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Abstract: In this paper, we study the stability of a wide class of switched
systems using stability preserving mappings. By considering an existing result
and extending it to a general class of switched systems, we show that stability
preserving mappings constitute an important and practical tool in stability
analysis and design of switched systems.
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1 Introduction

We study the stability of a large class of switched systems using stability preserving map-
pings [1—4]. By a switched system, we mean a hybrid dynamical system that is composed
of a family of continuous-time subsystems and a rule orchestrating the switching between
the subsystems. Recently, there has been increasing interest in the stability analysis and
switching control design of such systems (for recent progress in this field, see the sur-
vey papers [5,6] and the references cited therein). It is known that when considering
the switching method among several given subsystems, there are two main approaches
for stability analysis or design: in one the switching depends only on time while in the
other, the switching depends on the state and/or output of the system. In this paper,
we focus our attention on the case of switching among subsystems determined by time,
and in this sense we use the term time-controlled switched system. For such switched
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systems, there are several existing results. The paper [7] shows that when all subsystems
are linear time-invariant and all subsystem matrices are Hurwitz stable, we can choose
each subsystem’s activation time interval (called dwell time) sufficiently large so that the
switched system is exponentially stable. In [8], a dwell time scheme is analyzed for local
asymptotic stability of nonlinear switched systems with the activation time being used as
a dwell time. In [9,10], Hespanha extends the concept of “dwell time” to “average dwell
time”, by showing that when the average time interval between consecutive switchings
is sufficiently large, the switched system is exponentially stable. In the recent papers
[11,12], the authors extended the above stability results to the case where both Hurwitz
stable and unstable subsystems exist, by showing that if the average dwell time is chosen
sufficiently large and the total activation time of unstable subsystems is relatively small
compared with that of Hurwitz stable subsystems, then global exponential stability of a
desired decay rate is guaranteed.

In this paper, we aim to extend the above results for a wide class of switched systems.
The switched system under consideration is composed of N subsystems and is described
by

.’L'(t) = flk (t,.’IJ(t),JI(Tk)), Tk <t< Tk+1, (1)
.I(t) = Gipyr (tvx(ti); I(Tk)); t = Tky1,
where z(t) € R™ is the state, 79,71,72, -, Tk, - are the switching points, and i; €

Iy = {1,2,--- | N} denotes the number of the subsystem that is activated during the
time interval 7, <t < Tpy1. Forall i € Iy, it is assumed that f; € CT[RT x R x R", R"]
and f;(¢,0,0) =0, g; € C[RT x R" x R",R"] and g;(¢,0,0) = 0. Clearly, the differential
equation in (1) determines the dynamical behavior of the system over the indicated
time intervals while the second equation specifies the amount of the state change when
switching occurs.

It is well known that the switched system (1) can be regarded as a discontinuous dy-
namical system. There are many results within this framework (for example, [1-4, 8]).
In these references, the notion of stability preserving mapping is very important and ef-
fective in analyzing discontinuous dynamical systems. In this paper, we first use stability
preserving mappings to recall an existing result and then extend our considerations to
more general switched systems. In contrast with the general results given in [1-4, 8],
we will in this paper take advantage of specific properties of switched systems to obtain
some practical results.

The remainder of the present paper is organized as follows. In Section 2, we review
some of the stability preserving mapping theory for discontinuous/hybrid dynamical sys-
tems established in [1—4, 8]. In Section 3, stability results for various cases of the switched
system (1) are established. Finally, in Section 4 we make some concluding remarks.

