation

matrix Oij whose entries are 0 at vacant sites and are the labels of the neurons at

occupied sites (neurons are labeled in the order in which they are created). The second

matrix Zij encodes the neuron type and has entries 1, −1, or 0, depending on whether

the site is occupied by an excitatory or inhibitive neuron, or vacant. These two matrices

could be easily combined into a single matrix.

We further postulate that by their mere presence, the neurons create a potential field

which determines the direction of new axonal connections. Such connections may termi-

nate in new neurons (sprouting) or at neurons already present (connecting). Inhibitive

neurons have only the second choice. The potential is a function of the state of the

system at a given time. We define this state by the neurons which exist at this time

and their properties. The neuron with label k at a location (site) (xk, yk) ∈ Z
2 in level

gk of type Zxk,yk
has activity (membrane potential) uk(t), sk(t) ≤ S free synapses and

ak(t) ≤ G + 1 free axons. We sometimes use the shorthand Zk = Zxk,yk
.

The state of the system at time t, when K neurons have been created, is then given by

the set of coordinates {(xi, yi, gi, si(t), ai(t), Zi); i = 1, . . . , K}. Notice that neither the

membrane potential, nor the number of existing connections play a part in the definition

of current state.

Modifications of our model could certainly include these other characteristics into the

definition of state. However, the current potential depends only on the variables defined

above. We tried various candidates for potentials; the one which seemed to lead to

satisfactory patterns is the following:

V (x, y) =

N
∑

i=1

S/2 − si + γ|G − gi|
1 + |x − xi| + |y − yi|

, (3.1)
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where γ is a free parameter. We found γ = 1/2 to work quite well for our numerical
experiments. There are two effects that are modelled in the potential. The S/2 − si

term has the effect that a neuron at site (xi, yi) will make a negative contribution to the
potential while it has many free synapses; as its number of free synapses, si, decreases,
this potential will gradually increase and eventually become positive. The |G− gi| term
makes neurons which are vertically far away more attractive. We will see below that this
tends to create longer back connections.

If our potential were a potential in the usual physical sense, forces between various
neurons would act in the direction of the gradient of the potential. We loosely follow this
idea in using the potential to give directions for sprouting or connecting. To do this, we
need one more ingredient, namely the idea that neurons will look for sites to sprout to, or
connection partners, in a neighborhood rather than far away. We implicitly work under
the assumption that there is a natural scale of length for the typical connection, i.e., that
the axonal connection cannot exceed a certain length. This length defines a “window”
around each neuron already in place. The size and shape of the window depends on both
the generation number and the neuron-type. Inhibitive neurons are permitted to connect
further, so their windows are larger than those associated with excitatory neurons. For a
given neuron at position (i0, j0) the excitatory and inhibitive windows about this point
are given by

WE(i0, j0) = {(i, j) | |i − i0| ≤ wE
g , −hE

g ≤ j − j0 ≤ hE
g − |i − i0|},

W I(i0, j0) = {(i, j) | |i − i0| ≤ wI
g , −hI

g + |i − i0| ≤ j − j0 ≤ hI
g},

where the width and height of the excitatory/inhibitive window, wE,I
g and hE,I

g depend
on the generation g and are listed in the following table.

Generation g wE
g hE

g wI
g hI

g

1 10 7 10 2

2 8 9 8 7

3 8 9 6 14

4 8 9 6 21

5 8 3 6 28

Typical windows for each of the levels are depicted in Figure 3.2. Notice that the
excitatory window is diamond shaped at the top and rectangular at the bottom while
the inhibitive window is inverted. The excitatory window is chosen so that a neuron
can connect no further than adjacent levels (and only sprout into the next level down)
while the inhibitive window allows connections back to the mother neurons from any
generation.

If the neuron at site (xj , yj) is inhibitive, it can connect to another neuron inside its
window. If it is excitatory, it can connect to another neuron in its (smaller) window, or
it can sprout a new neuron at an empty site inside this window. The details of these
sprouting and connecting routines are described in what follows.
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Figure 3.2. Depicted above are examples of the various excitatory and inhibitive

windows or target sets. Specifically shown are excitatory target sets for levels three,

four and five and an inhibitive window for level three. The characteristics of the

window depend on the type and level of the neuron on which it is based.

3.3 The sprouting and connecting routines

These procedures are outlined here in detail, but they are also the content of the flow
chart in Figure 3.3. For the purposes of this section, assume that we have arrived at a
certain net after a number of steps, and that the activity of some of the existing neurons,
either by external or internal stimulation, is above the threshold. We then loop through
all the neurons and make the following tests and choices.

A. For the i-th neuron, check whether the activity is above the threshold. If no, go
to the next neuron, if yes, check whether the neuron is excitatory or inhibitive.
In the first case, go to B. In the second case, go to C.

B. At this point we know that the i-th neuron can either connect or sprout. Therefore
define the size of the window, WE(xi, yi), in which to search for a suitable site.
The size and shape of the window is based on the neuron type and location as
described in Section 3.2. There are now three subcases.

i) If this neuron has no axons left, ai(t) = 0 then go to the next neuron.
ii) If this neuron only has one axon left, ai(t) = 1 then this neuron can only

connect. A neuron cannot sprout if it only has one axon left. Go to step C.
iii) If ai(t) > 1 and the neuron is excitatory then the neuron can either sprout

a new neuron or connect. Go to step D.
C. We get to this step if we are only allowed to connect which always happens for

inhibitive neurons. If the i-th neuron is inhibitive, it looks at those neurons with
at least one free synapse inside its target set, W I(xi, yi), and chooses the location
that has the maximal potential. Alternatively, if the i-th neuron is excitatory,
the target set becomes WE(xi, yi) and instead of maximizing the potential, it
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Figure 3.3. Shown here is the algorithm for the decision to sprout or connect.

This is also outlined in Section 3.3.

looks for the location where the potential is minimal. In this search, a number
of neurons are disregarded according to the following criteria:

i) We cannot already be connected to this neuron.
ii) The location to which we want to connect must have synapses left.
iii) We cannot connect to ourselves.
iv) If we are on the bottom layer we cannot connect to the bottom layer.

From the way that our potential was defined, the inhibitive neurons will typically be
targeted towards neurons that already have many synaptic connections and are there-
fore likely to be highly active. If there are several sites which have the same maximal
potential and are occupied by connection candidates, the neuron chooses one randomly
for connection. Denote the suitable candidate as the j-th neuron. If no suitable neuron
is found then return to step A otherwise continue to step E.

D. We get here if we can either connect or sprout. In addition, we know that the i-th
neuron is excitatory. In this case we are looking for a minimum of the potential
inside the target set WE(xi, yi). If the site under consideration is vacant we can
sprout a new neuron. In this case there are two extra criteria:

i) The i-th neuron must be allowed to sprout. Recall that a neuron on level l
can only sprout G − l + 1 times.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(1) (2003) 43–63 55

ii) If the position under consideration is above the current neuron’s position,
yj > yi, then the position is not eligible since we cannot sprout upwards.

If the site is occupied then the i-th neuron must connect. In this case we have the
four criteria already listed in item C.

If there are several sites which have the same minimal potential, the neuron chooses
one randomly for connection. Denote the suitable candidate as the j-th neuron. If the
i-th neuron sprouts go to step F. If it connects, go to step E and if no viable site is found
go back to step A.

E. Connect the i-th neuron to the j-th neuron. Section 3.4 will detail how the
connection strength is determined. In the process, the number of available axonal
connections for the i-th (sending) neuron is reduced by one, ai → ai − 1, and
the number of available synapses of the j-th (receiving) neuron is reduced by
one, sj → sj − 1.

F. Sprout a new neuron to position (xj , yj). Section 3.4 will describe how the con-
nection weight is determined. As well, the number of free axonal connections of
the i-th neuron is reduced by one, ai → ai − 1. For the new neuron, we assign
a generation number that is one less than its parent. The choice whether it be
excitatory or inhibitive is made randomly, with a probability determined by the
parameter ρ described in Section 3.1.

Notice that the sprouting process will automatically come to an end with the last
generation, and the structure of the net will have been created by its own activity, and
hence, to some degree, by the inputs which were active during the process.

3.4 The connection weights

We used a connectivity function which creates a connection weight between the i-th
(sending) and j-th (receiving) neuron as

C(i, j) = λZi sgm(µui) sgm(µuj), (3.2)

where Zi is the neuron type of the sending neuron (−1 for inhibitive and +1 for excitatory
neurons). In terms of the firing rates vi (2.3),

C(i, j) = λZivivj

and we set the connection matrix entry

Tij = C(i, j). (3.3)

3.5 The dynamics of the system

The dynamics of the system happen on two different time scales: A fast one for the
evolution of the individual neurons’ membrane potentials, given by equations (2.1), and
a slow one for alterations of the net, involving the growth process, the creation of new
connections and the setting of new connection strengths in accordance with (3.2) – (3.3).
Once defined, connection strengths are not allowed to update. In practice, we solved
equations (2.1) by the Matlab routine for two time units, and then stopped to update
the system according to the algorithm described in Section 3.3. Any connections created
at this time get the connection strength defined by (3.3). We emphasize that the already
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existing connectivities are not updated. Rather, they remain fixed throughout the exis-
tence of the network. It would be possible to allow synaptic plasticity via a generalized
Hebb rule where already existing connectivities are updated according to

T new
ij = (1 − ǫ)T old

ij + ǫC(i, j)

with ǫ is a free parameter which determines how rapidly the connection strengths change.
We did not do this as we wished to separate the effects of network growth in response
to inputs from those of subsequent synaptic change. However, experiments with the
learning rule included led to very similar results.

3.6 Input application

Input signals are applied directly to the lowest level of the net and felt at the upper
layers through the averaging process described in Section 2. The following describes
the implementation that we used. We emphasize that this is only one of many possible
choices. Our first input is zero everywhere except at the grid position (5,1) (under the
first mother neuron) where it has a nonzero value u0. In our case we chose the value
u0 = 11. The input remains at this position for eight time units which is four of the
long time cycles. This gives the network a chance to grow and alter itself in response
to this input. After four long cycles the input is moved to the position (15,1) under the
second mother neuron. It remains here for four cycles then moves to (25,1) completing
one pass of the training cycle. This process is continued until no further growth in the
net is observed. The goal of this process is to train the network to classify clearly these
three input locations; in addition, the emerging networks display characteristic responses
to many other inputs.

3.7 Input-output representation, graphical depiction of the net and of the

potential

This is done in three windows brought up by Matlab. In one of these windows, the
network window, the neurons are visible at grid-points, and their connections are dis-
played as piecewise straight lines (solid green for excitatory connections, dashed red for
inhibitive connections). The second window, the potential window, shows the potential
as a colour map. The only purpose of this map is to indicate in which direction the net
will grow at a given time. The third window, the activity window, displays the activities
of the mother neurons (in our case three) as a function of time; what we are looking for
in this window is characteristic responses of the top layer neurons to classes of inputs.

Almost all the relevant information is contained in the network window, where the
whole net and its activity is shown. In this window neurons are represented as triangles
and we found it most convenient to display the connections as piecewise straight lines
with one “kink” that has a rational and irrational component. This serves two purposes.
The direction of the connection is from the side of the shorter segment to the longer
segment. In addition, because the location of the kink has both a rational and irrational
component, it is unlikely that the graphical representations of two connections will fall
on top of each other.
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4 Results and Discussion

We conducted extensive tests with the program and made the following observations.

4.1 The effect of ρ

In most cases, the net will grow rapidly if there is sufficient initial stimulation. The input
leads to high activity of the mother neurons, to sprouting, to high activity of the next
generation, which sprouts or reconnects, and so on. The process can end prematurely if
too many inhibitive neurons are created early in the game. These must connect to other
neurons, whose activity then gets inhibited to the point where they may not sprout new
neurons anymore. High stimulation of such neurons can lead to new growth.

Typically, however, when the number of inhibitors is kept low, once a few neurons are
in place, growth continues even when input is turned off. The chosen growth rule, which
directs new excitatory (inhibitive) neurons to locations of lowest (highest) potential,
appears to lead naturally to the formation of subnets (clusters). These clusters will
usually form inhibitive connections to other clusters and back to the upper layers. The
reason is the longer range of inhibitive connections. It follows that the inhibitive neurons
in the lower layers are the most sensitive neurons to inputs.

We found that interesting nets, in the sense of having characteristics oscillations, were
more likely to emerge if the fraction of inhibitive neurons increases from layer to layer. To
this end, the parameter ρ, which is the probability that a sprouted neuron be inhibitive,
was set at 0.2 for the second layer, at 0.3 and 0.4 for the next two layers, and 0.6 for the
last layer which is not allowed to sprout at all, merely connect.

This description indicates that ρ is one of the most important parameters. If there
is too little inhibition, such mostly excitatory nets tend to freeze in high activity states,
whereas too much inhibition leads to a freeze in low activity states. Such nets still
respond to input, but in a fairly trivial way-neurons directly affected by input, or directly
connected to a neuron receiving input, show a response, but the rest of the net seems
rather unaffected. It follows that an appropriate ratio between inhibitive and excitatory
neurons is important.

4.2 The effect of the gain

The other crucial parameter appears to be the gain µ. This is not very surprising, as
the gain is well-known to influence the behaviour of a neural network in sensitive ways.
For low values of µ, the net tends to grow towards one with nonoscillatory stable rest
states; inputs can force the net from one such steady state to another one, but it is
questionable whether this is really an optimal way of information processing. First, it is
not consistent with biological observations, where chaotic activity is seen in rest states
([15]) and periodic attractors seem the typical responses to inputs ([3]). Second, it may
well be that chaotic rest state activity increases the information capacity of a network in
ways which we do not (yet) understand.

Be that as it may, for larger values of µ, (2 ≤ µ ≤ 10) and for the choices of ρ described
earlier we observed that many of our emerging nets showed characteristic oscillatory
responses towards specific inputs; i.e., if for a grown net an input is applied at one of the
30 locations at the bottom, one, two or even all three of the mother neurons will display
oscillations with characteristic amplitudes and frequencies. For most inputs, only one
or two of the mother neurons will oscillate, while the others will show steady activity.
This observation is satisfying inasmuch as it is consistent with biological observations;
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considering oscillations as acceptable output also increases the differentiating capacity of
the net dramatically, the main advantage being a vastly larger set of possible attractors,
with the ability to respond characteristically to many different types of input.

4.3 What is cognitive behaviour anyway?

We have so far dodged this question, in spite of the fact that it is of central importance
for our project. We admit from the outset that we have no clear definition of cognitive
behaviour; we let ourselves be guided by what is seen in nature.

There are at least two different types of information-processing ability which are ob-
served in natural neural networks. The first kind is a rather straightforward method of
image-projection, in which signals are received by receptors (e.g., the retina cells in the
back of the eye) and forwarded via neural connections towards a subunit of the brain,
where the observed pattern is then reproduced with some accuracy. For example, this is
how the visual cortex operates.

We refer to this type of information processing as trivial cognitive behaviour, for two
reasons: a) it is immediate how to connect input and output neurons for the objective,
namely, by high-fidelity bundles of connections which transfer an input essentially un-
modulated to the output layer, and b) there is no attempt or potential for interpretation;
the process is simply one of data transmission. Clearly, to produce this kind of informa-
tion processing, we could have done no growing at all in our net: The three input neurons
will certainly respond with different steady levels of activity to various inputs, simply
by the established rule that the applied inputs are to be felt initially (with some aver-
aging) by the mother neurons. This process will certainly define a (trivial) input-output
relationship like the mentioned example of the visual system.

The second, non-trivial kind of information processing is harder to define, and we
follow natural observation for a tentative definition. In biological observations, a typical
reaction to a stimulus in a subunit of a neural net is a transformation from a rest state
which may be noisy or chaotic ([15]) to oscillations with characteristic frequency and
amplitude. It is this type of transformation which must be interpreted as a transition
from a rest state to a cognitive state. Presumably, information processing via oscillatory
states defines a much larger volume of all “cognitive” states than just steady states of
neuron arrays ([3]), thus enhancing cognitive capacity; besides, oscillatory states may
be easy to attain if certain parameter ranges and connectivity types are permitted, thus
setting a natural path for evolution.

