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Abstract: The design of a fuzzy Takagi-Sugeno system with concentric regions
and the use of discontinuous piecewise Lyapunov functions allows to relax
stability conditions which can be expressed very easily as a set of Linear
Matrix Inequalities. An adaptive algorithm allows to determine gradually the
embedded sets and the corresponding local models.
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1 Introduction

The Takagi-Sugeno (TS) fuzzy model allows to represent a wide class of non-linear sys-
tems by a set of fuzzy rules for which the consequent parts are linear state models [10].
Using aggregation of rules, which induce a polyhedral partition of the state-space, a
weighted sum of the linear state models is able to describe accurately the non-linear
system. The so-called parallel distributed compensation (PDC) technique is an intuitive
algorithm which consists of designing a fuzzy control rule according to each model rule
of a TS fuzzy system. The premise part of the model rule and its corresponding con-
trol rule are identical. A sufficient condition to ensure the stability of a TS fuzzy plant
model controlled with the corresponding PDC is to find a common quadratic Lyapunov
function for all subsystems [11, 12]. The search of the Lyapunov function can be viewed
as a convex optimization problem in terms of linear matrix inequalities (LMI) for which
efficient solvers exist [1, 4]. The main drawback of this method is the conservativeness
of the results which grows with the number of subsystems which must be taken into
account.

The use of multiple (and in particular piecewise quadratic) Lyapunov functions is an
alternative method to prove the stability of TS fuzzy controllers [6 – 9]. The quadratic
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Lyapunov functions can be designed to ensure the continuity of the overall Lyapunov
function at the boundaries of the cells which map the state space; the condition requiring
the continuity of the Lyapunov function can be relaxed if the energy decreases when
the trajectory moves from a cell into another [6, 7]. Another related method is to drive
gradually the state space trajectory through a series of embedded sets, where an attractor
of a set is included into the next set of the series [2, 3]. This algorithm reproduces the
intuitive characteristic of fuzzy control for which the trajectory is smoothly driven from
one region into another closer region (in terms of distance) of the origin, until it reaches
the equilibrium. The attractors may be computed using comparison systems methods
and vector norms, which leads, however, to conservative results [2, 3].

A TS fuzzy structure which uses generalized spherical coordinates in the premise part
is proposed in this paper, for which some characteristic regions can be put more easily
under the form of quadratic inequalities than the general polyhedral scheme. The design
of discontinuous Lyapunov functions together with appropriate embedded sets will allow
to derive relaxed stability conditions for a TS fuzzy system controlled by PDC techniques.

2 Design of Takagi-Sugeno Systems with Ellipsoidal Domains

A. Takagi-Sugeno systems with generalized spherical coordinates

1) The basic model

Let us consider the fuzzy dynamic model of the Takagi and Sugeno system described by
the following IF-THEN rules Ri, i = 1, . . . , r:

IF z1 is Mi,1 AND ...zn is Mi,n THEN ẋ = Aix + Biu,

where x = (x1, . . . , xn)T is the state vector, u ∈ R is the control vector, z = (z1, . . . , zn)T

are the premise variables and Mi,j(·) are the membership functions of the fuzzy sets
Mi,j . We suppose that card(z) = card(x) = n. The state equation can be defined as
follows [10]:

ẋ =

r
∑

i=1

λi(Aix + Biu),

where λi =
ωi(z)

r
∑

j=1

ωj(z)
with ωi(z) =

n
∏

j=1

Mi,j(zj).