2 Preliminaries

In the interests of completeness and clarity, we summarize in this section some of the
stability preserving mappings theory developed in [1—4,8]. To do this, we need to recall
the definition of dynamical system and discontinuous/hybrid dynamical system.
Dynamical systems are families of motions determined by evolutionary processes (see,
e.g., [1]). The evolution of such processes takes place over time which we denote by T.
Every motion of a dynamical system depends on initial data (t9,a), where tg € T is
called initial time and a € A C X is called initial point, where X, the state space, is
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a metric space with metric d (i.e., (X,d) is a metric space), and A is an appropriate
subset of X. For a given ({9, a), we denote a motion, if it exists, by p(¢, %0, a), t € Ty, q,
where Ty, ., = [to,t1) N T, and where ¢; may be finite or infinite. Thus, a motion is a
mapping p(-,to,a): Tty — X with p(to,to,a) = a, and the family of motions which
makes up the dynamical system is obtained by varying the initial point a over the set A
and the initial time to over Ty, an appropriate subset of T' (the set of initial times). If
we denote such a family by S, then the dynamical system is signified by the quintuple
{T,X,A,S,To}. When T = Ty, we simply write {7, X, A, S}, and when all is clear
from context, we will simply speak of a dynamical system S (rather than a dynamical
system {T, X, A,S,To}). If T = Rt = [0, 00), we speak of a continuous-time dynamical
system and when T = N ={0,1,2,---} we speak of a discrete-time dynamical system.
If T = R' and all p € S are continuous with respect to ¢, we speak of a continuous
dynamical system. If T = RT and the elements of S are not continuous with respect
to t, we speak of a discontinuous dynamical system (DDS). Most frequently, the system
motions are determined by means of the solutions of initial-value problems.

Hybrid dynamical systems are capable of exhibiting simultaneously several kinds of dy-
namic behavior in different parts of the system (e.g., continuous-time dynamics, discrete-
time dynamics, logic commands, discrete events, jump phenomena, and the like). For
such systems, a general model which appears to be suitable for the qualitative analysis
of general hybrid dynamical systems was introduced in [1—4]. This model incorporates
a concept of generalized time. If we generalize the dynamical systems considered in
the above paragraph by replacing the usual concept of time with the general time space
(T, p), we end up with a notion of hybrid dynamical system {T,X, A, S,To} (HDS) which
includes most of the specific classes of dynamical systems considered in the literature as
special cases. Presently, T' is a totally ordered space with relation “<” which is bounded
from below by tpn, € T and for the metric p, triangle inequality is replaced by “triangle
equality”.

For {T, X, A, S, Ty}, aset M C A is said to be invariant with respect to system S if
a € M implies that p(t,a,tg) € M for all t € Ty, all to € Ty and all p(-,a,tp) € S.
We will state the above more compactly by saying that M is an invariant set of S, or
(S, M) is invariant. If in particular, M = {xz¢}, then zg is called an equilibrium.

In the following, d denotes the metric on X (i.e., (X, d) is a metric space).

Let {T,X,A,S,To} be an HDS and let M C A be an invariant set for S. We say that
(S, M) is stable if for every € > 0 and ¢y € Tp, there exists § = (e, tg) > 0 such that
d(p(t,a,t0), M) < € for all t € T,,, and for all p(-,a,tg) € S, whenever d(a, M) < 6.
We say that (S, M) is uniformly stable if § = 6(e). If (S, M) is stable and if for any
to € Tp there exists an n = n(tg) > 0 such that tlirgo d(p(t,a,tg), M) =0 (i.e., for every

€ > 0, there exists a t. € T such that d(p(¢,a,to), M) < € whenever ¢t € T and t. < t)
for all p(-,a,to) € S whenever d(a, M) < n, then (S, M) is said to be asymptotically
stable. We call (S, M) uniformly asymptotically stable if (S, M) is uniformly stable and
if there exists a 6 > 0 and for every ¢ > 0 there exists a 7 = 7(¢) > 0 such that
d(p(t,a,to), M) < e for all t € {t € T,,: p(t,to) > 7} and all p(-,a,tg) € S whenever
d(a, M) < 6. We call (S, M) exponentially stable if there exists o > 0, and for every
e >0 and ty € Ty, there exists § = d(¢) > 0 such that d(p(t,a,ty), M) < ee=*Ptt0) for
all t € Ty, and for all p(-,a,tg) € S, whenever d(a, M) < §. The notions of uniform
asymptotic stability in the large, and global exponential stability are defined similarly.
Finally, we call (S, M) unstable if (S, M) is not stable. It has been shown (for example,
[1-4]) that, by using the isometric mapping e: T — Rt given by e(t) = p(t,tmin),
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the qualitative analysis of invariant sets of hybrid dynamical systems defined on abstract
time space T can be reduced to the qualitative analysis of the same invariant sets of
the corresponding discontinuous dynamical systems defined on RT (t is the minimum
element on 7" determined by the relation “<”). Thus, in the qualitative analysis of such
hybrid systems, we can confine ourselves to the qualitative analysis of appropriate DDS.
For further details, see [1].