Our experiments indicate that this is a feasible path; as the results from the next
section show, the mother neurons tend to respond with characteristic oscillations for
most of the stimuli one can apply at the input layer; the option of a steady output is still
there, but it is supplemented by a multitude of characteristic oscillations with varying
frequencies and amplitudes for each neuron. The fact that this happens for an apparently
open set of choices in parameter space led to the term “generic” in the title of this paper.

4.4 Results

We describe one particular realization of our network-building algorithm. Applying input
to the three mother neurons in the sequence described in Section 3.6 resulted in a network
that stabilized after t = 64 time intervals or 32 iterations with a total of 27 neurons.
Snapshots of this growth process are depicted in Figure 4.1. A summary of the parameters
for each of these 27 neurons at the end of this process is listed in Table 4.1.
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i (xi, yi) li ai si ri Zi i (xi, yi) li ai si ri Zi

1 5, 30 1 1 0 4/4 1 15 3, 24 2 0 0 1/3 1

2 15, 30 1 2 0 1/4 1 16 13, 16 3 0 0 - -1

3 25, 30 1 1 0 4/4 1 17 23, 23 2 2 0 3/3 1

4 30, 23 2 2 0 2/3 1 18 28, 16 3 0 1 - -1

5 12, 23 2 1 0 - -1 19 17, 17 3 0 0 2/2 1

6 22, 16 3 0 0 2/2 1 20 1, 18 3 2 0 0/2 1

7 8, 25 2 4 0 - -1 21 9, 9 4 0 0 - -1

8 4, 16 3 0 0 - -1 22 24, 9 4 2 1 1/1 1

9 18, 9 4 0 0 1/1 1 23 2, 2 5 0 2 - -1

10 26, 25 2 1 0 0/3 1 24 9, 18 3 2 0 2/2 1

11 29, 9 4 0 0 - -1 25 14, 10 4 2 1 - -1

12 11, 2 5 1 0 0/0 1 26 5, 9 4 2 3 - -1

13 19, 23 2 0 0 - -1 27 21, 25 2 5 3 - -1

14 16, 25 2 0 0 1/3 1

Table 4.1. This table lists the parameters for all of the 27 neurons in our
particular realization. Recall that ai and si denote the number of unused
axonal and synaptic connections for the i-th neuron respectively. The values
in the ri column are of the form p/q where p is the number of sprouts actually
made out of a total possible of q. For example neuron 14 is located in level
li = 2 at position (16,25). It is an excitatory neuron that has used all of its
synapses, sprouted once and made four other connections since a14 = 0.

From the table one can see that this example network is fairly saturated in that there
are very few synapses left for a neuron to connect to and very few axons to connect to
these synapses. In addition, there are 15 excitatory and 12 inhibitive neurons. With few
exceptions it is the inhibitive neurons that have a significant number of potential axonal
connections remaining once the network stops growing. Recall that inhibitive neurons
are not allowed to sprout.

The last image in Figure 4.1 shows the fully grown network. Two structures that seem
to be essential to the development of oscillations are that all the mother neurons have
at least one inhibitive connection and that there are various inhibitive neurons that have
fan-like connections into the levels above them. Four of these latter structures extend
from neurons 8, 16 and 18 in level 3 and neuron 11 in level 4. While similar in appearance,
neuron 12 in level 5 is an excitatory neuron that has 3 inhibitive synaptic connections.

Once the network is fully grown, the time evolution of the membrane potential of the
three mother neurons is observed when a delta function of strength u0 = 11 is applied
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Figure 4.1. Shown here is the evolution of the network. The six figures corre-

spond to times t = 6, 16, 40, 46, 56 and 64. Each iteration of the growth process

takes up two time units. After t = 64 the network experiences no further growth.

to the bottom of the network. For a given input location the set of neurons that directly
experience the input lie inside a cone as described in Section 2. Neurons outside the
cone can also receive input but only through their connections. Figure 4.2 shows the
membrane potentials of the three mothers with no input applied. The network tends to
return to this state whenever the input application ceases.

We refer to Figure 4.3 for typical responses of the mother neurons upon stimulation
at the input locations. We observed that there are large basins of attraction that extend
from input locations a = 1 to a = 7 and from a = 20 to a = 30. When input is
applied from a = 8 to a = 19 the network responds in a complicated fashion so that the
three training locations have been effectively encoded. We emphasize that this without
a Hebbian learning rule.
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Figure 4.2. Illustrated is the response of the three mother neurons as a function

of time when no input is applied to the network. The membrane potential of the

neuron at position (5,30) is the solid line. The second and third neurons are at

(15,30) and (25,30) and their membrane potentials are the dashed and dashed-dot

lines respectively. Without any input, the activities of these two neurons oscillate

in phase with each other.

By having various oscillatory responses the dimension of output space is increased.
One can think of time as the extra dimension, or the frequency of each oscillation; an
extra dimension is added for each output neuron. This has the clear advantage that the
network grows “smarter” without adding many more neurons; the extra “intelligence” is
implicitly encoded in the network structure. The main point of our work lies in the fact
that this type of enhanced network performance arises generically for a range of growth
rules, and it is therefore reasonable that the type of oscillatory behaviour we observe is
commonplace in nature.
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Figure 4.3. The above six figures show the response of the three mother neurons

to an input of strength u0 = 11 applied at locations a = 7, 9, 11, 13, 15 and 20.

Applying input to any of the locations a ∈ [1, 7] gives the same response as the

first figure and is the same response as the rest state. As well, input applied to any

a ∈ [20, 30] results in the same response as the last figure.

5 Conclusions

We demonstrated that there are simple growth rules for a multi-layer neural network con-
sisting of excitatory and inhibitive neurons such that the finished network will display
characteristic oscillatory responses corresponding to classes of inputs. This behaviour is
consistent with observed biological behaviour. We conclude that the emergence of oscil-
latory responses is generic in the sense that it will occur for growth rules and parameter
ranges that are sufficiently general to be accessible to an evolutionary process. While
our model does not directly simulate the development of biological neural systems, it



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(1) (2003) 43–63 63

demonstrates the feasibility of such a process in an idealized context and the ability to
grow networks in ‘sensible’ ways.
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1 Introduction

The Takagi-Sugeno (TS) fuzzy model allows to represent a wide class of non-linear sys-
tems by a set of fuzzy rules for which the consequent parts are linear state models [10].
Using aggregation of rules, which induce a polyhedral partition of the state-space, a
weighted sum of the linear state models is able to describe accurately the non-linear
system. The so-called parallel distributed compensation (PDC) technique is an intuitive
algorithm which consists of designing a fuzzy control rule according to each model rule
of a TS fuzzy system. The premise part of the model rule and its corresponding con-
trol rule are identical. A sufficient condition to ensure the stability of a TS fuzzy plant
model controlled with the corresponding PDC is to find a common quadratic Lyapunov
function for all subsystems [11, 12]. The search of the Lyapunov function can be viewed
as a convex optimization problem in terms of linear matrix inequalities (LMI) for which
efficient solvers exist [1, 4]. The main drawback of this method is the conservativeness
of the results which grows with the number of subsystems which must be taken into
account.

The use of multiple (and in particular piecewise quadratic) Lyapunov functions is an
alternative method to prove the stability of TS fuzzy controllers [6 – 9]. The quadratic

c© 2003 Informath Publishing Group. All rights reserved. 65
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Lyapunov functions can be designed to ensure the continuity of the overall Lyapunov
function at the boundaries of the cells which map the state space; the condition requiring
the continuity of the Lyapunov function can be relaxed if the energy decreases when
the trajectory moves from a cell into another [6, 7]. Another related method is to drive
gradually the state space trajectory through a series of embedded sets, where an attractor
of a set is included into the next set of the series [2, 3]. This algorithm reproduces the
intuitive characteristic of fuzzy control for which the trajectory is smoothly driven from
one region into another closer region (in terms of distance) of the origin, until it reaches
the equilibrium. The attractors may be computed using comparison systems methods
and vector norms, which leads, however, to conservative results [2, 3].

A TS fuzzy structure which uses generalized spherical coordinates in the premise part
is proposed in this paper, for which some characteristic regions can be put more easily
under the form of quadratic inequalities than the general polyhedral scheme. The design
of discontinuous Lyapunov functions together with appropriate embedded sets will allow
to derive relaxed stability conditions for a TS fuzzy system controlled by PDC techniques.

2 Design of Takagi-Sugeno Systems with Ellipsoidal Domains

A. Takagi-Sugeno systems with generalized spherical coordinates

1) The basic model

Let us consider the fuzzy dynamic model of the Takagi and Sugeno system described by
the following IF-THEN rules Ri, i = 1, . . . , r:

IF z1 is Mi,1 AND ...zn is Mi,n THEN ẋ = Aix + Biu,

where x = (x1, . . . , xn)T is the state vector, u ∈ R is the control vector, z = (z1, . . . , zn)T

are the premise variables and Mi,j(·) are the membership functions of the fuzzy sets
Mi,j . We suppose that card(z) = card(x) = n. The state equation can be defined as
follows [10]:

ẋ =

r
∑

i=1

λi(Aix + Biu),

where λi =
ωi(z)

r
∑

j=1

ωj(z)
with ωi(z) =

n
∏

j=1

Mi,j(zj).

Let us introduce a basis of n-dimensional generalized coordinates which consists of
one radius and n − 1 angles,

z = (ρ, θ1, . . . , θn−1)
T ∈ R

n,

where ρ =

√

n
∑

i=1

(

xi

αi

)2

, αi ∈ R. In the case where α2
i = 1 for all i = 1, . . . , n,

z = (ρ, θ1, . . . , θn−1)
T will correspond to the generalized spherical coordinates basis; if

moreover, the dimension is 2, z = (ρ, θ) will reduce to polar coordinates, where ρ and θ
are respectively the radial and the angular coordinate.
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The Takagi-Sugeno system using z = (ρ, θ1, . . . , θn−1)
T as variable for premises is

described by the set of rules:

Ri: IF ρ is ρi AND θi is Θi,1 AND ... θn−1 is Θi,n−1 THEN ẋ = Aix + Biu. (1)

2) The overlapping condition

In most fuzzy control applications, the input membership functions Mi,j(·) and Mi+1,j

of every variable zj overlap pairwise in an interval
⌋

ẑkj ,j , ẑkj+1,j

⌊

, where the other mem-

bership functions are zero. Consider the region ∆k =
n
⋃

j=1

]

ẑkj ,j, ẑkj+1,j

[

, k = 1, . . . , K,

where 1 ≤ kj ≤ n, nj is the number of predicates for the variable zj, K is the number
of possible regions. Only a limited number of rules are activated in ∆k since, for every
premise zj, only the membership functions Mkj ,j and Mkj+1,j are nonzero, the rules
which involve other fuzzy sets fire.

In the case where the TS system is described by equation (1), the regions ∆k, k =
1, . . . , K, can be represented by the following inequalities:

ρk ≤ ρ ≤ ρk+1, or ρk ≤ xT Px ≤ ρk+1, (2)

where P = diag

(

1

α2
i

)

i=1,...,n

, and

0 ≤ Ψkθk, (3)

where Ψk is a constant vector.
The set of regions where ρm ≤ ρ ≤ ρm+1 will be called Ωm, m = 1, . . . , M . A region

which encloses the origin belongs to the set Ω1, for which ρm = 0. From the preceding
hypotheses, rules which are active in Ωm are also active either in Ωm−1 or in Ωm+1, and
are not active elsewhere. Note that rules which are active in Ω1 are also active in Ω2.

In the rest of the paper, these conditions will be referred to as the “overlapping
conditions”.

B. Design of a control structure

Two kind of controllers will be examined:

– the simple linear state feedback control with regionwise valued parameters:

u = Fkx if x ∈ region∆k; (4)

– the Parallel Distributed Compensation controller, the most popular and natural
control for TS systems, which consists of designing each control rule from the
corresponding rule of a TS system, with which it shares its premise parts. In a
PDC, a rule Ri of the TS system to be controlled [11, 12] corresponds to a dual

regulator rule R̂i:

R̂i: IF ρ is ρi AND θi is Θi,1 AND ... θn−1 is Θi,n−1 THEN u = Fix. (5)
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Figure 2.1. Membership functions for generalized coordinates.

C. A 2-D example

Consider a system described by the following set of rules:

IF ρ is ρi AND θ is Θi THEN ẋ = Aix + Biu,

where x = (x1, x2)
T is the state vector, u is the control vector, X1 = x1/a, X2 = x2/b,

X = (X1, X2)
T , a, b ∈ R. ρ and θ are polar coordinates in the plane X = (X1, X2)

T ,
ρ = ‖X‖2, θ = arg(X).

The following triangular membership functions are given on Figure 2.1.
Fuzzy sets for θ are “θ is 0”, “θ is π/2”, “θ is π”, “θ is 3π/2”. Figure 2.2 shows the

regions where rules are active. For example, in region ∆1 of Figure 2.2, only rules

“ρ is ρ1 AND θ is 0”, “ρ is ρ1 AND θ is π/2”,

“ρ is ρ2 AND θ is 0”, “ρ is ρ2 AND θ is π/2”

are activated, the remaining rules fire. Region ∆1 can be described by the following

constraints: x1 ≥ 0, x2 ≥ 0 and xT Px ≤ c, where P =

( 1
a2 0

0 1
b2

)

and c = 1.

The regions ∆k are a sector of a cone (when enclosing the origin) or of an annulus, for
which only 4 rules are active, the other ones fire. The main differences with respect to
classical TS-fuzzy controllers are now clear: the state space partition is not polyhedral,
but the local models are distributed following the distance and orientation with respect
to the origin, in the state-space. The notion of distance (from the equilibrium) respects
the intuitive nature of fuzzy predicates such as “FAR” or “NEAR”, and some of the
constraints on regions where parameters are constant can be expressed as quadratic
inequalities, which shows quite useful in Lyapunov stability techniques. In the general
case (n > 2), the characteristic regions of the TS system can be chosen as ellipsoidal.

Figure 2.2. Example of regions where a limited number of rules are active.
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3 LMI-based Stability Analysis of the Fuzzy Controller

A. Stability theorems based on multiple Lyapunov functions

Suppose that the original system is described by equation (1) – the premise variables
are not necessarily spherical coordinates – and verifies the overlapping condition. It will
thus be possible to find N disjoint regions Υm for which a scalar energy function Vm can
be defined. Let the switching boundary Λml for which the trajectory x(t) passes from
some neighboring regions Υm to Υl, i.e.

Λml =
{

x\x(t−) ∈ Υm, x(t) ∈ Υl

}

.

Theorem 3.1 [6] Suppose that there exist class K functions α and β such that, for
all m, l = 1, . . . , M ,

(i) α(‖x‖) ≤ Vm(x) ≤ β(‖x‖) for all x ∈ Υm,

(ii) V̇m(x) ≤ 0 for all x ∈ Υm,
(iii) Vl(x) ≤ Vm(x) for all x ∈ Λml,

then the origin is (uniformly) stable in the sense of Lyapunov.

Theorem 3.1 allows to relax the continuity condition for the Lyapunov function, and
a companion theorem exists for exponential stability [7]. A corollary has been given in
[6] for quadratic Lyapunov functions. We propose a simplified criterion using the special
structure given in (1), which will allow the control problems to be expressed as a simple
set of LMIs.

Theorem 3.2 Consider a regionwise valued fuzzy system defined in (1). If there
exists a series of positive definite matrices Zm, m = 1, . . . , M , such that:

xT Zmx ≤ 0 for all x ∈ Ωm,

Zm−1 − Zm ≤ 0 for all m,

then the origin is (uniformly) stable in the sense of Lyapunov.

Proof of the Theorem 3.1 — ??? In the domain Ωm, for which ρm ≤ xT Px ≤ ρm+1,
condition (i) can always be fulfilled, since Vm = xT Zmx. Condition xT Zmx ≤ xT Zm−1x
must be satisfied at the boundary ρm = xT Px, for which the radius is fixed and the
angles θi are any. If condition (iii) is satisfied at the boundary ρm = xT Px, it should
then also be satisfied for any z = (ρ, θ1, . . . , θn)T and thus for any of the state space.