Let us introduce a basis of n-dimensional generalized coordinates which consists of
one radius and n − 1 angles,

z = (ρ, θ1, . . . , θn−1)
T ∈ R

n,

where ρ =

√

n
∑

i=1

(

xi

αi

)2

, αi ∈ R. In the case where α2
i = 1 for all i = 1, . . . , n,

z = (ρ, θ1, . . . , θn−1)
T will correspond to the generalized spherical coordinates basis; if

moreover, the dimension is 2, z = (ρ, θ) will reduce to polar coordinates, where ρ and θ
are respectively the radial and the angular coordinate.
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The Takagi-Sugeno system using z = (ρ, θ1, . . . , θn−1)
T as variable for premises is

described by the set of rules:

Ri: IF ρ is ρi AND θi is Θi,1 AND ... θn−1 is Θi,n−1 THEN ẋ = Aix + Biu. (1)

2) The overlapping condition

In most fuzzy control applications, the input membership functions Mi,j(·) and Mi+1,j

of every variable zj overlap pairwise in an interval
⌋

ẑkj ,j , ẑkj+1,j

⌊

, where the other mem-

bership functions are zero. Consider the region ∆k =
n
⋃

j=1

]

ẑkj ,j, ẑkj+1,j

[

, k = 1, . . . , K,

where 1 ≤ kj ≤ n, nj is the number of predicates for the variable zj, K is the number
of possible regions. Only a limited number of rules are activated in ∆k since, for every
premise zj, only the membership functions Mkj ,j and Mkj+1,j are nonzero, the rules
which involve other fuzzy sets fire.

In the case where the TS system is described by equation (1), the regions ∆k, k =
1, . . . , K, can be represented by the following inequalities:

ρk ≤ ρ ≤ ρk+1, or ρk ≤ xT Px ≤ ρk+1, (2)

where P = diag

(

1

α2
i

)

i=1,...,n

, and

0 ≤ Ψkθk, (3)

where Ψk is a constant vector.
The set of regions where ρm ≤ ρ ≤ ρm+1 will be called Ωm, m = 1, . . . , M . A region

which encloses the origin belongs to the set Ω1, for which ρm = 0. From the preceding
hypotheses, rules which are active in Ωm are also active either in Ωm−1 or in Ωm+1, and
are not active elsewhere. Note that rules which are active in Ω1 are also active in Ω2.

In the rest of the paper, these conditions will be referred to as the “overlapping
conditions”.

B. Design of a control structure

Two kind of controllers will be examined:

– the simple linear state feedback control with regionwise valued parameters:

u = Fkx if x ∈ region∆k; (4)

– the Parallel Distributed Compensation controller, the most popular and natural
control for TS systems, which consists of designing each control rule from the
corresponding rule of a TS system, with which it shares its premise parts. In a
PDC, a rule Ri of the TS system to be controlled [11, 12] corresponds to a dual

regulator rule R̂i:

R̂i: IF ρ is ρi AND θi is Θi,1 AND ... θn−1 is Θi,n−1 THEN u = Fix. (5)
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Figure 2.1. Membership functions for generalized coordinates.

C. A 2-D example

Consider a system described by the following set of rules:

IF ρ is ρi AND θ is Θi THEN ẋ = Aix + Biu,

where x = (x1, x2)
T is the state vector, u is the control vector, X1 = x1/a, X2 = x2/b,

X = (X1, X2)
T , a, b ∈ R. ρ and θ are polar coordinates in the plane X = (X1, X2)

T ,
ρ = ‖X‖2, θ = arg(X).

The following triangular membership functions are given on Figure 2.1.
Fuzzy sets for θ are “θ is 0”, “θ is π/2”, “θ is π”, “θ is 3π/2”. Figure 2.2 shows the

regions where rules are active. For example, in region ∆1 of Figure 2.2, only rules

“ρ is ρ1 AND θ is 0”, “ρ is ρ1 AND θ is π/2”,

“ρ is ρ2 AND θ is 0”, “ρ is ρ2 AND θ is π/2”

are activated, the remaining rules fire. Region ∆1 can be described by the following

constraints: x1 ≥ 0, x2 ≥ 0 and xT Px ≤ c, where P =

( 1

a2 0

0 1

b2

)

and c = 1.