We now introduce the concept of stability preserving mapping between two discontin-
uous dynamical systems { R, X1, A;,S1} (with invariant set M7) and {R*, X3, Aa, Sa}
(with invariant set M3). Such mappings will serve as a basis for developing a general
comparison (stability) theory for discontinuous dynamical systems. For example, if a
stability preserving mapping has been established between S7 and S5, and if the stability
properties of (S3, M3) are well understood, then it will be possible to deduce the stability
properties of (S1, M;) from those of (Sz, M3).

Definition 2.1 Let {R™", X1, A1, 51} and {RT, X3, A3, 52} be two discontinuous dy-
namical systems with invariant sets My C A; and My C Ao, respectively. We say that
V: Xy x RT — X3 is a stability preserving mapping from Sy to Sa (or more explicitly,
from (S1, M) to (S2, Ma)) if V satisfies the following conditions:

. A .
(i) S2=V(51)={q(-,b,t0): q(t,b,t0) = V(p(t,a,to),t), with b=V (a,to) and T ¢, =
Ta,tou a < Al, tg € R+};

(il) My =V (M; x R*)é{x € Xo: =V (xy1,t') for some xy € M; and t’ € RT};

(iii) the invariance of (S1, M1) is equivalent to the invariance of (S2, M3), i.e., (S1, M)
is invariant if and only if (Ss, M>) is invariant; and

(iv) the stability, uniform stability, asymptotic stability, uniform asymptotic stability,
exponential stability, uniform asymptotic stability in the large, and exponential
stability in the large of (S1, M;) and (S3, Ma) are equivalent, respectively (i.e.,
(S1, M) is stable if and only if (S, M>) is stable; (Sy, M7) is uniformly stable if
and only if (Sa, M2) is uniformly stable; and so forth.)

The above definition states that the function V from X; x Rt into X5 induces a
mapping V: S; — S and that under V several stability properties of (S, M;) and
(Sa, V(M x RT)) are preserved.

Lemma 2.1 [1] Let {R", X;, A;,S;}, i = 1,2, be two discontinuous dynamical sys-
tems and let M; C A;, i = 1,2, be closed sets. Assume there exists V: X1 x RT — X,
which satisfies

(i) V(S1) C Sa, where V(S1) and Mz are defined as in Definition 2.1;

(ii) there exist 11, P2 € K defined on RT such that

Y1(di(x, My)) < da(V(x,t), M2) < h2(di(x, My)) (2)

for all x € Xy, and t € RY, where di, do are the metrics defined on X; and
Xs, respectively. (i € K means that v € C[RY, RT], 4¥(0) = 0, and v(r) is
monotonically increasing in r.)

Then,

(a) the invariance of (S2, Ma) implies the invariance of (S, M1);

(b) the stability, uniform stability, asymptotic stability, and uniform asymptotic sta-
bility of (S2, M2) imply the same corresponding types of stability for (S1, My);
and
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(c) if in (2), Y1(r) = ar, a > 0, b > 0, then the exponential stability of (Sa, M>)
implies the exponential stability for (S, My); and
(d) if in (2), lim ¥1(r) = oo and if My and My are bounded and closed, then

the global uniform asymptotic stability of (Sa, Ma) implies the global uniform
asymptotic stability for (S1, My); and

(e) if in (c), M1 and Mz are bounded and closed, then the global exponential stability
of (S2, M2) implies the global exponential stability for (S1, My).