Remark 3.1 It possible to choose independent Lyapunov functions for every ring Ωm,
provided that these Lyapunov functions are always decreasing. The search for Lyapunov
matrices should thus start from m = M down to m = 1. If Z = Zm, ∀m = 1, . . . , M ,
then the problem is reduced to the more general case of finding a common Lyapunov
function.

B. LMI-based control of TS-systems with concentric regions

As in [6 – 9], control of TS-systems under a combination of piecewise-linear controls can
be seen as a convex optimization problem with constraints that can be solved using
powerful numerical tools, using Linear Matrix Inequalities [1, 4].
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1) Application to piecewise linear control

Theorem 3.3 Consider the TS-system defined in (1) with the piecewise linear con-
troller defined in (4). Define Ωm, m = 1, . . . , M , as the set of regions ∆k for which ρm ≤
xT Px ≤ ρm+1. If there exist a series of positive-definite matrices Zm, m = 1, . . . , M
and a positive constant number τm such that, for every region ∆k ⊂ Ωm and for every
rule Ri which is active in ∆k:

AT
i Zm + ZmAi + ZmBiFk + FT

k BT
i Zm + τmP < 0, (6)

Zm−1 − Zm ≤ 0. (7)

The origin is (uniformly) stable in the sense of Lyapunov.

Proof Consider the Lyapunov function V = xT Zmx.
In region ∆k

V̇m = ẋT Zmx + xT Zmẋ+ =

δk
∑

i=1

λi

(

xT (AT
i Zm + FT

k BT
i Zm)x + xT (ZmAi + ZmBiFk)x

)

.

V̇m < 0 if ∀ i, k,

xT (AT
i P + FT

k BT
i Pm)x + xT (PAi + PBiFk)x < 0.

The LMI can be relaxed by considering the regionwise constraints, which can be
written, according to the concentric nature of regions:

Ψkx < 0, ρm − xT Px < 0, xT Px − ρm+1 < 0,

and, by the S-procedure [1], a sufficient condition for V̇m < 0 if the existence of positive
constants τ1,m, τ2,m, τ3,k such that:

xT (AT
i Zm + FT

k BT
i Zm)x + xT (ZmAi + ZmBiFk)x

− τ3,kΨkx − τ1,m(ρm − xT Px) − τ2,m(xT Px − ρm+1) < 0.

If condition Ψkx < 0 is not taken into account,

xT (AT
i Zm + FT

k BT
i Zm + τ1,mP − τ2,mP + ZmAi + ZmBiFk)x− τ1,mρm + τ2,mρm+1 < 0

which is satisfied if AT
i Zm + FT

k BT
i Zm + (τ1,m − τ2,m)P + ZmAi + ZmBiFk < 0 and

−τ1,mρm + τ2,kρm+1 ≤ 0.

Taking τ2,m = τ1,m
ρm

ρm+1
and τm = τ1,m−τ2,m = τ1,m

(

1− ρm

ρm+1

)

gives condition (6).

If the conditions in (6) are fulfilled, then V̇m < 0 in Ωm. From equations (6), (7),
applying Theorem 3.2, the origin is uniformly stable.
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2) PDC control of TS-systems using concentric Lyapunov surfaces

Theorem 3.4 Consider the TS-system defined in (1) with the Parallel Distributed
Compensation controller defined in (5). If there exist a series of positive-definite matrices
Zm, m = 1, . . . , M , and a positive constant number τm such that, for every region
∆k ⊂ Ωm, and for every rules Ri, Rj which are active in ∆k,

GT
iiZm + ZmGii + τmP < 0, ∀ i = 1, . . . , δk,

(

Gij + Gji

2

)2

Zm + Zm

(

Gij + Gji

2

)

+ τmP ≤ 0, ∀ i < j,
(8)

Zm−1 − Zm ≤ 0, (9)

where Gij = Ai + BiFj, and δk is the number of active rules in ∆k, the origin is
(uniformly) stable in the sense of Lyapunov.

Proof The proof follows the same sketch as in [12] and in Theorem 3.3.

3) TS-system with adaptive rule selection

The algorithm in Theorem 3.1 allows to check the stability of a TS-controller with PDC
with relaxed stability conditions, for which the membership functions and validity do-
mains are defined a priori by the user. In general, there is little guideline to help to
determine these crucial parameters of fuzzy controllers. As an alternative, it is proposed
to build gradually the domains Ωm (and thus the corresponding rules and local models)
from the Lyapunov function found in the previous subset Ωm+1.

Rules are designed in a first time only in the outer set ΩM . The upper boundary of
the new set ΩM−1 will be chosen as the smallest Lyapunov surface (from the common
Lyapunov function which matches the stability conditions in ΩM ) which contains the
lower boundary of ΩM . The same method will apply for next subsets.

Consider a TS-system defined in (1), using z = (ρM , θ1, . . . , θn−1)
T as variable for

premises, for which
ρM = xT ZM+1x.

The set of rules, which are only active in ΩM =
{

ρ−M ≤ xT ZM+1x ≤ ρ+
M

}

is:

Ri: IF ρM is ρi AND θ1 is Θi,1 AND ... θn−1 is Θi,n−1 THEN ẋ = Aix + Biu,

where the membership functions ρM−1(·) and ρM (·) fully overlap in the domain ⌊ρ−M , ρ+
M⌋.

The membership functions of the other premise variables verify the overlapping condition.
Let us introduce the piecewise linear controller: u = Fkx if x ∈ region∆k, with ∆k ⊂

ΩM .

Theorem 3.5 If there exists a series of positive definite matrices Zm, m = 1, . . . , M ,
and positive numbers ρ−m and ρ+

m such that:

(i) Define

Ωm =
{

ρ−m ≤ xT Zm+1x ≤ ρ+
m

}

, Ω+
m =

{

xT Zm+1x = ρ+
m

}

,

Ω−

m =
{

xT Zm+1x = ρ−m
}

,
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where Ω+
m−1 is the biggest domain that includes Ω−

m, and Ω+
m−1 is enclosed

into Ω+
m;

(ii) Rules in Ωm take the form:

Ri: IF ρm is ρi AND θ1 is Θi,1 AND ... θn−1 is Θi,n−1 THEN ẋ = Aix + Biu,

where ρm = xT Zm+1x, and the corresponding local controller is designed in the
appropriate regions ∆k;

(iii) AT
i Zm + ZmAi + ZmBiFk + FT

k BT
i Zm + τmZm < 0, ∀m = 1, . . . , M ,

then the overall system is asymptotically stable.

Proof Taking V = xT Zm+1x in Ωm, condition (iii) ensures that if a trajectory crosses
a surface xT Zmx = c, where c is some constant, then the trajectory stays in the domain
xT Zmx ≤ c [5]. Hence, if condition (iii) is verified, all trajectories that start in Ωm will
reach Ωm−1. The trajectory converges thus towards the equilibrium (see Figure 3.3).

Figure 3.1. Gradual determination of domains.

Remark 3.2 The main advantage of the method is to allow a wide flexibility in the
construction of regions. The original system and controllers are not “frozen”, since rules
and local models are adapted from the stability conditions found for the former set. The
counterpart is that, in general, a new set of local models should be determined (and
identified) for every domain Ωm.

4 Example

Consider the 2-D system described in Section 2(C) with P = I (see Figure 2.1), to be

controlled by the piecewise linear controller in (4). Suppose that, for θ ∈
{

0,
π

2
, π,

3π

2

}

,
the consequent part is described by:

ẋ = Aρ,θx + Bu,

where

B =

(

1

0

)

and Aρ2,θ =

(

−1 cos(θ) − 1
−2 + sin(θ) −1

)

,

Aρ3,θ =

(

−1 2 sin(θ) − 1
−2 + 2 cos(θ) −1

)

, Aρ1,θ =

(

−2 −2
3 0

)

.
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The regionwise valued controllers for every region ∆k are given in Table 4.1.

Region ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

FT
k (−1 1) (−0.5 0.5) (−2 1.5) [−0.5 1.5] (−1 0) (−2 2) (−2 3) [−3 3]

Table 4.1. Regionwise valued controllers.

It is impossible to find a common Lyapunov matrix for all controlled systems (actu-
ally 28 equations, which would be the same in a corresponding rectangular partition).
However, the application of Theorem 3.3 gives

Z1 =

(

11.79 1.64
1.64 5.11

)

, Z2 =

(

16.05 −4.89
−4.89 18.34

)

and the overall controller is now stable.

5 Conclusion

Introducing generalized spherical coordinates in the premise part of TS fuzzy systems, it
has been shown that an appropriate choice of membership functions allows to separate
the state space into a number of concentric regions in which only a limited number of
rules are active. PDC techniques can be used to control the TS fuzzy system. A piecewise
quadratic Lyapunov function has been designed for every concentric region; the stability
of the controlled system is ensured if the piecewise Lyapunov function is decreasing in
the corresponding region and if it is smaller than that of the previous domain. Since the
regions can be viewed as constraints which can be described with the help of quadratic
inequalities, it is easy to include these into a set of inequalities which derives from the
Lyapunov stability analysis, which relax LMI conditions. An adaptive algorithm has
then be proposed which allows to choose the embedded sets and the corresponding local
models and rules.
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Abstract: In this paper we study the robust stability properties of a large class
of nonlinear discrete-time systems by addressing the following question: given
a nonlinear discrete-time system with specified exponentially stable equilib-
ria, under what conditions will a perturbed model of the discrete-time sys-
tem possess exponentially stable equilibria that are close (in distance) to the
exponentially stable equilibria of the unperturbed discrete-time system? In
arriving at our results, we establish robust stability results for the perturbed
discrete-time systems considered herein. We apply the above results in the
robustness analysis of a large class of discrete-time recurrent neural networks.
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1 Introduction

We consider discrete-time systems described by first-order ordinary difference equations
of the form

x(k + 1) = f(x(k)) + h(x(k)), (1)

where x(k) is a real n-vector, k ∈ Z+ (the set of nonnegative integers) and f and h
are continuously differentiable n-vector valued functions. We view (1) as a perturbation
model of systems described by

x(k + 1) = f(x(k)). (2)

∗Anthony N. Michel was supported in part by an Alexander von Humboldt Foundation Senior Re-

search Award, Institut für Nachrichtentechnik, Ruhr-Universität Bochum, Germany.

c© 2003 Informath Publishing Group. All rights reserved. 75



76 ZHAOSHU FENG AND A.N. MICHEL

Thus, h(x(k)) in (1) represents uncertainties or perturbation terms.
In the present paper we study robustness properties of system (2) with respect to

perturbations. Of particular interest to us will be the robust stability of equilibria and
estimates of the perturbations of the equilibrium locations. To demonstrate applicability,
we apply these results in the qualitative analysis of a large class of discrete-time recurrent
neural networks.

Qualitative robustness results for linear and nonlinear dynamical systems abound (re-
fer to the references cited in pp. II-144 – II-147 of [1] concerning robustness for linear
systems and pp. II-147 – II-148 of [1] concerning robustness for nonlinear systems). Al-
though several of these works are tangentially related to the present work, to the best of
our knowledge the present results are new. In particular, results involving perturbations
of equilibrium locations for discrete-time systems do not seem to have received much
attention. Rather, the present results are more in the spirit of those established in [24]
for the case of continuous-time systems. We emphasize, however, that the present results
are not straightforward translations of the results given in [24] to the case of discrete-time
systems.

In Section 2 we provide the necessary notation and definitions used throughout the
paper. Given an exponentially stable equilibrium xe for (2), we establish in Section 3
sufficient conditions for the exponential stability of an equilibrium x̄e for (1) with the
property the x̄e is near xe, i.e., |xe − x̄e|∞ < ǫ, where ǫ is sufficiently small. To establish
these results, we require several preliminary results which are established in the appendix.

In Section 4, we apply the above results in a perturbation analysis of a large class
of discrete-time recurrent neural networks described by systems of first-order ordinary
difference equations

xi(k + 1) = bixi(k) + cisi

(

n
∑

j=1

Tijxj(k) + Ii

)

, i = 1, ·, n, (3)

where xi represents the state of the i-th neuron, T = (Tij)n×n is the real-valued matrix
of the synaptic connection weights, Ii is a constant external input to the i-th neuron, si(·)
is the i-th nonlinear activation function, and the self-feedback constant and the neural
gain are assumed to satisfy −1 ≤ bi ≤ 1 and ci 6= 0, k ∈ Z+, respectively.

The paper is concluded with some pertinent remarks in Section 5.

2 Notation and Definitions

Let R denote the set of real numbers, let R+ = [0,∞), and let Rn denote real n-
dimensional vector space. If x ∈ Rn, then xT = (x1, · · · , xn) denotes the transpose
of x. Let Z and Z+ denote the set of integers and the set of nonnegative integers,
respectively.

If X and Y are subsets of Rn and Rm, respectively, we let C[X, Y ] denote the set of
all continuous functions from X to Y . When X is an open subset of Rn, we let CN [X, Y ]
denote the set of all functions from X to Y whose partial derivatives up to order N are
continuous, N ≥ 1.

In Rn, we let | · | denote any equivalent norm if we do not specify a particular norm.

The norms | · |p, p ≥ 1, are defined by |x|p =
( n
∑

i=1

|xi|p
)1/p

, and, in particular, when
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p = 1, p = 2, and p = ∞, then |x|1 =
n
∑

i=1

|xi|, |x|2 =
( n
∑

i=1

x2
i

)1/2

, and |x|∞ = max
1≤i≤n

|xi|,
respectively.

Let A = [aij ] denote an n × n matrix and let AT denote the transpose of A. The
matrix norms | · |p, 1 ≤ p ≤ ∞, induced by the norms | · |p on Rn, 1 ≤ p ≤ ∞, are defined

as |A|p = sup
06=x∈Rn

[|Ax|p/|x|p], 1 ≤ p ≤ ∞. In particular, we have |A|1 = max
1≤j≤n

n
∑

i=1

|aij |,

|A|2 =
( n
∑

i,j=1

a2
ij

)1/2

, and |A|∞ = max
1≤i≤n

n
∑

j=1

|aij |.

Let xe ∈ Rn and ǫ0 > 0 be an appropriate positive number. We define B(xe, ǫ0) by
B(xe, ǫ0) = {x : |x − xe| < ǫ0}. In this paper, we assume that f, h ∈ C2[B(xe, ǫ0), R

n].

Definition 2.1 A square matrix A is said to be Schur stable, if all eigenvalues of A
are located within the unit circle.

Definition 2.2 For f : Rn → Rn and xe ∈ Rn, ∂f
∂xi

(xe) is defined by ∂f
∂xi

(xe) =
(

∂f1

∂xi
(xe), . . . ,

∂fn

∂xi
(xe)

)T

and Df(xe) is defined by the Jacobian matrix ∂f
∂x (x)

∣

∣

x=xe
.

In the present paper we use E to denote the n × n identity matrix.

3 Robustness Analysis of Perturbed Discrete-Time Systems

This section consists of three parts.

3.1 Robust stability: Perturbed discrete-time systems with fixed equilibria

In this subsection we first consider the special case where an equilibrium xe of the original
system (2) is unchanged in the resulting perturbed system (1).

In order to establish our first result, we consider the discrete-time systems with un-
certainties and perturbations of the form

x(k + 1) = (A + ∆A)x(k) + m(x(k)), (4)

where x(k) ∈ Rn, A and ∆A are constant and uncertain n×n matrices, respectively, k ∈
Z+, x(k) ≡ 0 is an equilibrium of (4), m ∈ C[U, Rn] satisfies the condition lim

x→0

|m(x)|
|x| =

0, U ⊂ Rn is an open subset containing xe.

Lemma 3.1 In addition to the assumptions xe = 0 and lim
x→0

|m(x)|
|x| = 0, we assume

for system (4) that

(i) A is Schur stable;

(ii) |∆A|∞ < σ, where σ ∈
(

0,−|A|2 +
(

|A|22 + 1
|P |2

)1/2)

, and P is a symmetric and

positive definite matrix determined by AT PA − P = −E.