The regions ∆k are a sector of a cone (when enclosing the origin) or of an annulus, for
which only 4 rules are active, the other ones fire. The main differences with respect to
classical TS-fuzzy controllers are now clear: the state space partition is not polyhedral,
but the local models are distributed following the distance and orientation with respect
to the origin, in the state-space. The notion of distance (from the equilibrium) respects
the intuitive nature of fuzzy predicates such as “FAR” or “NEAR”, and some of the
constraints on regions where parameters are constant can be expressed as quadratic
inequalities, which shows quite useful in Lyapunov stability techniques. In the general
case (n > 2), the characteristic regions of the TS system can be chosen as ellipsoidal.

Figure 2.2. Example of regions where a limited number of rules are active.
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3 LMI-based Stability Analysis of the Fuzzy Controller

A. Stability theorems based on multiple Lyapunov functions

Suppose that the original system is described by equation (1) – the premise variables
are not necessarily spherical coordinates – and verifies the overlapping condition. It will
thus be possible to find N disjoint regions Υm for which a scalar energy function Vm can
be defined. Let the switching boundary Λml for which the trajectory x(t) passes from
some neighboring regions Υm to Υl, i.e.

Λml =
{

x\x(t−) ∈ Υm, x(t) ∈ Υl

}

.

Theorem 3.1 [6] Suppose that there exist class K functions α and β such that, for
all m, l = 1, . . . , M ,

(i) α(‖x‖) ≤ Vm(x) ≤ β(‖x‖) for all x ∈ Υm,

(ii) V̇m(x) ≤ 0 for all x ∈ Υm,
(iii) Vl(x) ≤ Vm(x) for all x ∈ Λml,

then the origin is (uniformly) stable in the sense of Lyapunov.

Theorem 3.1 allows to relax the continuity condition for the Lyapunov function, and
a companion theorem exists for exponential stability [7]. A corollary has been given in
[6] for quadratic Lyapunov functions. We propose a simplified criterion using the special
structure given in (1), which will allow the control problems to be expressed as a simple
set of LMIs.

Theorem 3.2 Consider a regionwise valued fuzzy system defined in (1). If there
exists a series of positive definite matrices Zm, m = 1, . . . , M , such that:

xT Zmx ≤ 0 for all x ∈ Ωm,

Zm−1 − Zm ≤ 0 for all m,

then the origin is (uniformly) stable in the sense of Lyapunov.

Proof of the Theorem 3.1 — ??? In the domain Ωm, for which ρm ≤ xT Px ≤ ρm+1,
condition (i) can always be fulfilled, since Vm = xT Zmx. Condition xT Zmx ≤ xT Zm−1x
must be satisfied at the boundary ρm = xT Px, for which the radius is fixed and the
angles θi are any. If condition (iii) is satisfied at the boundary ρm = xT Px, it should
then also be satisfied for any z = (ρ, θ1, . . . , θn)T and thus for any of the state space.

Remark 3.1 It possible to choose independent Lyapunov functions for every ring Ωm,
provided that these Lyapunov functions are always decreasing. The search for Lyapunov
matrices should thus start from m = M down to m = 1. If Z = Zm, ∀m = 1, . . . , M ,
then the problem is reduced to the more general case of finding a common Lyapunov
function.

B. LMI-based control of TS-systems with concentric regions

As in [6 – 9], control of TS-systems under a combination of piecewise-linear controls can
be seen as a convex optimization problem with constraints that can be solved using
powerful numerical tools, using Linear Matrix Inequalities [1, 4].
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1) Application to piecewise linear control

Theorem 3.3 Consider the TS-system defined in (1) with the piecewise linear con-
troller defined in (4). Define Ωm, m = 1, . . . , M , as the set of regions ∆k for which ρm ≤
xT Px ≤ ρm+1. If there exist a series of positive-definite matrices Zm, m = 1, . . . , M
and a positive constant number τm such that, for every region ∆k ⊂ Ωm and for every
rule Ri which is active in ∆k:

AT
i Zm + ZmAi + ZmBiFk + FT

k BT
i Zm + τmP < 0, (6)

Zm−1 − Zm ≤ 0. (7)

The origin is (uniformly) stable in the sense of Lyapunov.