There may be a temptation to view the notions of stability preserving mapping and
Lyapunov function as being identical concepts. This, however, is not correct, as can be
seen by considering, e.g., for {T, X, A, S, Ty} with X = R™ and M = {0}, the function
V(z) = = € R™. This function is clearly a stability preserving mapping. However, by
any standards, it hardly qualifies as being a Lyapunov function.

3 Stability Analysis of Several Classes of Switched Systems
In the present section, we apply the stability preserving mapping theory in the analysis

of several classes of switched systems described by (1).
First, we consider the linear case of the system (1) given by

x(t) = Ag, (), T <t < Thptl, @)
‘T(t):BikJrlx(t_)’ t="Tgt1, kEN,
where A;,, B;,,, € R"*", and Eé{m,ﬁ, ceei1g <1 < ---} is a fixed, unbounded,

closed, discrete set. For this switched system, we obtain the following result according
to [4].
Lemma 3.1 Assume that

(i) there exists a constant « > 0 such that for all i € In, ||A;]| < a, where || - |
denotes the matriz norm induced by the Fuclidean vector norm;
(ii) sup{7k41 — Tk} < X < 00, where X is a constant;
k

(iii) ||B
Then, the equilibrium x. = 0 of the switched system (3) is uniformly asymptotically
stable in the large.

ik“eAik (Te1=70) || < ¢ < 1, where q is a constant, Yk € N.

We now show how one could obtain the above result by the stability preserving map-
ping theory (Lemma 2.1). Let Sy = S(3y (S(s) denotes the dynamical system determined
by the solutions of (3)), M; = {0}, and choose y(t) = V(x(t)) = (z7z)'/2. Along the
solutions of (3), we have for 7, <t < 7p41,

y(t)
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Also, at t =7, ,, we have

y(t) = ()] < ||Biyy, e 07 [[(7)] < qy(m)- (5)

Thkt1

Now consider the discontinuous dynamical system described by the scalar-valued in-
equalities

(6)

7(t) < ay(t), a >0 —constant, T, <t < Tpy1,
y(mer1) < qly(m), 0<qg<1, VkeN.

Let Sz = S(g) denote the dynamical system determined by (6), M = {0}, and let dy,
ds be the metrics determined by the Euclidean norms on %" and R'. Then, the function
V(z) induces a mapping V from S; to Sz (see Definition 2.1), and V(S;) C S2. Since
the equilibrium y. = 0 of (6) is uniformly asymptotically stable in the large (as can be
verified by solving (6) directly), and since all the conditions of Lemma 2.1 are satisfied,
we conclude that the equilibrium z. = 0 of (3) is uniformly asymptotically stable in the
large.

From Lemma 3.1, we obtain the following result, which is an extension of the results
that appeared in [7] and [8].

Theorem 3.1 Assume that A; is Hurwitz stable for all i € In. Then, there exists a
constant T > 0 such that if every subsystem is activated over a time interval larger than
T, then the switched system (3) is exponentially stable.

Proof Since every A; is Hurwitz stable, there exist positive scalars K and n such that
ledit|| < Ke™". Also, we can always find a positive scalar 3 such that ||B;| < 8 for all
i € Iy. For any positive scalar ¢ < 1, we choose

T>%1n (%) (7)

Tk+1 — Tk
T

When 741 — 7% > T, we let [, = L J, where |2 denotes the largest integer

less than or equal to z, and we let
e+ @ —-1T for 1<i<lIy,
Thyi = (8)

Thk41 for i=1;+1.

Obviously, during the interval [1g;, Tkit1) (i = 1,---,1lx) the ir-th subsystem is acti-
vated. Now, since T < 7j ;41 — Tk, < 27", and since
eAik(Tk,iJrl_Tk,i)

1B < BKeT < g <1, (9)

Ik,it1
it follows from Lemma 3.1 that the equilibrium 2z, = 0 of the switched system (3) is

uniformly asymptotically stable in the large, and thus exponentially stable in this case.