Then the equilibrium x(k) ≡ 0 of (4) is exponentially stable.

Proof In applying the second method of Lyapunov, we choose the Lyapunov function
given by v(x(k)) = xT (k)Px(k). Let ∆v(x(k))(4) = v(x(k+1))−v(x(k)), where x(k+1)
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satisfies the difference equation (4). For all x(k) ∈ U , we have, using condition (i) and
(ii) as well as the relation |∆A|∞ ≤ |∆A|2,

∆v(x(k))(4) = [Ax(k) + (∆A)x(k) + m(x(k))]T P [Ax(k)

+ (∆A)x(k) + m(x(k))] − xT (k)Px(k)

= xT (k)[AT PA − P ]x(k) + xT (k)[(∆A)T PA

+ AT P (∆A) + (∆A)T P (∆A)]x(k)

+ 2[Ax(k) + (∆A)x(k)]T Pm(x(k))

+ m(x(k))T Pm(x(k))

= xT (k)[−E + (∆A)T PA + AT P (∆A)

+ (∆A)T P (∆A)]x(k) + 2[Ax(k)

+ (∆A)x(k)]T Pm(x(k)) + m(x(k))T Pm(x(k))

≤ [−1 + 2σ|P |2|A|2 + σ2|P |2]xT (k)x(k)

+ 2xT (k)[A + ∆A]T Pm(x(k)) + m(x(k))T Pm(x(k))

< −4ǫxT (k)x(k) + 2xT (k)[A + ∆A]T Pm(x(k))

+ m(x(k))T Pm(x(k)),

(5)

where −4ǫ = −1+2σ|P |2|A|2 +σ2|P |2 < 0 by condition (ii). Since lim
x→0

(|m(x)|/|x|) = 0,

it is clear that there exists an open subset of the origin, V ⊂ U , such that for all x ∈ V ,
2xT [A + (∆A)]T Pm(x) < 2ǫxT x and m(x)T Pm(x) < ǫxT x. Therefore, from (5) we
obtain for x(k) ∈ V , ∆v(x(k))(4) < −ǫxT (k)x(k). By the basic stability theorem of
Lyapunov, the equilibrium x(k) ≡ 0 of (4) is exponentially stable.

Remark 3.1 The existence and uniqueness of solutions of the Lyapunov equation
AT PA−P = −E are guaranteed by the assumption that A is Schur stable (see, e.g., [3]).

We will require the following assumption.

Assumption 3.1 For systems (1) and (2), it is true that

(i) xe is an equilibrium of both (1) and (2);
(ii) A = Df(xe) is Schur stable;

(iii) |∆A|∞ < σ, where ∆A = Dh(xe), σ ∈
(

0,−|A|2 +
(

|A|22 + 1
|P |2

)1/2)

, and P is

a symmetric and positive definite matrix determined by AT PA − P = −E.

Theorem 3.1 Under Assumption 3.1, the equilibrium x(k) ≡ xe of system (1) is
exponentially stable.

Proof By the assumption that f, h ∈ C2[B(xe, ǫ0), R
n] and x(k) ≡ xe is an equi-

librium of (1), we can express (1) in the following equivalent form

x(k + 1) − xe = f(x(k)) − f(xe) + h(x(k)) − h(xe). (6)

The right-hand side of (6) can be rewritten in the form

f(x(k)) − f(xe) + h(x(k)) − h(xe)

= Df(xe)(x(k) − xe) + Dh(xe)(x(k) − xe) + m(x(k) − xe)

= (A + ∆A)(x(k) − xe) + m(x(k) − xe),

(7)
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where m(·) denotes the remaining higher-order terms with respect to (x(k) − xe).
Let y(k) = x(k) − xe. Then system (1) can be rewritten in the following equivalent

form
y(k + 1) = (A + ∆A)y(k) + m(y(k)). (8)

It is clear that y(k) ≡ 0 is an equilibrium of (8) and all conditions of Lemma 3.1 are
satisfied. Therefore, the equilibrium y(k) ≡ 0 of (8) is exponentially stable and thus the
equilibrium x(k) ≡ xe of (1) is exponentially stable.

3.2 Robust stability: Perturbed discrete-time systems with perturbed

equilibria

In this subsection, we will consider the case where the equilibrium x̄e of the perturbed
discrete-time system (1) differs from the equilibrium xe of the unperturbed discrete-time
system (2).

Assumption 3.2 Let x̄e and xe denote the equilibrium of (1) and (2), respectively.
Assume that

(i) A = Df(xe) is Schur stable;
(ii) |Dh(xe)|∞ < a1,

where a1 = σ
2 , σ ∈

(

0,−|A|2 +
(

|A|22 + 1
|P |2

)
1

2

)

, A is given in (i) and P is a positive

definite and symmetric matrix which is determined by AT PA − A = −E; and

(iii) |x̄e − xe|∞ < ǫ,

where 0 < ǫ < ǫ1, ǫ1 = min
{

σ
2M2

, ǫ0

}

, M2 = sup
x,y∈B(xe,ǫ0)

|Q2(x, y)|∞, σ is given in part

(ii), and Q2(x, y) satisfies the properties of Lemma A.1 with respect to q = f + h (see
the Appendix).

Theorem 3.2 If Assumption 3.2 is satisfied, then the equilibrium x(k) ≡ x̄e of the
perturbed system (1) is exponentially stable.

Proof Since x(k) ≡ x̄e is an equilibrium of (1), we can rewrite (1) as

x(k + 1) − x̄e = f(x(k)) + h(x(k)) − (f(x̄e) + h(x̄e)) (9)

or its equivalent form

x(k + 1) − x̄e = (Df(x̄e) + Dh(x̄e))(x(k) − x̄e) + m(x(k) − x̄e). (10)

Let A = Df(xe) and ∆A = Df(x̄e) + Dh(x̄e) − Df(xe). Then we can rewrite (10) as

x(k + 1) − x̄e = (A + ∆A)(x(k) − x̄e) + m(x(k) − x̄e). (11)

Letting y(k) = x(k) − x̄e, (11) can be rewritten as

y(k + 1) = (A + ∆A)y(k) + m(y(k)). (12)

Using Lemma A.1 in the Appendix and Remark A.1, we have

∆A = Df(x̄e) + Dh(x̄e) − Df(xe)

= Df(x̄e) + Dh(x̄e) − (Df(xe) + Dh(xe)) + Dh(xe)

= Q2(x̄e, xe)Λ(x̄e − xe) + Dh(xe),

(13)
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where Q2 and Λ satisfy the properties of Lemma A.1 with respect to q = f + h (see the
Appendix).

Using parts (ii) and (iii) of Assumption 3.2, we have

|∆A|∞ ≤ |Q2(x̄e, xe)|∞ · |x̄e − xe|∞ + |Dh(xe)|∞

≤ M2|x̄e − xe|∞ + |Dh(xe)|∞ ≤ M2ǫ + a1 <
1

2
σ +

1

2
σ = σ.

(14)

It is clear that all conditions of Lemma 3.1 are satisfied for (12). We conclude that the
equilibrium y(k) ≡ 0 of (12) is exponentially stable and thus the equilibrium x(k) ≡ x̄e

of (1) is exponentially stable.

3.3 Example

In the following, we utilize a specific example to demonstrate the applicability of Theo-
rem 3.1. In the next section, we consider a general class of problems.

In (1) and (2), let x = [x1, x2]
T , f(x) = [f1(x), f2(x)]T , h(x) = [h1(x), h2(x)]T ,

f1(x) = x1 − 1
2 arctanx1, f2(x) = x2 − 1

2 arctan(x1 + x2), h1(x) = δ1 arctanx1, and
h2(x) = δ2 arctan(x1 + x2), where δ1 and δ2 are perturbation parameters. Presently,
systems (1) and (2) assume the form

x1(k + 1) = x1(k) − 1

2
arctanx1(k) + δ1 arctanx1(k),

x2(k + 1) = x2(k) − 1

2
arctan(x1(k) + x2(k)) + δ2 arctan(x1(k) + x2(k))

(15)

and

x1(k + 1) = x1(k) − 1

2
arctanx1(k),

x2(k + 1) = x2(k) − 1

2
arctan(x1(k) + x2(k)),

(16)

respectively.

xe = 0 is an equilibrium for both (15) and (16). We have

A = Df(0) =

[

1
2 0

− 1
2

1
2

]

,

which is Schur stable. Also, AT PA − P = −E with P = P T yields

P =

[ 56
27 − 4

9

− 4
9

3
4

]

.

In our result we have σM = −|A|2 +
(

|A|22 + 1
|P |2

)1/2

= 0.2432 and ∆A = Dh(0) =
[

δ1 0
δ2 δ2

]

, |∆A|∞| = min{|δ1|, 2|δ2|}. If min{|δ1|, 2|δ2|} < σ < 0.2030. Theorem 3.1

implies that the state xe = 0 is an exponentially stable equilibrium of (15).
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4 Applications to Neural Networks

This section consists of three parts.

4.1 Model of discrete-time recurrent neural networks

In the present section we consider discrete-time recurrent neural networks described by
systems of nonlinear difference equations of the form

xi(k + 1) = bixi(k) + cisi

(

n
∑

j=1

Tijxj(k) + Ii

)

, i = 1, · · · , n, (17)

where xi represents the state of the i-th neuron, T = (Tij)n×n is the real-valued matrix
of the synaptic connection weights, Ii is a constant external input to the i-th neuron, si(·)
is the i-th nonlinear activation function, and the self-feedback constant and the neural
gain are assumed to be −1 ≤ bi ≤ 1 and ci 6= 0, k ∈ Z+, respectively.

In (17), the neural activation function si(·) is chosen to be a continuously differen-
tiable nonlinear sigmoidal function (i.e., si(·) maps the real axis R into the real interval
(−1, 1), it is smooth and monotonically increasing, and its graph in the plane is sym-
metric with respect to the origin). Typical examples of activation functions include:

si(yi) = 2
π arctan

(

π
2 yi

)

, si(yi) = 1−e−yi

1+e−yi
, and si(yi) = tanh(yi) = eyi−e−yi

eyi +e−yi
.

We can represent the neural network (17) in vector form as

x(k + 1) = Bx(k) + Cs(Tx(k) + I), (18)

where x = (x1, · · · , xn)T is the state vector and s(y) = (s1(y1), · · · , sn(yn))T for y =
(y1, · · · , yn)T ∈ Rn. Also, B = diag [b1, · · · , bn], C = diag [c1, · · · , cn], T = (Tij)n×n,

and I = (I1, · · · , In)T .
Stability properties of recurrent discrete-time neural networks have been widely stud-

ied (see, e.g., [4, 10, 16, 18, 19, 21, 22]). Some of the most important applications of such
networks concern associative memories (see, e.g., [4, 16, 18]).

For system (18) we consider the perturbation model

x(k + 1) = (B + ∆B)x(k) + (C + ∆C)s[(T + ∆T )x(k) + (I + ∆I)], (19)

where ∆B, ∆C, ∆T , and ∆I are the uncertain or perturbation matrices with the same
dimension as B, C, T , and I, respectively.

In Feng and Michel [5], a robustness analysis for the neural network (18) is given.
In the present section, we will consider the neural network (18) as a special case of (2)
and apply the robustness results in Section 3 to the discrete-time system (2) to establish
robustness results for the neural network (18).

4.2 Stability of perturbed neural networks with unperturbed equilibria

In this subsection we first consider the special case where an equilibrium xe of the original
system (18) is unchanged in the resulting perturbed system (19).

Let xe be an equilibrium of system (18), let ǫ0 be an appropriate fixed positive number,
and let R0, L1, and L2 denote positive real numbers satisfying R0 ≥ |xe|∞, L1 ≥
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sup
x∈B(xe,ǫ0)

|s′(x)|, and L2 ≥ sup
x∈B(xe,ǫ0)

|s′′(x)|, where s′(x) = diag [s′1(x1), · · · , s′n(xn)],

and s′′(x) = diag [s′′1 (x1), · · · , s′′n(xn)], s′i(·) and s′′i (·) denote the first-order and the
second-order derivatives of si(·), respectively. In practice, L1 and L2 can frequently
be chosen independently of xe and ǫ0. For example, if sj(xj) = arctan(λjxj) with
λj > 0, 1 ≤ j ≤ n, then for all x ∈ Rn we have |s′(x)|∞ ≤ max

1≤j≤n
{λj} and |s′′(x)|∞ ≤

max
1≤j≤n

{λ2
j}. Therefore, in the present example, we may choose L1 = max

1≤j≤n
{λj} and

L2 = max
1≤j≤n

{λ2
j}.

We will require the following assumption.

Assumption 4.1 For systems (18) and (19), it is true that

(i) xe is an equilibrium of both (18) and (19);
(ii) A = B + Cs′(Txe + I)T is Schur stable;
(iii) max{|∆B|∞, |∆C|∞, |∆T |∞, |∆I|∞} < K0, where K0 is given by

K0 =
1

2L1

[

− β + (β2 + L1σ)1/2
]

,

where

β = 1 + L1|T |∞ + L1|C|∞ + L2|C|∞|T |∞(R0 + 1),

σ ∈
(

0,−|A|2 +
(

|A|22 +
1

|P |2

)1/2)

,

and where P = PT is a positive definite matrix that is determined by AT PA −
P = −E, and A is defined in (ii) above.

We note that in Assumption 4.1, K0 is a positive number determined by system (18)
and is independent of the system perturbations. The following result shows that K0 is
an admissible bound for robust stability.

Proposition 4.1 Under Assumption 4.1, the equilibrium x = xe of system (18) is
exponentially stable.

Proof Let
f(x) = Bx + Cs(Tx + I) (20)

and

h(x) = (B + ∆B)x + (C + ∆C)s[(T + ∆T )x + (I + ∆I)] − [Bx + Cs(Tx + I)]. (21)

Then (19) can be expressed in the form of x(k + 1) = f(x(k)) + h(x(k)), or in the form
of (1). We have that

Df(xe) = B + Cs′(Txe + I)T (22)

and

Dh(xe) = (∆B) + (C +∆C)s′[(T +∆T )xe +(I +∆I)](T + ∆T )−Cs′(Txe + I)T. (23)

To show that the equilibrium x = xe of (19) is exponentially stable, we only need to
verify that all conditions of Theorem 3.1 are satisfied, or to verify that all statements in
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Assumption 3.1 are true. By part (ii) of Assumption 4.1, B + Cs′(Txe + I)T is Schur
stable and thus part (ii) of Assumption 3.1 is satisfied.

To show that part (iii) of Assumption 3.1 is also satisfied, it suffices to show that

|Dh(xe)|∞ < σ, where σ ∈
(

0,−|A|2 +
(

|A|22 + 1
|P |2

)1/2)

, and where P is given by

AT PA − P = −E. Using part (iii) of Assumption 4.1, we have

Dh(xe) = ∆B + (C + ∆C)s′[(T + ∆T )xe

+ (I + ∆I)](T + ∆T ) − Cs′(Txe + I)T

= ∆B + Cs′[(T + ∆T )xe + (I + ∆I)](∆T )

+ (∆C)s′[(T + ∆T )xe + (I + ∆I)]T

+ (∆C)s′[(T + ∆T )xe + (I + ∆I)](∆T )

+ CQ2((T + ∆T )xe + (I + ∆I), Txe + I)Λ((∆T )xe + ∆I)T,

(24)

where Q2 and Λ satisfy the properties of Lemma A.1 in the Appendix with respect to
q = s. Using part (iii) of Assumption 4.1 and noticing that

sup
x,y∈B(xe,ǫ0)

|Q2(x, y)|∞ ≤ L2 = sup
x∈B(xe,ǫ0)

|s′′(x)|∞,

we obtain

|Dh(xe)|∞ ≤ |∆B|∞ + L1|C|∞|∆T |∞ + L1|∆C|∞|T |∞ + L1|∆C|∞|∆T |∞
+ L2R0|C|∞|∆T |∞|T |∞ + L2|C|∞|∆I|∞|T |∞ ≤ L1K

2
0 + βK0 < σ.