Proof Consider the Lyapunov function V = xT Zmx.
In region ∆k

V̇m = ẋT Zmx + xT Zmẋ+ =

δk
∑

i=1

λi

(

xT (AT
i Zm + FT

k BT
i Zm)x + xT (ZmAi + ZmBiFk)x

)

.

V̇m < 0 if ∀ i, k,

xT (AT
i P + FT

k BT
i Pm)x + xT (PAi + PBiFk)x < 0.

The LMI can be relaxed by considering the regionwise constraints, which can be
written, according to the concentric nature of regions:

Ψkx < 0, ρm − xT Px < 0, xT Px − ρm+1 < 0,

and, by the S-procedure [1], a sufficient condition for V̇m < 0 if the existence of positive
constants τ1,m, τ2,m, τ3,k such that:

xT (AT
i Zm + FT

k BT
i Zm)x + xT (ZmAi + ZmBiFk)x

− τ3,kΨkx − τ1,m(ρm − xT Px) − τ2,m(xT Px − ρm+1) < 0.

If condition Ψkx < 0 is not taken into account,

xT (AT
i Zm + FT

k BT
i Zm + τ1,mP − τ2,mP + ZmAi + ZmBiFk)x− τ1,mρm + τ2,mρm+1 < 0

which is satisfied if AT
i Zm + FT

k BT
i Zm + (τ1,m − τ2,m)P + ZmAi + ZmBiFk < 0 and

−τ1,mρm + τ2,kρm+1 ≤ 0.

Taking τ2,m = τ1,m

ρm

ρm+1

and τm = τ1,m−τ2,m = τ1,m

(

1−
ρm

ρm+1

)

gives condition (6).

If the conditions in (6) are fulfilled, then V̇m < 0 in Ωm. From equations (6), (7),
applying Theorem 3.2, the origin is uniformly stable.
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2) PDC control of TS-systems using concentric Lyapunov surfaces

Theorem 3.4 Consider the TS-system defined in (1) with the Parallel Distributed
Compensation controller defined in (5). If there exist a series of positive-definite matrices
Zm, m = 1, . . . , M , and a positive constant number τm such that, for every region
∆k ⊂ Ωm, and for every rules Ri, Rj which are active in ∆k,

GT
iiZm + ZmGii + τmP < 0, ∀ i = 1, . . . , δk,

(

Gij + Gji

2

)2

Zm + Zm

(

Gij + Gji

2

)

+ τmP ≤ 0, ∀ i < j,
(8)

Zm−1 − Zm ≤ 0, (9)

where Gij = Ai + BiFj, and δk is the number of active rules in ∆k, the origin is
(uniformly) stable in the sense of Lyapunov.

Proof The proof follows the same sketch as in [12] and in Theorem 3.3.

3) TS-system with adaptive rule selection

The algorithm in Theorem 3.1 allows to check the stability of a TS-controller with PDC
with relaxed stability conditions, for which the membership functions and validity do-
mains are defined a priori by the user. In general, there is little guideline to help to
determine these crucial parameters of fuzzy controllers. As an alternative, it is proposed
to build gradually the domains Ωm (and thus the corresponding rules and local models)
from the Lyapunov function found in the previous subset Ωm+1.

Rules are designed in a first time only in the outer set ΩM . The upper boundary of
the new set ΩM−1 will be chosen as the smallest Lyapunov surface (from the common
Lyapunov function which matches the stability conditions in ΩM ) which contains the
lower boundary of ΩM . The same method will apply for next subsets.

Consider a TS-system defined in (1), using z = (ρM , θ1, . . . , θn−1)
T as variable for

premises, for which
ρM = xT ZM+1x.

The set of rules, which are only active in ΩM =
{

ρ−M ≤ xT ZM+1x ≤ ρ+

M

}

is:

Ri: IF ρM is ρi AND θ1 is Θi,1 AND ... θn−1 is Θi,n−1 THEN ẋ = Aix + Biu,

where the membership functions ρM−1(·) and ρM (·) fully overlap in the domain ⌊ρ−M , ρ+

M⌋.
The membership functions of the other premise variables verify the overlapping condition.