Next, we consider the more general class of switched systems

{ o(t) = Ay x(t) + My, (), Te <t < Tht1,

(10)
‘T(t) :Bik+1x(t_)+Nik+1x(Tk)u t:Tk-i-la ke N7

where A;,, M,,, B

new result.

ini1s Nip, € R™*™. For such systems, we now prove the following
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Theorem 3.2 Assume that

(i) there exist two constants o > 0, v > 0 such that for all i € In, ||Ai < a,
M| <
(i) sup{mp41 — 7} < A < 00, where X is a constant;
k

Tk+1—Tk

Bi,., <€Aik (Th1=7h) 4 [ Ik AT dr] Mik> + Nipy || <q <1, where q is a

(iii)

0

constant, Vk € N.
Then, the equilibrium x. =0 of the switched system (10) is uniformly asymptotically
stable in the large.

Proof Let Sy = S(19), M1 = {0}, and choose y(t) = V(z(t)) = (z7'2)'/2. Along the
solutions of (10), we have for 7, <t < Tp41,

(1) = 3 (02 (0) =5 (0) #(0) + #(0) (1)
_ % (@(®)Tz(t) " (2(t)T (Ai, + AT )z (t) + 2(t)T My, x(ri) + 2(m) T ML () 1D
< ay(t) +yy(m).

Also, at t = 7, ,, we have according to the condition (iii)

y(t) = [=(t)]

(12)
Bik+1 (eAi"(Tk+l_Tk) + [ / eAikT dT] Mik> + Nik+1

IN

l2(7%)| < qy(Th).

Similarly as in the proof of Lemma 3.1, the function V(z) induces a mapping V from
S1 to the discontinuous dynamical system Sz = S(13) determined by the scalar-valued
inequalities

{ y(t) S ay(t) + /Yy(Tk)u o> 07 v > 07 Tk S t < Tk+1, (13)

Y(Te41) < qly(me)l, 0<g<1, VYkeN.
Since the equilibrium y. = 0 of (13) is uniformly asymptotically stable in the large,

and since all the conditions of Lemma 2.1 are satisfied, we conclude that the equilibrium
xz. = 0 of (10) is uniformly asymptotically stable in the large.

From Theorem 3.2, we obtain the following interesting result.

Lemma 3.2 Assume that A;’s, i € In, are Hurwitz stable, and thus there exist
constants K > 0, n > 0 such that |e?*| < Ke ™ for all t > 0, and assume that

K
1Bill < B, [IN:|| < pe <1, || M| <y, where B, js, v are positive constants. If 67—+u =
n

qo < 1, then there exist constants To > T1 > 0 such that when every subsystem is
activated over a time interval of duration T satisfying Ty <T < Ty, the entire switched
system is exponentially stable.
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Proof The condition (iii) of Theorem 3.2 is calculated as

Tk+1—Tk

B, (eAik (1 =m) 4

AT dT‘| Mlk> + Nik+1

0
Tk+1—Tk
< BReTT T 4 gy K / e dr +p (14)
0

< ﬁKe*ﬁ("'kJrl*Tk) + M_K + I
n

— ﬁKe*ﬁ(TkH*Tk) + qo.
Therefore, for any 0 < g < qg, we can always choose 77 > 0 such that when iléf (Th1 —

7i) > T1, we have BKe MTe+1-7k) 4 qo < q < 1. Pick any To > T7. Then, if every
subsystem is activated over a time interval of magnitude T satisfying Th < T < Tp,
then by Theorem 3.2 we can conclude that the entire switched system is uniformly
asymptotically stable in the large, and thus exponentially stable in this case.