(25)

This shows that part (iii) of Assumption 3.1 is satisfied. Therefore, the results follow
from Theorem 3.1.

4.3 Stability of perturbed neural networks with perturbed equilibria

In this subsection, we will consider the case where the equilibrium x̄e of the perturbed
neural network (19) differs from the equilibrium xe of the original neural network (18).

Assumption 4.2 Let xe and x̄e denote equilibria of systems (18) and (19), respec-
tively. Assume that

(i) A = B + Cs′(Txe + I)T is Schur stable and therefore there exists a positive
definite matrix P = PT determined by the matrix equation AT PA − P = −E;

(ii) max{|∆B|∞, |∆C|∞, |∆T |∞, |∆I|∞} < K1, where K1 is given by

K1 =
1

2L1

[

− β +
(

β2 +
L1σ

2

)1/2]

,

where

β = 1 + L1(|T |∞ + |C|∞) + L2|C|∞|T |∞(R0 + 1),

σ ∈
(

0,−|A|2 +
(

|A|22 +
1

|P |2

)1/2)

;

and

(iii) |x̄e − xe| ≤ ǫ, where 0 < ǫ < ǭ1, ǭ1 = min
{

σ
2α1L2

, ǫ0

}

, where α1 = (|C|∞ +

K1)L2(|T |2 + 2|T |K1 + K2
1 ) and ǫ0 is given in the previous section.
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Proposition 4.2 If Assumption 4.2 is true, then the equilibrium x̄e of the perturbed
system (19) is exponentially stable.

Proof Let f(x) and h(x) be given by (20) and (21), respectively. To prove the result,
it suffices to verify all conditions in Assumption 3.2.

From part (i) of Assumption 4.2, it follows that A = Df(xe) is Schur stable and thus
part (i) of Assumption 3.2 is true.

Using similar statements as in the proof of Proposition 4.1 (see (24) and (25)), we can
prove that part (ii) of Assumption 4.1 implies part (ii) of Assumption 3.1.

To show part (iii) of Assumption 3.1 is also satisfied, it suffices to verify that ǭ1 ≤ ǫ1,

where ǫ1 = min
{

σ
2M2

, ǫ0

}

or M2 ≤ α1L2, where M2 = sup
x,y∈B(xe,ǫ0)

|Q2(x, y)|, where

Q2 is a function satisfying the properties of Lemma A.1 with respect to f + h with
f(x) + h(x) = (B + ∆B)x + (C + ∆C)s[(T + ∆T )x + (I + ∆I)]. Using part (iii) of
Assumption 4.2 and the definition of L2, we have

M2 = sup
x,y∈B(xe,ǫ0)

|Q2(x, y)|∞ = sup
x,y∈B(xe,ǫ0)

∣

∣

∣

∣

1
∫

0

(C + ∆C)

× s′′[(T + ∆T )(x + t(y − x)) + (I + ∆I)](T + ∆T )2 dt

∣

∣

∣

∣

∞

≤ |C + ∆C|∞ sup
x∈B(xe,ǫ0)

|s′′(x)|∞|T + ∆T |2

≤ (|C|∞ + |∆C|∞)L2(|T |2∞ + 2|T |∞|∆T |∞ + |∆T |2∞) ≤ α1L2

(26)

which implies ǭ1 ≤ ǫ1.
This shows that all conditions of Assumption 3.2 are satisfied. Therefore, the result

of Proposition 4.2 follows from Theorem 3.2.

Remark 4.1 It should be noted that in Assumption 4.2, the existence of an equilibrium
of the perturbed system (19) is hypothesized to be not far away from the corresponding
equilibrium of the unperturbed system (18). It is reasonable to expect that when the
perturbations of the system in question are sufficiently small, this assumption will be
satisfied.

5 Concluding Remarks

A robustness analysis was conducted for a large class of nonlinear discrete-time systems
described by ordinary difference equations under perturbations. The results presented
aimed to give an answer to the following question: given a nonlinear discrete-time sys-
tem with specified exponentially stable equilibria, under what conditions will a perturbed
model of the discrete-time system possess exponentially stable equilibria that are close (in
distance) to the exponentially stable equilibria of the unperturbed model? Robustness
stability results for perturbed nonlinear discrete-time systems were established. Using
these results, a set of sufficient conditions was established for robust stability of a large
class of discrete-time recurrent neural networks for associative memories under pertur-
bations of system parameters.

Appendix

We require the following result in the proofs of Theorem 3.2 and Proposition 4.2.
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Lemma A.1 Let q ∈ C2[Ū , Rn], where U ⊂ Rn is a convex open set and Ū denotes

the closure of U. Then there exists a Q1 ∈ C1[U ×U, Rn×n] and Q2 ∈ C1[U ×U, Rn×n2

]
satisfying the following properties for all x, y ∈ U :

(i) q(x) − q(y) = Q1(x, y)(x − y), where Q1(x, y) is given by

Q1(x, y) =

1
∫

0

DqT (x + t(y − x)) dt; (A.1)

(ii) Dq(x) − Dq(y) = Q2(x, y)Λ(x − y), where Q2(x, y) and Λ(x − y) are given by

Q2(x, y) = [Q21(x, y), · · · , Q2n(x, y)] (A.2)

with

Q2i(x, y) =

1
∫

0

D

(

∂q

∂xi

)

(x + t(y − x)) dt, (A.3)

and

Λ(x − y) =









x − y 0 . . . 0
0 x − y . . . 0
...

...
. . .

...
0 0 . . . x − y









, (A.4)

respectively.

Proof Part (i) can be proved by using the following formula from the calculus (refer
to pp. 48–49 in Chapter 2 of [3]):

q(x) − q(y) =

( 1
∫

0

Dq(x + t(y − x)) dt

)

(x − y). (A.5)

Part (ii) can be obtained by using part (i) for every column of Dq:

Dq(x)−Dq(y) =

[ 1
∫

0

D

(

∂q

∂x1
(x+ t(y−x)

)

dt, · · · ,

1
∫

0

D

(

∂q

∂xn
(x+ t(y−x)

)

dt

]

. (A.6)

Remark A.1 In the following we assume that U = B(xe, ǫ0), where xe ∈ Rn, ǫ0 > 0.
As a consequence of Lemma A.1, for any x, y ∈ U , if U ∈ Rn is bounded, then we have

|q(x) − q(y)|∞ ≤ |Q1(x, y)|∞ · |x − y|∞ ≤ M1|x − y|∞ (A.7)

and
|Dq(x) − Dq(y)|∞ ≤ |Q2(x, y)|∞ · |x − y|∞ ≤ M2|x − y|∞, (A.8)

where M1 = sup
x∈U

|Dq(x)|∞ and M2 = sup
x,y∈U

|Q2(x, y)|∞.
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Abstract: We studied nonimpulsive orbital transfers under thrust errors
through algebraic analysis method. We analyzed the relationship among fi-
nal semi-major axis and mean deviations in the thrust vector. The nonlinear
(near parabolic) relations were found, confirming the Monte-Carlo simulations
realized in the numerical phase this investigation. These results suggest and
partially characterize the progressive deformation of the final semi-major axis
along the propulsive arc, turning 3sigma ellipsoids into banana shaped vol-
umes curved to the center of attraction (we call them “bananoids”) due to
the loss of optimality of the actual (with errors) trajectories with respect to
the nominal (no errors) trajectory.

Keywords: Orbits; transfer; nonimpulsive; thrust errors; algebraic analysis.
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1 Introduction

According to Marec [1], the orbital transfer of a space vehicle under the gravitational
attraction of a celestial body is one of the classical and important problems of Astronau-
tics. Since the early decades of XX century, many researchers dedicated much attention
and interest to this problem. Ideally, we can say that, to transfer a space vehicle from one
orbit to other consists of changing its initial state, defined by its position, velocity and
mass (~r0, ~v0, m0)in a certain initial instant t0, to another state, defined by its respective
state variables ( ~rf , ~vf , mf )in a final instant tf > t0. When the transfer is done aiming to
minimize the fuel spent, we define the “Fundamental Problem of Astronautics”, that is,

†This work has the partial financial support from CAPES (Brazilian agency).

c© 2003 Informath Publishing Group. All rights reserved. 87
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to transfer a vehicle, changing its initial state to a final state with the smallest possible
fuel spent (m0 − mf). According to Jesus [2], orbital transfers are done to meet some
objectives under some restrictions that can be put into the problem to obtain the best
possible performance for a particular mission. Examples of objectives are minimum fuel
consumption, minimum transfer time, maximum final velocity, etc. Examples of restric-
tions are rendezvous of two vehicles, the transfer between two given points in a fixed time
(Lambert problem), etc. In this way, we can consider that the orbital transfer problem,
despite basic in nature, present challenges with respect to its general characteristics since
diverse natural, modeling, economic, operational limitations need to be considered in its
formulation. So, to find the desired optimal solutions, different problem formulations
and optimization criteria can be used to best approximate it to the actual case. The
actuator models are normally used in the orbital transfer or correction problems. The
infinite propulsion, where the source is modeled as being capable of applying a large
magnitude but small duration force (with respect to the orbital period) is the most used,
but the non-impulsive hypothesis (finite propulsion) is also found in the literature under
many different constraints. The applications of these maneuvers include: small orbital
corrections of an Earth artificial satellite, to put a satellite in geostationary orbit, the
rendezvous or intercept missions, the long interplanetary travels (like “Voyager” and “Pi-
oneer” missions), the transportation and assembly of the International Space Station. In
Brazil, they include: to put and to keep in orbit the Remote Sensing Satellites 1,2 and
China-Brazil Earth Resources Satellites 1,2.

Most space missions need orbit transfers to reach their goals. These orbits are reached
sequentially through transfers between them, by changing at least one component of
the vehicle velocity or position vectors, that is, at least one of corresponding Keplerian
elements by firing thrusts, apogee motors, or other force sources. The actual thrust vector
has errors in magnitude and/or in direction with respect to the ideal thrust vector.

The magnitude errors are caused by many and unpredictable reasons as: limitations
in the manufacturing process (mechanical imprecision due to mechanical and chemical
machining, tolerances in the components, etc.) in the loading process (tolerances in the
physical and chemical characteristics of the used substances, etc.), in the thrust oper-
ation (pulsed, blow-down, under the actual conditions, etc.). They can be modeled as:
1) a constant but random deviation (“random bias”) with respect to the ideal magni-
tude, resulting in a constant actual mean magnitude with a certain probability density
function (uniform in the worst case, Gaussian in the best case); and/or 2) random fluc-
tuations around this actual mean magnitude with little or no correlation in time (“pink
or white noise”) and with a certain probability density function (uniform in the worst
case, Gaussian in the best case).

The direction errors of misalignment’s errors with respect to its nominal action line are
caused by many and unpredictable reasons as: linear and angular displacements during
the vehicle assembly and particularly, during the thrusts assembly; displacements of the
center of mass during the injection in orbit/trajectory, and during the vehicle operation,
due to movable parts as solar panels, antennas, booms, pendulums, etc., or due to fuel
consumption, specially during their firing; many and asymmetric thrusts firing at the
same time, dead zones existing in all attitude controls used during the firing; partial
deviation of some jet plumes by the vehicle structure (plume impingement); etc. They
can be modeled like the magnitude errors. These are the magnitude and direction errors
models used in the work of Jesus [2].
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So, most space missions need trajectory/orbit transfers and they have linear and/or
angular misalignments that displace the vehicle with respect its nominal directions. The
mathematical treatment for these deviations can be done under many approaches (de-
terministic, probabilistic, minimax, etc.)

In the deterministic approach: we highlight Schwende and Strobl [3], Tandon [4],
Rodrigues [5], Santos-Paulo [6], Rocco [7] and Schultz [8], among others.

In the probabilistic approach Porcelli and Vogel [9] presented an algorithm for the
determination of the orbit insertion errors in biimpulsive noncoplanar orbital transfers
(perigee and apogee), using the covariance matrices of the sources of errors. Adams and
Melton [10] extended such algorithm to ascent transfers under a finite thrust, modeled as
a sequence of impulsive burns. They developed an algorithm to compute the propagation
of the navigation and direction errors among the nominal trajectory, with finite perigee
burns. Rao [11] built a semi-analytic theory to extend covariance analysis to long-term
errors on elliptical orbits. Howell and Gordon [12] also applied covariance analysis to the
orbit determination errors and they develop a station-keeping strategy of Sun-Earth L1
libration point orbits. Junkins, et al. [13] and Junkins [14] discussed the precision of the
error covariance matrix method through nonlinear transformations of coordinates. He
also found a progressive deformation of the initial ellipsoid of trajectory distribution (due
to Gaussian initial condition errors), that was not anticipated by the covariance analysis
of linearized models with zero mean errors. Its main results also characterize how close
or how far are Monte-Carlo analysis and covariance analysis for those examples. Carlton-
Wippern [15] proposed differential equations in polar coordinates for the growth of the
mean position errors of satellites (due to errors in the initial conditions or in the drag),
by using an approximation of Langevin’s equation and a first order perturbation theory.
Alfriend [16] studied the effects of drag uncertainty via covariance analysis.

In the minimax approach: see Russian authors, mainly.

However, all these analyses are approximated. This motivated an exhaustive numer-
ical (see [17, 18]) but exact analysis (by Monte-Carlo), and a partial algebraic analysis
done by Jesus [2]. In this work we present the first part of the algebraic analysis of
nonimpulsive orbital transfers under thrust errors. The results were obtained for two
transfers: the first, a low thrust transfer between high coplanar orbits (we call it “theo-
retical transfer”), used by Biggs [19, 20] and Prado [21]; the second, a high thrust transfer
between middle noncoplanar orbits (the first transfer of the EUTELSAT II-F2 satellite,
we call it “practical transfer”) implemented by Kuga, et al. [22]. The simulations were
done for both transfers with minimum fuel consumption. The “pitch” and “yaw” angles
were taken as control variables such that the overall minimum fuel consumption defines
each burn of the thrusts. The errors sources that we considered were the magnitude
errors, the “pitch” and “yaw” direction errors of the thrust vector, as causes of the de-
viations found in the several Keplerian elements of the transfer trajectory. These errors
sources (random-bias and white-noise errors) introduced in the orbital transfer dynamics
produce effects in the final orbit Keplerian elements in the final instant.

In this work we present an algebraic analysis of the effects of these errors on the
mean of the deviations of the Keplerian elements of the final orbit with respect to the
reference orbit (final orbit without errors in the thrust vector) for both transfers. The
approach that we used in this work for the treatment of the errors was the probabilistic
one, assuming these as having zero mean Gaussian probability density function or having
zero mean Uniform probability density function.
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Figure 2.1. Reference systems used in this work.

