Robustness Analysis of a Class of Discrete-Time Systems with Applications to Neural Networks

Zhaoshu Feng and A.N. Michel

Abstract: In this paper we study the robust stability properties of a large class of nonlinear discrete-time systems by addressing the following question: given a nonlinear discrete-time system with specified exponentially stable equilibria, under what conditions will a perturbed model of the discrete-time system possess exponentially stable equilibria that are close (in distance) to the exponentially stable equilibria of the unperturbed discrete-time system? In arriving at our results, we establish robust stability results for the perturbed discrete-time systems considered herein. We apply the above results in the robustness analysis of a large class of discrete-time recurrent neural networks.

Keywords: Discrete-time systems; robust stability; neural networks.

Mathematics Subject Classification (2000): 34C35, 34D05, 34D20, 34D45, 34H05, 54H20, 93C10, 93C15, 93C50, 93C60, 93D05, 93D20, 93D30.

1 Introduction

We consider discrete-time systems described by first-order ordinary difference equations of the form

\[x(k + 1) = f(x(k)) + h(x(k)), \]

(1)

where \(x(k) \) is a real \(n \)-vector, \(k \in \mathbb{Z}_+ \) (the set of nonnegative integers) and \(f \) and \(h \) are continuously differentiable \(n \)-vector valued functions. We view (1) as a perturbation model of systems described by

\[x(k + 1) = f(x(k)). \]

(2)