Let us introduce the piecewise linear controller: u = Fkx if x ∈ region∆k, with ∆k ⊂
ΩM .

Theorem 3.5 If there exists a series of positive definite matrices Zm, m = 1, . . . , M ,
and positive numbers ρ−m and ρ+

m such that:

(i) Define

Ωm =
{

ρ−m ≤ xT Zm+1x ≤ ρ+
m

}

, Ω+
m =

{

xT Zm+1x = ρ+
m

}

,

Ω−

m =
{

xT Zm+1x = ρ−m
}

,
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where Ω+
m−1 is the biggest domain that includes Ω−

m, and Ω+
m−1 is enclosed

into Ω+
m;

(ii) Rules in Ωm take the form:

Ri: IF ρm is ρi AND θ1 is Θi,1 AND ... θn−1 is Θi,n−1 THEN ẋ = Aix + Biu,

where ρm = xT Zm+1x, and the corresponding local controller is designed in the
appropriate regions ∆k;

(iii) AT
i Zm + ZmAi + ZmBiFk + FT

k BT
i Zm + τmZm < 0, ∀m = 1, . . . , M ,

then the overall system is asymptotically stable.

Proof Taking V = xT Zm+1x in Ωm, condition (iii) ensures that if a trajectory crosses
a surface xT Zmx = c, where c is some constant, then the trajectory stays in the domain
xT Zmx ≤ c [5]. Hence, if condition (iii) is verified, all trajectories that start in Ωm will
reach Ωm−1. The trajectory converges thus towards the equilibrium (see Figure 3.3).

Figure 3.1. Gradual determination of domains.

Remark 3.2 The main advantage of the method is to allow a wide flexibility in the
construction of regions. The original system and controllers are not “frozen”, since rules
and local models are adapted from the stability conditions found for the former set. The
counterpart is that, in general, a new set of local models should be determined (and
identified) for every domain Ωm.

4 Example

Consider the 2-D system described in Section 2(C) with P = I (see Figure 2.1), to be

controlled by the piecewise linear controller in (4). Suppose that, for θ ∈

{

0,
π

2
, π,

3π

2

}

,
the consequent part is described by:

ẋ = Aρ,θx + Bu,

where

B =

(

1

0

)

and Aρ2,θ =

(

−1 cos(θ) − 1
−2 + sin(θ) −1

)

,

Aρ3,θ =

(

−1 2 sin(θ) − 1
−2 + 2 cos(θ) −1

)

, Aρ1,θ =

(

−2 −2
3 0

)

.
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The regionwise valued controllers for every region ∆k are given in Table 4.1.

Region ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

FT
k (−1 1) (−0.5 0.5) (−2 1.5) [−0.5 1.5] (−1 0) (−2 2) (−2 3) [−3 3]

Table 4.1. Regionwise valued controllers.

It is impossible to find a common Lyapunov matrix for all controlled systems (actu-
ally 28 equations, which would be the same in a corresponding rectangular partition).
However, the application of Theorem 3.3 gives

Z1 =

(

11.79 1.64
1.64 5.11

)

, Z2 =

(

16.05 −4.89
−4.89 18.34

)

and the overall controller is now stable.

5 Conclusion

Introducing generalized spherical coordinates in the premise part of TS fuzzy systems, it
has been shown that an appropriate choice of membership functions allows to separate
the state space into a number of concentric regions in which only a limited number of
rules are active. PDC techniques can be used to control the TS fuzzy system. A piecewise
quadratic Lyapunov function has been designed for every concentric region; the stability
of the controlled system is ensured if the piecewise Lyapunov function is decreasing in
the corresponding region and if it is smaller than that of the previous domain. Since the
regions can be viewed as constraints which can be described with the help of quadratic
inequalities, it is easy to include these into a set of inequalities which derives from the
Lyapunov stability analysis, which relax LMI conditions. An adaptive algorithm has
then be proposed which allows to choose the embedded sets and the corresponding local
models and rules.
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