2 Mathematical Formulation and Coordinates Systems

The orbital transfer problem studied can be formulated in the following way:

1) Globally minimize the performance index: J = m(t0) − m(tf );
2) With respect to α : [t0, tf ] → R (“pitch” angle) and β : [t0, tf ] → R (“yaw” angle)

with α, β ∈ C−1 in [t0, tf ];
3) Subject to the dynamics in inertial coordinates Xi, Yi, Zi of Figure 2.1: ∨t ∈ [t0, tf ];

m(t)
d2X

dt2
= −µm(t)

X

R3
+ Fx, (1)

m(t)
d2Y

dt2
= −µm(t)

Y

R3
+ Fy , (2)

m(t)
d2Z

dt2
= −µm(t)

Z

R3
+ Fz , (3)

Fx = F
[

cosβ sin α(cos Ω cos θ − sin Ω cos I sin θ) + sinβ sinΩ sin I

− cosβ cosα(cosΩ sin θ + sin Ω cos I cos θ)
] (4)

Fy = F
[

cosβ sin α(sin Ω cos θ + cosΩ cos I sin θ) − sin β cosΩ sin I

− cosβ cosα(sin Ω sin θ − cosΩ cos I cos θ)
]

,
(5)

Fz = F (cos β sinα sin I sin θ + cosβ cosα sin I cos θ + sinβ cos I), (6)

m(t) = m(t0) + ṁ(t − t0) (7)

with ṁ < 0

F ∼= |ṁ|c. (8)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(1) (2003) 87–103 91

Or in orbital coordinates (radial R, transverse T, and binormal N) of Figure 2.1:

m(t)aR(t) = F cosβ(t) sin α(t) − µm(t)

R2(t)
, (9)

m(t)aT (t) = F cosβ(t) cos α(t), (10)

m(t)aN (t) = F sin β(t), (11)

aR(t) = V̇R − V 2
T

R
− V 2

N

R
, (12)

aT (t) = V̇T +
VRVT

R
− VN İ cos θ − VN Ω̇ sin I sin θ, (13)

aN(t) = V̇N +
VRVN

R
+ VT İ cos θ + VT Ω̇ sin I sin θ, (14)

VR = Ṙ, (15)

VT = R(Ω̇ cos I + θ̇), (16)

VN = R(−Ω̇ sin I cos θ + İ sin θ), (17)

θ = ω + f ; (18)

4) Given the initial and final orbits, and the parameters of the problem (m(t0), c, . . . ).
These equations were obtained by: 1) writing in coordinates of the dexterous rectangular
reference system with inertial directions 0XiYiZi the Newton’s laws for the motion of a
satellite S with mass m, with respect to this reference system, centered in the Earth’s
center of mass 0 with Xi axis toward the Vernal point, XiYi plane coincident with
Earth’s Equator, and Zi axis toward the Polar Star approximately; 2) rewriting them
in coordinates of the dexterous rectangular reference system with radial, transverse,
binormal directions SRTN , centered in the satellite center of mass S; helped by 3) a
parallel system with 0X0Y0Z0 directions, centered in the Earth’s center of mass 0, X0

axis toward the satellite S, X0Y0 plane coincident with the plane established by the

position ~R and velocity ~V vectors of the satellite, and Z0 axis perpendicular to this
plane; and helped by 4) the instantaneous Keplerian coordinates (Ω, I, ω, f, a, e). These
equations were later rewritten and simulated by using 5) 9 state variables, defined and
used by Biggs [19, 20] and Prado [21], as functions of an independent variable s shown in
Figure 2.2.

The non-ideal thrust vector, with magnitude and direction errors, is given by:

~FE = ~F + ∆~F , (19)

~FE = ~FR + ~FT + ~FN , (20)

| ~FE | = FE , |~F | = F, (21)

FR = (F + ∆F ) cos(β + ∆β) sin(α + ∆α), (22)

FT = (F + ∆F ) cos(β + ∆β) cos(α + ∆α), (23)

FN = (F + ∆F ) sin(β + ∆β), (24)
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Figure 2.2. Thrust vector applied to the satellite and the s variable.

where: ~F , ~FE and ∆~F are: the thrust vector without errors, the thrust vector with errors,
and the error in the thrust vector, respectively; ∆α and ∆β are the errors in the “pitch”
and in the “yaw” angles, respectively; FR, FT and FN are the components of the thrust

vector with errors ~FE in the radial, transverse and normal directions, respectively. In this
way, for each implementation of the orbital transfer arc, values of α and β are chosen,
whose errors are inside the range, that produce the direction for the overall minimum
fuel consumption.

3 Transfers with Errors in the Thrust Vector: Algebraic Analysis

We start our algebraic analysis by planar (α 6= 0) and (β = 0) transfer maneuvers. We
also choose F and m constants. Under these hypotheses, Equations (9) – (14) become:

Ft = mv̇t(t) = F cos(α(t)) − mvr(t)ḟ(t), (25)

Fr = mv̇r(t) = F sin(α(t)) + mvt(t)ḟ(t) − µm(t)

r2(t)
, (26)

ḟ(t) =
vt(t)

r(t)
, (27)
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ṙ(t) = vr(t), (28)

with, Ft and Fr the transverse and radial components of the thrust vector, respectively;
v̇t(t), v̇r(t) the transverse and radial components of the accelerations, respectively; vt(t),

vr(t) the transverse and radial components of the velocities, respectively; ḟ(t) the angular
velocity; r(t) the vector position between satellite and central body.

Our algebraic approach for the semi-major axis deviations is done through the rate
of change of the satellite mechanical energy, which is equal the power applied by forces
components in the transverse and radial directions. Their energy rate of change are:

d[Ec(t)]r
dt

= mvr(t)v̇r(t), (29)

d[Ec(t)]t
dt

= mvt(t)v̇t(t), (30)

dEp(t)

dt
=

µm(t)vr(t)

r2(t)
. (31)

Adding these equations we obtain the rate of change of the satellite mechanical energy,
EM without “pitch” error,

dEM (t)

dt
= F cosα(t)vt(t) + F sinα(t)vr(t) (32)

or, during the time interval ∆t,

∆EM (t1, t2) = EM (t2) − EM (t1)

=

t2
∫

t1

F cosα(t)vt(t) + sin α(t)vr(t) dt =
−µm

2a(t2)
+

µm

2a(t1)
,

(33)

with a(ti) the semi-major axis of the satellite orbit of the instant i.
Equation (33) for one transfer under “pitch” error, ∆α(t) is,

∆E′
M (t1, t2) = E′

M (t2) − E′
M (t1)

=

t2
∫

t1

F (cos[α(t) + ∆α(t)]v′t(t)) dt +

t2
∫

t1

F (sin[α(t) + ∆α(t)]v′r(t)) dt.
(34)

Taking the difference between Equations (33) and (34), we obtain,

∆2EM (t1, t2) ≡ ∆E′
M (t1, t2) − ∆EM (t1, t2)

=
−µm

2a′(t2)
+

µm

2a′(t1)
+

µm

2a(t2)
+

−µm

2a(t1)

=

t2
∫

t1

F (cos[α(t) + ∆α(t)]v′t(t) − cosα(t)vt(t)) dt

+

t2
∫

t1

F (sin[α(t) + ∆α(t)]v′r(t) − sin α(t)vr(t)) dt.

(35)
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If we use the fact that the semi-major axis of the initial and final orbits in the initial
instant are equal, and doing some algebraic manipulation, taking the expectation (E), of
the final equation, we have,

E [∆2EM (t1, t2)] = E
[

t2
∫

t1

F{cosα(t)[cos ∆α(t) − 1] − sin α(t) sin ∆α(t)}v′t(t) dt

]

+ E
[

t2
∫

t1

F{sinα(t)[cos ∆α(t) − 1] + cosα(t) sin ∆α(t)}v′r(t) dt

]

+ E
[

t2
∫

t1

F{cos∆α(t)}{v′t(t) − vt(t)}dt + F{sin∆α(t)}{v′r(t) − vr(t)}dt

]

.

(36)

Now, we consider that the stochastic processes are ergodic. So, the expectation opera-
tor (mean in the ensemble) commutes with the integral operator (in time). Besides this,
the function F and the trigonometric functions are deterministic in time. Therefore, we
evaluate the mean through the ensemble for equation (36),

E [∆2EM (t1, t2)] =

t2
∫

t1

F cosα(t)E [[cos ∆α(t) − 1]v′t(t)] dt

−
t2

∫

t1

F sinα(t)E [sin ∆α(t)v′t(t)] dt +

t2
∫

t1

F sin α(t)E [[cos ∆α(t) − 1]v′r(t)] dt

+

t2
∫

t1

F cosα(t)E [sin ∆α(t)v′r(t)] dt +

t2
∫

t1

F cosα(t)E [v′t(t) − vt(t)]dt

+

t2
∫

t1

F sin α(t)E [v′r(t) − vr(t)] dt.

(37)

Equation (37) is general for any probability distribution function to ∆α(t) and for
any kind of noise, that is, “white-noise”, “‘pink-noise”, or other. But, we must define if
the variables inside the integral in equation (37) are correlated or not, to evaluate the
expectation, as follows:

4 Case 1: ∆α(t) Not Correlated with Transverse and Radial Velocities

(White-Noise), Uniform Errors

In this case, we decompose the expectation operator as one product of the individual
expectations for the trigonometric functions of the ∆α(t) and the velocities components,
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because they are not correlated. For the ∆α(t) with uniform distribution inside the
interval [−∆αmax, αmax], we have,

E{[cos∆α(t1) − 1]v′t(t1)} = E{[cos∆α(t1) − 1]}E{v′t(t1)}

= vt(t1)E{[cos ∆α(t1) − 1]} = {E [cos∆α(t1)] − E(1)}vt(t1)

= vt(t1)
1

2∆αmax

[

∆αmax
∫

−∆αmax

d(∆α) cos ∆α − 1

]

=
1

2∆αmax
[sin ∆α

∣

∣

∆αmax

−∆αmax
− 1]vt(t1) = vt(t1)

[

sin ∆αmax

∆αmax
− 1

]

(38)

and,

E{[cos∆α(t1) − 1]v′r(t1)} = vr(t1)

[

sin ∆αmax

∆αmax
− 1

]

(39)

with,
E{[sin∆α(t1)]v

′
t(t1)} = E{[sin ∆α(t1)]E [v′t(t1)]}

= vt(t1)
1

2∆αmax

∆αmax
∫

−∆αmax

d(∆α) sin ∆α

= vt(t1)

[

1

2∆αmax

]

[cos∆α]∆αmax

−∆αmax
= 0

(40)

and,

E [sin ∆α(t1)]v
′
r(t1) = 0. (41)

We consider that the velocities effects inside the internal [−∆αmax, ∆αmax] in the
same time are, practically, balanced, because the deviations occur between values maxima
and minima inside them. That is, the velocities with errors and without them are very
close values. So,

E{v′t,r(t)} = vt,r(t1). (42)

With these results equation (37) becomes,

E{∆2EM (t1, t2)} =

t2
∫

t1

F cosα(t)vt(t)

{

sin ∆αmax

∆αmax
− 1

}

dt

+

t2
∫

t1

F sin α(t)vr(t)

{

sin ∆αmax

∆αmax
− 1

}

dt.

(43)

In other hand, we have,

E{∆2EM (t1, t2)} = E
{

µm

2a(t2)
− µm

2a′(t2)

}

=
µm

2

1

a(t2)
E
{

∆a(t2)

a′(t2)

}

(44)
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with,

∆a(t2) = a′(t2) − a(t2). (45)

If we expand equation (44) about the rate
∆a(t2)

a(t2)
, we get:

µm

2

[

1

a2(t2)
E{∆a(t2)} −

1

a3(t2)
E{∆2a(t2)}

+
1

a4(t2)
E{∆3a(t2)} −

1

a5(t2)
E{∆4a(t2)} + . . .

]

=
µm

2

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)}.

(46)

We can compare equations (46) and (43), getting:

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = K1

[

sin ∆αmax

∆αmax
− 1

]

= K1

[

− 1

3!
∆2αmax +

1

5!
∆4αmax − 1

7!
∆6αmax + . . .

]

= K1

∞
∑

n=1

(−1)n+1 1

(2n + 1)!
∆2nαmax

(47)

with,

K1 =
2

µ

(Q1 + Q2)

m
, (48)

where Q1 and Q2 are quadratures.
Equation (47) describes a sequence of even power terms for the maximum deviation

in “pitch” with respect the expected values of the semi-major axis. For n = 1, we have,

E{∆a(t2)} = − 1

3!
∆2αmaxK1a

2(t2) = − 1

3!
∆2αmaxK2, (49)

K2 = K1a
2(t2). (50)

This result shows that in first order the cause/effect relationship is parabolic. But
that the general curve would be a composition of all even power terms.

5 Case 2: ∆α(t) Not Correlated with Transverse and Radial Velocities

(White-Noise), Gaussian Errors

The procedures for the ∆α(t) with Gaussian distribution inside the interval [−∆αmax,
∆αmax] are the same for the uniform distribution. So,
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[E{cos∆α(t1)} − 1]vt(t1) = vt(t1)

{

∞
∫

−∞

cos[∆α] d(∆α)
e−

(∆α)

2σα√
2πσα

− 1

}

= vt(t1)
{

e
−σ2

α
2 − 1

}

= vt(t1)

{

− σ2
α

2
+

σ4
α

8
− σ6

α

48
+ . . .

}

,

(51)

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = K1

∞
∑

n=1

(−1)n σ2n
α

2nn!
. (52)

The form of the curve in equation (52) is similar that in equation (47). That is, there

is a clear nonlinear relationship between cause (∆αmax =
√

3σα) and effect (∆a(t2)).
For n = 1, we have,

E{∆a(t2)} = −1

6
σ2

αK2. (53)

6 Case 3: ∆α(t) Correlated with Transverse and Radial Velocities

(Pink-Noise), Uniform Errors

In this case, we cannot decompose the expectation operator as a product of the individual
expectations for the trigonometric functions of the ∆α(t) and the velocities components,
because now they are correlated. The procedures are the same done until this point,
except that we must evaluate the expectation of the products of the different variables,
without decomposing them. Besides this, we consider the ∆α(t) random-bias deviations,
that is, ∆α(t) = constant = ∆α(t1) = ∆α. After many mathematical manipulations we
found the following equation, for both cases, uniform and Gaussian distribution,

Ir,t =

t1
∫

t2

E{(cos∆α)v̇′r,t(t)ḟ
′(t)} dt. (54)

We know that the integral of the odd functions for symmetrical distributions is null.
But equation (54) has an even product of the functions. The odd functions inside the
product are not known, but we can modeled its product as one even function, for exam-
ple, cos∆α.

Other important approach in this way is to consider for equation (26) that the ex-
pectation of the product is equal the product of the expectations of the functions, so
that,

E
{

cos(∆α)

r′2(t)

}

= E
{

cos(∆α)
1

r′2(t)

}

∼= E{cos(∆α)}E
{

1

r′2(t)

}

=
E{cos(∆α)}

r2(t)
. (55)

The final forms are:

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = λ1 − λ2∆

2αmax + λ3∆
4αmax − . . . (56)
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for the uniform case and,

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = λ4 − λ5σ

2
α + λ6σ

4
α − λ7σ

6
α + . . . (57)

for the Gaussian case, where the coefficients are

λ1 = Q8[Q5 + Q6 − vt(t1)] + Q12[Q10 + Q3 − vr(t1)], (58)

λ2 =

{

[2Q3Q12 − Q8Q4 + Q8Q5]

[

1

2

1

2!
+

1

2

1

3!

]

+ [Q10Q12 + Q8Q6 + Q8Q5]
1

3!

}

, (59)

λ3 =

{

[−Q8Q4+Q8Q5]

[

1

2

1

2!

1

3!
+

1

2

1

4!

]

+
1

3!
[Q6+Q10Q12]+

Q8Q5

7!
− Q12Q3

2

1

5!

}

, (60)

λ4 = Q8[Q6 − vt(t1)] + Q12[Q11 − vr(t1)], (61)

λ5 = Q12 +
Q8Q6

2
− Q8Q4 + Q12Q11,1, (62)

λ6 = Q12 +
Q8Q6

8
− Q8Q4 + Q12Q11,2, (63)

λ7 =
2

3
Q12 +

Q8Q6

48
− 2

3
Q8Q4 + Q12Q11,3. (64)

The Qij functions are quadratures. The first order for both cases are:

E{∆a(t2)} = λ1a
2(t2) − λ2a

2(t2)∆
2αmax (65)

for the uniform case and,

E{∆a(t2)} = λ4a
2(t2) − λ5a

2(t2)σ
2
α, (66)

for the Gaussian case.
These results show once more the nonlinear relationship between cause and effect.

The terms λ1a
2(t2) and λ4a

2(t2) are constants and do not change the general form of
the curves. We can compare both results of the deviations (uniform and Gaussian) by
relating,

∆αmax =
√

3σα. (67)

If we replace this equation inside equation (47), we conclude that:

(a) for the first order the results are the same, for the same σα;

(b) for other orders, the Gaussian semi-major axis deviations are
(2n + 1)!

6nn!
greater

than the uniform deviations, for the same σα.

7 Transfers with Errors in the Thrust Vector: Numerical Analysis

The numerical results confirm the algebraic results obtained. We simulated (Monte-
Carlo) 1000 ensembles of the transfer trajectories for both kind of deviations (uniform-U,
Gaussian-G), for both maneuvers (“theoretical”-T, “practical”-P), for random bias (S)
and white noise (O) deviations. Figures 7.1 and 7.2 show E [a(t2)] for cases TUS, TUO,
TGS, TGO, and PUS, PUO, PGS, PGO, respectively.
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Figure 7.1. Mean semi-major axis × DES2, Theoretical Orbits.

Figure 7.2. Mean semi-major axis × DES2, Practical Orbits.

In these figures DES2 =
√

3σ∆α, where σ∆α is the pitch angle standard deviation
for zero mean. We can observe clearly the nonlinear shapes of the curves like parabolas.
The numerical results for the relation between uniform and Gaussian deviations confirms
equation (67). Figures 7.3, 7.4, 7.5 and 7.6 show that the Gaussian deviations (∆G) are
more than the uniform deviations (∆U).
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Figure 7.3. ∆G × ∆U : Theoretical and Practical Cases, Systematic Errors.

Figure 7.4. ∆G × ∆U : Theoretical and Practical Cases, Operational Errors.
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Figure 7.5. ∆G × ∆U : Theoretical Case, Systematic and Operational Errors.

Figure 7.6. ∆G × ∆U : Practical Case, Systematic and Operational Errors.

The mean linear coefficient between them is 2.6 in all cases: TUS, TUO, TGS, TGO
and PUS, PUO, PGS, PGO. In theses graphics we introduced the numerical results of the
out-plane angle deviations, that is, “yaw” angle deviations, DES3. The linear coefficients
for these angle deviation are: k2, k4, k6 and k8, while for the “pitch” angle deviation,
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k1, k3, k5 and k7. The algebraic results in equation (67) anticipated the value 3 (≈ 2.6
for numerical results). This shows consistency of our results.

8 Conclusions

In the algebraic developments, we obtained expression for E{∆a(t2)} as series of even
powers of σ∆α dominated by the (σ∆α)2 term, to explain the near parabolic relations and
others found, independent of the: 1) transfer orbit (“theoretical” or “practical”); 2) en-
semble distribution (uniform or Gaussian); 3) time correlation/dependence (random-bias
or white-noise). These results suggest and partially characterizes the progressive deforma-
tion of the trajectory distribution along the propulsive arc, turning 3-sigma ellipsoids into
“banana” shaped volumes curved to the center of attraction (we call them “bananoids”)
due to the loss of optimality of the actual (with errors) trajectories with respect to the
nominal (no errors) trajectory. A similar deformation but due to: a) the mean drag
was studied by Carlton-Wippern [15]; b) initial condition Gaussian errors was shown
by Junkins [14]. As his plots also suggest, such deformations can not be anticipated by
covariance analysis ([9, 10, 12]) on linearized models with zero mean errors which propa-
gate ellipsoids into ellipsoids always centered in the nominal (no errors) trajectory. Those
results also characterize how close/far are Monte-Carlo analysis and covariance analysis
for those examples. Other details about our numerical results can be found in Jesus [23].
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sumo mínimo de combust́ivel. Master Dissertation. Instituto Nacional de Pesquisas Es-
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Abstract: We investigate the Lyapunov stability of the stationary solutions of
the differential equations of restricted six-body problem with the gravitational
centre. The gravitational field is created by bodies P0, P1, P2, P3 and P4 with
masses m0, m1, m2, m3 and m4, respectively. In this gravitational field the
movement of a body P with zero mass (m = 0) is investigated. The bodies
P1, P2, P3 and P4 form a rhombus, rotating uniformly around the centre
of gravity P0. In the article we have formulated necessary and sufficient
conditions of Lyapunov stability and instability of equilibrium point of this
model. All necessary analytical calculations are executed in the system of
symbolical calculations (SSC) “Mathematica”.
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1 Introduction

It is known, that the restricted Newtonian many-body problem is very important for a
wide class of applications, from theoretical physics to celestial mechanics and astrody-
namics [1, 6]. It is well known [4, 5], that the differential equations of this problem are
in general not integrable, therefore Poincaré considered the first problem should be the
search for the exact particular solutions and the research of their stability [1]. The latter
problem is the most difficult in the qualitative theory of the differential equations and can
be solved within the framework of the Kolmogorov-Arnold-Mozer (���) theory [12, 13].
With occurrence of the systems of symbolic calculations, for example, Mathematica [10],
possibilities of performance of symbolic calculations have essentially increased. Such cal-
culations are necessary for correct application of the well known Arnold-Mozer theorem
[13, 15]. Let’s consider the following restricted 6-body problem in Grebenikov-Elmabsout

c© 2003 Informath Publishing Group. All rights reserved. 105
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Figure 1.1

model [3, 7]. In the non-inertial Euclidean space P0xyz there are six bodies P0, P1, P2,
P3, P4 and P with masses m0, m1, m2, m3, m4 and m. It is shown, that in this model
the bodies P1, P2, P3 and P4 move in one plane and form a rhombus, rotating uniformly
around a body P0 [2]. In this gravitational newtonian field, produced by mutual grav-
itation of five bodies, we investigate the motion of a body P with zero mass m = 0
(Figure 1.1).

The purpose of our work is the definition of the stationary solutions (states of equilib-
rium) of differential equations, describing this model, and the research of their Lyapunov
stability by methods of computer algebra. It has been proved, that exact rhombus-like so-
lutions do exist in this physical model, if the following conditions are executed [8]: a) the
masses, located in the opposite vertices of a rhombus, are equal among themselves:

m1 = m3; m2 = m4; (1)

b) relations of diagonals ρ1, ρ2, and masses m1, m2 of a rhombus are correlated as:

λ =
ρ3

[

8 − (1 + ρ2)3/2
]

8ρ3 − (1 + ρ2)3/2
, (2)

where
ρ1

ρ2
= ρ,

m1

m2
= λ.

2 Definition of Equilibrium State

Without loss of generality, it is possible to assume, that the gravitational rhombus rotates
always in a plane P0XY around an axis Z with a constant angular velocity ω.

It is obvious, that the sizes of a rhombus can be arbitrary, therefore we shall define
coordinates of a rhombus as follows: P1(α, 0), P2(0, 1), P3(−α, 0), P4(0,−1).

In [9] it is shown that

m2 =
4m0(1 + α2)3/2(α3 − 1) +m1(8α

3 − (1 + α2)3/2)

α3(8 − (1 + α2)3/2)
, (3)
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therefore from conditions α > 0, m0 > 0, m1 > 0, m2 > 0 we receive admissible values

of the parameter α: 1/
√

3 < α <
√

3. For α ≥ 1 the masses can take any values and in

the range 1/
√

3 < α < 1 the relation

m1 >
4(1 + α2)3/2(1 − α3)

8α3 − (1 + α2)3/2
m0 (4)

should be satisfied. The angular velocity of rotation of the rhombus P1P2P3P4 is defined
by the formula [2]

ω =

√

4fm0(1 + α2)3/2(8α3 − (1 + α2)3/2) + fm1(64α3 − (1 + α2)3/2)

4α3(1 + α2)3/2(8 − (1 + α2)3/2)
, (5)

where f is a gravitation constant.
Further for convenience we shall consider, that f = 1 and m0 = 0.
The differential equations of motion of passive gravitating point P (m = 0) in uni-

formly rotating Cartesian frame P0XY Z are [4]:

d2X

dt2
= ω2X + 2ω

dY

dt
− X

r3
+
∂R

∂X
,

d2Y

dt2
= ω2Y 2ω

dX

r3
− Y

r3
+
∂R

∂Y
,

d2Z

dt2
= −Z

r3
+
∂R

∂Z
,

(6)

where

R =
4

∑

j=1

mj

(

1

∆j
− XXj + Y Yj + ZZj

r3j

)

,

∆2
j = (X −Xj)

2 + (Y − Yj)
2 + (Z − Zj)

2,

r2 = X2 + Y 2 + Z2, r2j = X2
j + Y 2

j + Z2
j ,

(7)

X , Y , Z are the coordinates of the zero mass (point P ), Xj , Yj , Zj are the given
coordinates of points Pj , ω is the angular velocity of rotation of the rhombus P1P2P3P4

around P0. System (6) is not integrable in a general form, therefore we shall search
for partial solutions, such as “equilibrium state”. For this purpose we shall introduce a

6-dimensional phase space x = X , y = Y , z = Z, u =
dX

dt
, v =

dY

dt
, w =

dZ

dt
. Then

the system (6) becomes

dx

dt
= u,

dy

dt
= v,

dz

dt
= w,

du

dt
= ω2x+ 2ωv − x

r3
+
∂R

∂x
,

dv

dt
= ω2y − 2ωu− y

r3
+
∂R

∂y
,

dw

dt
= − z

r3
+
∂R

∂z
.

(8)
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Finding of equilibrium state of system (8) is reduced to the solution of the system of
equations

u = 0, v = 0, , w = 0,

ω2x− x

(x2 + y2 + z2)3/2
−

(

m1(x− α)

((x − α)2 + y2 + z2)3/2
+

m2x

(x2 + (y − 1)2 + z2)3/2

+
m3(x+ α)

((x+ α)2 + y2 + z2)3/2
+

m4x

(x2 + (y + 1)2 + z2)3/2

)

= 0,

ω2y − y

(x2 + y2 + z2)3/2
−

(

m1y

((x − α)2 + y2 + z2)3/2
+

m2(y − 1)

(x2 + (y − 1)2 + z2)3/2

+
m3y

((x+ α)2 + y2 + z2)3/2
+

m4(y + 1)

(x2 + (y + 1)2 + z2)3/2

)

= 0,

z

(x2 + y2 + z2)3/2
−

(

m1z

((x− α)2 + y2 + z2)3/2
+

m2z

(x2 + (y − 1)2 + z2)3/2

+
m3z

((x+ α)2 + y2 + z2)3/2
+

m4z

(x2 + (y + 1)2 + z2)3/2

)

= 0.

(9)

From the last equation it follows that z = 0, that is all stationary solutions lay in the
plane P0xy, and the solution of the system (9) is reduced to the solution of the following
system

ω2x− x

(x2 + y2 + z2)3/2
−

(

m1(x − α)

((x− α)2 + y2 + z2)3/2
+

m2x

(x2 + (y − 1)2 + z2)3/2

+
m3(x+ α)

((x+ α)2 + y2 + z2)3/2
+

m4x

(x2 + (y + 1)2 + z2)3/2

)

= 0,

ω2y − y

(x2 + y2 + z2)3/2
−

(

m1y

((x− α)2 + y2 + z2)3/2
+

m2(y − 1)

(x2 + (y − 1)2 + z2)3/2

+
m3y

((x+ α)2 + y2 + z2)3/2
+

m4(y + 1)

(x2 + (y + 1)2 + z2)3/2

)

= 0.

(10)

The following theorem takes place.

Theorem 2.1 Necessary and sufficient condition of existence of the stationary solu-
tions of the restricted six-body problem is decidability of system (10) with respect to the
unknown x and y.

The equations (10) are nonlinear, therefore the question on their decidability can be
studied by graphic and iteration techniques. In terms of the “Mathematica” system a
graphic solution of system (10) is constructed. For example, for m1 = 0.5 and α = 0.95
the two curves are shown on Figure 2.1.

On this figure the bold points denote points P0, P1, P2, P3, P4. Cross-points of the
curves, laying on axes of coordinates, are denoted by Ni, other cross-points – by Si. The
points Ni and Si are the equilibrium solutions of system (10). The calculations show,
that the quantity of equilibrium states essentially depends both on the gravitational
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Figure 2.1

parameter m1 and on the size of the diagonal α. Using Newton iteration method, we
determine the coordinates of the equilibrium state for various values of the parameters
m1 and α.

3 Research of the Linear Stability of Equilibrium State

To investigate the linear stability of the equilibrium solutions of system of the differential
equations (8) it is necessary to construct a linearized system of the differential equations
in the neighborhood of points Ni and Si, (Figure 2.1) with coordinates x∗i , y

∗
i , z

∗
i = 0,

and to study properties of eigenvalues of a matrix of this system. Denoting by x the phase
vector x = (u− u∗i , v− v∗i , w−w∗

i , x− x∗i , y− y∗i , z− z∗i ) and executing the procedure of
linearization of the right parts of system (8) in the neighborhood of a phase point x = 0
in SSC “Mathematica”, we shall get the system of linear differential equations

dx

dt
= Ax. (11)

Six-dimensional matrix A is

A =















[0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
a b 0 0 2ω 0
b c 0 −2ω 0 0
0 0 d 0 0 0















. (12)

The elements a, b, c, d of matrix A depend on the values x∗i , y
∗
i , m1, α, whose expressions
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Table 3.1. Eigenvalues of matrix A.

are quite cumbersome, therefore we shall present the expressions for a and d:

a = ω2 +
3x∗2i

(x∗2i + y∗2i )5/2
− 1

(x∗2i + y∗2i )3/2
+

3x∗2i m1

((x∗i − α)2 + y∗2i )5/2

− 6x∗iαm1

((x∗i − α)2 + y∗2i )5/2
+

3αm1

((x∗i − α)2 + y∗2i )5/2
− m1

((x∗i − α)2 + y∗2i )3/2

+
3x∗2i m2

(x∗2i + (y∗i − 1)2)5/2
− m2

(x∗2i + (y∗i − 1)2)5/2
+

3x∗2i m3

((x∗i + α)2 + y∗2i )5/2
(13)

− m3

((x∗i + α)2 + y∗2i )3/2
+

6x∗2i αm3

((x∗i + α)2 + y∗2i )5/2
+

3α2m3

((x∗i + α)2 + y∗2i )5/2

+
3x∗2i m4

(x∗2i + (y∗i + 1)2)5/2
− m4

(x∗2i + (y∗i + 1)2)3/2

d = − 1

(x∗2i + y∗2i )3/2
− m1

((x∗i − α)2 + y∗2i )3/2
− m2

(x∗2i + (y∗i − 1)2)3/2
(14)

− m3

((x∗i + α)2 + y∗2i )3/2
− m4

(x∗2i + (y∗i + 1)2)3/2
.

From the formula (14) it is clear, that d < 0. The eigenvalues of a matrix A are
defined from the characteristic equation

det(A− λE) = (λ2 − d)(λ4 + (4ω2 − a− c)λ2 + ac− b2) = 0. (15)

First multiplier of the equation (15) gives two pure imaginary eigenvalues, for example,
λ5 and λ6. Using the instruction “Eigenvalues” of SSC “Mathematica” for calculation of
eigenvalues, we have received other eigenvalues λ1, λ2, λ3, λ4 of matrix A at points N1

and S1 for various values of m1 and α. Some of them are given in Table 3.1.
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From Table 3.1 it is clear, that at point N1 for any values of the parameters m1 and
α the eigenvalues of matrix A are not pure imaginary. The similar result is received for
other points Ni.

At point S1 for small enough values of m1 and α, close to unit, the eigenvalues of
matrix A are pure imaginary, that is the equilibrium solutions S1 are stable in the first
approximation. By the iterative method we calculate an interval of stability for m1

0 < m1 < m∗∗
1 = 0.0250344906 . . . . (16)

The interval of stability for α depends on m1, for each values of m1 there is an interval of
variation of α : (α∗, α∗∗). The calculated values of α∗ and α∗∗ for different m1 are given
in the following table:

m1 α∗ α∗∗ m1 α∗ α∗∗

0.001 0.9998476686 1.0031639276 0.002 0.9996953824 1.0026710278

0.003 0.9995431685 1.0022385906 0.004 0.9993910147 1.0018413555

0.009 0.9986311638 1.0001378981 0.01 0.9984793776 0.9998343232

0.02 0.9969648966 0.9972354376 0.025 0.9962099616 0.9962207882

Table 3.2.

The calculations executed for other points Si, give the similar result. The carried
out analysis allows to formulate the statements, following from the classical Lyapunov
theorem on stability in the first approximation.

Theorem 3.1 The stationary solutions of the differential equations of the restricted
six-body problem, located on rotating axes of coordinates, are unstable for any values of
mass m1 and for any values of the relations of rhombus diagonals α.

Theorem 3.2 The stationary solutions of the differential equations of the restricted
six-body problem, not located on the axes of coordinates, are stable in the first approxi-
mation for any value of parameter m1 from the interval (15) and any value of parameter
α from the interval α∗ < α < α∗∗.

4 Research of Lyapunov Stability

The restricted 6-body problem is typically Hamiltonian, and, hence, differential equa-
tions, describing dynamics of our model, can be written a canonical form. Hence it
follows, in particular, that the problem of stability of the stationary solutions S1, S2,
S3, S4 in the sense of Lyapunov [5] can be solved only in the framework of KAM-theory
[6, 15] on the basis of the well known Arnold-Mozer theorem [12, 13]. Now we formulate
this theorem [6].
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Theorem 4.1 Let a Hamiltonian system

dq1
dt

=
∂K

∂p1
,

dp1

dt
= −∂K

∂q1
,

dq2
dt

=
∂K

∂p2
,

dp2

dt
= −∂K

∂q2

(17)

by given with the Hamiltonian

K(q1, q2, p1, p2) = K2(q1, q2, p1, p2) +K3(q1, q2, p1, p2) +K4(q1, q2, p1, p2) + . . . ,

and let the origin be a singular point, such as the equilibrium state of system (17).
Besides, let a canonical transformation

(q1, q2, p1, p2) → (ψ1, ψ2, T1, T2)

exist, which yields
K(q1, q2, p1, p2) ≡W (ψ1, ψ2, T1, T2),

where

W (ψ1, ψ2, T1, T2) = W2(T1, T2) +W4(T1, T2) +W5(ψ1, ψ2, T1, T2) + . . . ,

W2 = σ1T1 + σ2T2, W4 = c20T
2
1 + c11T1T2 + c02T

2
2 .

(18)

If:

(1) eigenvalues of a matrix of linearized system (17) are the imaginary numbers ±iσ1,
±iσ2;

(2) n1σ1 + n2σ2 6= 0 for |n1| + |n2| ≤ 4;
(3) c20σ

2
2 + c11σ1σ2 + c02σ

2
1 6= 0,

then the equilibrium
T1 = T2 = ψ1 = ψ2 = 0

of the Hamiltonian system

dψ1

dt
=
∂W

∂T1
,

dT1

dt
= −∂W

∂ψ1
,

dψ2

dt
=
∂W

∂T2
,

dT2

dt
= −∂W

∂ψ2

with the Hamiltonian (18) is Lyapunov stable.

Now we turn to a four-dimensional-phase space of Lagrangian coordinates and im-
pulses (x, y, px, py). We shall get the Hamiltonian system of the 4-th order, equivalent
to system (8):

dx

dt
=

∂h

∂px
,

dy

dt
=

∂h

∂py
,

dpx

dt
= −∂h

∂x
,

dpy

dt
= −∂h

∂y
,

(19)
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where the Hamiltonian h is expressed by the formula (see [9]):

h = ω(ypx − xpy) +
1

2
(p2

x + p2
y) − (x2 + y2)−1/2

−m1((x − α)2 + y2)−1/2 −m2((x
2 + (y − 1)2)−1/2

−m3((x + α)2 + y2)−1/2 −m4((x
2 + (y + 1)2)−1/2.

(20)

The elementary transformation makes any point Si with coordinates x∗, y∗ the be-
ginning of coordinates: X = x− x∗, Y = y− y∗, Px = px − px∗ , Py = py − py∗ . For the
Hamiltonian we get the expression:

H = ω((Y + y∗)(PX + px∗) − (X + x∗)(PY + py∗))

+
1

2
((PX + p∗)2 + (PY + py∗)2) − ((X + x∗)2 + (Y + y∗)2)−1/2

−m1((X + x∗ − α)2 + (Y + y∗)2)−1/2 −m2((X + x∗)2

+ (Y + y∗ − 1)2)−1/2 −m3((X + x∗ + α)2 + (Y + y∗)2)−1/2

−m4((X + x∗)2 + (Y + y∗ + 1)2)−1/2.

(21)

In the new variables the Hamiltonian differential equations of motion have the form

dX

dt
=

∂H

∂PX
,

dY

dt
=

∂H

∂PY
,

dPX

dt
= −∂H

∂X
,

dPY

dt
= −∂H

∂Y
.

(22)

The formulated Arnold-Mozer theorem is in applicable to system (22), as the Hamiltonian
(22) is not a positively definite function of the variable (X,Y, PX , PY ) [5]. It is necessary
to execute its further transformations. For this purpose it is necessary to construct
Birkhoff normalization. This normalization will be executed for a certain equilibrium
position. For example, we shall consider the point S1, stable in the first approximation,
with coordinates

x∗ = 0.37355, y∗ = 0.971439,

calculated for m1 = 0.001 and α = 0.99985.

We build a sequence of Hamiltonian transformations, necessary for fulfilment of con-
ditions of the Arnold-Mozer theorem.

4.1 Transformation 1

In a sufficiently small neighborhood of the point S1 the analytical Hamiltonian (21) is
presented in the form of a convergent power series:

H = H2(X,Y, PX , PY ) +H3(X,Y ) +H4(X,Y ) + . . . ,
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where Hk(k = 2, 3, . . . ) is a homogeneous form of k-th degree, in our case

H2 = 0.414231X2 − 0.915163Y 2 + 0.5(P 2
X + P 2

Y ) − 0.690873XY

+ ω(Y PX −XPY )),

H3 = − 0.317928X3 + 0.835341Y 3 − 1.049161X2Y + 1.316579XY 2,

H4 = − 0.19571X4 − 0.73835Y 4 + 1.52426X3Y + 1.65464X2Y 2

− 2.09451XY 3.

(23)

Expression (23) indicates, that the quadratic form H2(X,Y, PX , PY ) contains the term
ω(Y PX −XPY ), which is the first obstacle on the way of investigation of the Lyapunov
stability.

4.2 Transformation 2

Let’s execute the linear transformation

[X,Y, PX , PY ] = B[q1, q2, p1, p2], (24)

where symplectic matrix [10] B is defined so, that in the new transformed Hamiltonian

K(q1, q2, p1, p2) = K2(q1, q2, p1, p2) +K3(q1, q2, p1, p2) +K4(q1, q2, p1, p2) + . . .

the quadratic form has a normal Birkhoff form [6, 14]

K2 =
1

2
σ1(q

2
1 + p2

1) −
1

2
σ2(q

2
2 + p2

2),

where frequencies σ1, σ2: σ1 = |λ1| = |λ2|, σ2 = |λ3| = |λ4|, λ1, λ2, λ3, λ4 are the
eigenvalues of linearized system for system (8) at point S1.

Finding of elements of a matrix B is reduced to the solution of system of linear
algebraic equations of the 16-th order. For the examined point S1 σ1 = 0.994537,
σ2 = 0.102242, and the matrix B has the form

B =









0 0 1.98114 5.328999

−1.03191 0.38363 −0.35829 −1.29568

−0.93804 0.16108 0.35842 1.29614

0.356334 −0.13247 0.95557 5.29166









. (25)

The application of canonical transformation (24) with matrix (25) to Hamiltonian H
gives the following expressions for the forms K2, K3 and K4:

K2 = 0.49727(p2
1 + q21) − 0.05112(p2

2 + q22),

K3 = 0.700344p3
1 − 3.771015p2

1p2 − 4.896871p1p
2
2 + 0.452007p3

2

+ 5.846024p2
1q1 + 32.621649p1p2q1 + 45.164737p2

2q1 + 1.821347p1q
2
1

+ 4.013408p2q
2
1 − 0.917884q31 − 2.173359p2

1q2 − 12.127657p1p2q2
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− 16.790077p2
2q2 − 1.354234p1q1q2 − 2.984107p2q1q2 + 1.023717q21q2

+ 0.251729p1q
2
2 + 0.554696p2q

2
2 − 0.380585q1q

2
2 + 0.047163q32,

K4 = − 6.249106p4
1 − 69.140864p3

1p2 − 285.506731p2
1p

2
2 − 521.541002p1p

3
2

− 355.623129p4
2 − 5.919479p3

1q1 − 40.652926p2
1p2q1 − 89.158571p1p

2
1q1

− 61.002839p3
2q1 + 11.059209p2

1q
2
1 + 62.773252p1p2q

2
1 + 88.314296p2

2q
2
1

+ 3.396809p1q
3
1 + 8.059740p2q

3
1 − 0.837196q41 + 2.200668p3

1q2

+ 15.113422p2
1p2q2 + 33.146227p1p

2
2q2 + 22.678852p3

2q2 − 8.222901p2
1q1q2

− 46.674065p1p2q1q2 − 65.664708p2
2q1q2 − 3.788466p1q

2
1q2 − 8.98904p2q

2
1q2

+ 1.244968q31q2 + 1.528502p2
1q

2
2 + 8.675942p1p2q

2
2 + 12.205991p2

2q
2
2

+ 1.408427p1q1q
2
2 + 3.341829p2q1q

2
2 − 0.694257q21q

2
2 − 0.174536p1q

3
2

− 0.414127p2q
3
2 + 0.172068q1q

3
2 − 0.015992q42.

4.3 Transformation 3

Let’s pass from the canonical variables (q1, q2, p1, p2) to the new canonical variables
according to the Birkhoff formulas [14]

q1 =
√

2τ1 sin θ1, q2 =
√

2τ2 sin θ2,

p1 =
√

2τ1 cos θ1, p2 =
√

2τ2 cos θ2.
(26)

Transformation (26) eliminates expressions with the coordinates θ1, θ2 from the qua-
dratic part of the new Hamiltonian F and leaves expressions, dependent only on the new
variables τ1, τ2. If we present new Hamiltonian F in the form

F (θ1, θ2, τ1, τ2) = F2(τ1, τ2) + F3(θ1, θ2, τ1, τ2) + F4(θ1, θ2, τ1, τ2) + . . . ,

then after necessary symbolical transformations we shall receive

F2 = σ1τ1 − σ2τ2 = 0.994537τ1 − 0.102242τ2,

F3 = (0.197768 cosθ1 − 1.7831 cos3θ1 + 2.18664 sinθ1 + 4.78281 sin3θ1)τ
3/2

+ (6.46201 cos(2θ1 − θ2) + 0.342795 cosθ2 − 4.54683 cos(2θ1 + θ2)

+ 25.3277 sin(2θ1 − θ2) − 1.62584 sinθ2 + 20.806 sin(2θ1 + θ2))τ1
√
τ2

− (6.5692 cosθ1 + 5.7507 cos(θ1 − 2θ2) + 1.53053 cos(θ1 + 2θ2)

− 63.3344 sinθ1 − 40.781 sin(θ1 − 2θ2) − 23.6299 sin(θ1 + 2θ2))
√
τ1τ2

+ (1.35108 cosθ2 − 0.072612 cos2θ2 − 11.7728 sinθ2 − 11.9062 sin3θ2)τ
3/2
1 ,

F4 = (−5.09985− 10.8238 cos2θ1 − 9.07276 cos4θ1 − 2.52267 sin2θ1

− 4.65814 sin4θ1)τ
2
1 − (74.5687 cos(θ1 − θ2) + 70.691 cos(3θ1 − θ2)
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+ 70.081 cos(θ1 + θ2) + 61.223 cos(3θ1 + θ2) + 9.64362 sin(θ1 − θ2)

+ 27.3509 sin(3θ1 − θ2) + 6.8308 sin(θ1 + θ2) + 21.362 sin(3θ1 + θ2))τ
3/2

√
τ2

− (196.358τ1τ2 + 371.598 cos2θ1 + 211.36 cos(2θ1 − 2θ2) + 198.027 cos2θ2

+ 164.69 cos(2θ1 + 2θ2) + 87.7501 sin2θ1 + 57.3347 sin(2θ1 − 2θ2)

− 6.1244 sin2θ2 + 33.2323(2θ1 + 2θ2))τ1τ2 − (298.027 cos(θ1 − 3θ2)

+ 810.55 cos(θ1 − θ2) + 745.399 cos(θ1 + θ2) + 232.19 cos(θ1 + 3θ2)

+ 48.8327 sin(θ1 − 3θ2) + 106.145 sin(θ1 − θ2) + 73.522 sin(θ1 + θ2)

+ 15.512 sin(θ1 + 3θ2))
√
τ1τ

3/2
2 − (527.356 + 711.214 cos2θ2

+ 183.923 cos4θ2 − 22.2647 sin2θ2 − 11.5465 sin4θ2)τ
2
2 .

4.4 Transformation 4

Let’s construct the final canonical transformation

(θ1, θ2, τ1, τ2) → (ψ1, ψ2, T1, T2) (27)

which sets to zero the form of order of 3/2F3(θ1, θ2, τ1, τ2), and excludes phase angles
from the second-order form F4(θ1, θ2, τ1, τ2). Besides, the quadratic form F2(τ1, τ2) does
not change. So, the transformed Hamiltonian should be

W (ψ1, ψ2, T1, T2) = W2(T1, T2) +W4(T1, T2) +W5(ψ1, ψ2, T1, T2) + . . . . (28)

We shall search the given transformation as

θ1 = ψ1 + V13(ψ1, ψ2, T1, T2) + V14(ψ1, ψ2, T1, T2),

θ2 = ψ2 + V23(ψ1, ψ2, T1, T2) + V24(ψ1, ψ2, T1, T2),

τ1 = T1 + U13(ψ1, ψ2, T1, T2) + U14(ψ1, ψ2, T1, T2),

τ2 = T2 + U23(ψ1, ψ2, T1, T2) + U24(ψ1, ψ2, T1, T2),

(29)

where V13, V14, V23, V24, U13, U14, U23, U24 are determined from some linear partial
differential equations. For example, the equation for the unknown function U13 has the
form

∂U13

∂ψ1
σ1 +

∂U13

∂ψ2
σ2 = A13(ψ1, ψ2, T1, T2),

whereA13 is expressed by partial derivative of forms F3(θ1, θ2, τ1, τ2) and F4(θ1, θ2, τ1, τ2),
in which the replacement (27) is executed. The solution, which guarantees the form (28)
for the new HamiltonianW (ψ1, ψ2, T1, T2), is to be found by the method of characteristics
[10] and has the form

U13 = (0.198854 cosψ1 + 1.7929 cos3ψ1 − 2.19865 sinψ1 − 4.809 sin3ψ1)T
3/2
1

+ (6.179 cos(2ψ1 − ψ2) + 4.819 cos(2ψ1 + ψ2) − 24.222 sin(2ψ1 − ψ2)

− 22.054 sin(2ψ1 + ψ2))T1

√
T 2 + (6.605 cosψ1 + 4.79616 cos(ψ1 − 2ψ2)

− 63.6823 sinψ1 + 1.937 cos(ψ1 + 2ψ2) − 34.012 sin(ψ1 − 2ψ2)

− 29.909 sin(ψ1 + 2ψ2))
√
T 1T2.
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Carrying out transformation (29) with the found functions V13, V14, V23, V24, U13, U14,
U23, U24, we receive for transformed Hamiltonian the final form (28), where

W2 = σ1T1 − σ2T2 = 0.99453T1 − 0.102242T2,

W4 = −197.657T 2
1 − 5539.05T1T2 + 2591.95T 2

2 .

As a result of the executed transformations it is possible to assert the following.

1. The intervals for m1: (0,m∗∗
1 ) and α: (α∗, α∗∗) are found. At each point of these

intervals the linear system is stable.
2. The resonant curves are determined

{

f1,−2(m1, α) = σ1(m1, α) − 2σ2(m1, α),

f1,−2(m1, α) = 0,
{

f1,−3(m1, α) = σ1(m1, α) − 3σ2(m1, α),

f1,−3(m1, α) = 0,

(30)

which should be excluded from the set of intervals of stability.
3. Third condition of the theorem is also executed, thus for the point S1 the value

of function W4(σ1, σ2) is equal to 2018.72.

The executed calculations for points S2, S3, S4 give similar results.
Thus, the following statement is valid.

Theorem 4.1 The equilibrium points, not lying on coordinate axes, are Lyapunov
stable for any values of parameters m1 from interval of stability 0 < m1 < m∗∗

1 =
0.0250344906 . . . and any values of α from interval α∗ < α < α∗∗, except for the points,
belonging to two resonant curves (30).

References
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