Note that in Theorem 3.1, 73 can be oo (because the system is autonomous), while
in Lemma 3.2 this case must be excluded since the term M;, z(7x) in the system (10)
depends specifically on z(7y). Therefore, an upper bound T5 is required to avoid the case
that only one subsystem is activated after some time instant.

Finally, we consider the nonlinear switched systems determined by equations of the
form

{ i(t) = Ajx(t) + My, () + Fy (8, 2(t), 2(3)), T <t < Ty, (15)
x(t) = By, o(t™) + Ny w(me) + Giyy (G 2(t7), 2(1k)), ¢t = Tryr1, k€N,
where Ai,, Mi,, Biy,,, Nip,, € ™7, Fy, Gir,, € C[RY x R x 7, R, F,, (£,0,0) =
0, Giy,,(t,0,0) =0 for all t € R, and

F, (t,z,2) Giyp (t,2,2)

lim =0, lim ——————=—=0 (16)
v=0 50 \JTalP + I r=0 50 T+ I
hold uniformly for all t € R, k € N. Obviously, the system (15) may be a consequence
of a linearization process of the system (1) about the point z, = 0. We now prove the
following new result.

Theorem 3.3 Assume that

(i) there exist three positive constants o, v, 8 such that for all i € Iy, || 4] < a,
[Mi]| <7, [|Bill < B;
(ii) sup{7Tp+1 — T} < A < 00, where A is a constant;

keEN
Tk+1—Tk
(iii) || Biy,, (eAik (Te1=7k) 4 [ J eAinT dT:| Mik> + Ny || < g <1, where q is a
0

constant, for all k€ N.

Then, the equilibrium x. =0 of the switched system (15) is uniformly asymptotically
stable.

To prove Theorem 3.3, we need the following preliminary result.
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Lemma 3.3 For any given € > 0, there exists a 61 = 61(€) > 0 such that
Tk+1
[ et =DE (t,2(t), x(y)) dr

Tk

1Gircir (Tha1s (71 )s 2(T)) | < el ()N + (Tl
@I < collz(me)ll,

< ella(m)ll,

(17)

whenever ||z(y,)|| < 61 for k€ N, t € [1h, Tks1), where cg = (1 + X+ Ay)el@FDA,

Proof By continuity, there exists a d2 > 0 such that || F;, (¢, z(t), z(m))|| < ||=(t)] +
lx(%)|| whenever |z(t)]] < b2, ||x(7%)]] < d2. We show that there exists a d3 > 0

)
(63 < —2> such that |x(¢)|| < d2 for all ¢t € [k, Tk+1) whenever |z(g)] < 3.
co

Otherwise, since d3 < Ja, there exists a to € (7%, Te+1) such that [|z(t)]] < d2 for
all ¢t € [, t0) and |z(to)|| = 2. From the first equation of (15), we have

t

x(t) = x(1) + My, x () (t — 1) + /(AikI(T) + F, (1, 2(7),2(1%))) dT. (18)

Tk
Now for ¢ € [1x,to), we have

@) < (14 A+ M) la(m)] + /(a + Djz(r)l dr. (19)

Tk

By the Grownwall inequality, we obtain
2] < (14 X+ Xy)elTDET () | (20)

and hence
z(to) | < (1+ A+ Ay)el*TA53 = cods < b, (21)

which is a contradiction. Thus, our conclusion follows. In addition, we know that
whenever |[|z(7x)|| < 63, ||x(®)|| < collz(mx)| for ¢ € [T, Thy1)-
Now, for given € > 0, let € = e3e®*(co + 1). There exists a d4 > 0 such that

1E3 (8 2 (t), ()| < ex(lz (@)1 + [ (7)),

_ _ (22)
(G (8 2(t7), 2(m )| < ex([la(@ )] + [ (7)),

04
co+1
have for all ¢t € [1x, Tk+1), [|[z(®)| < collx(rk)]]. Thus ||z(t)|| + ||z(7x)]] < d4, and then
(22) is true. Furthermore, we obtain by (22) that

whenever ()| + ||z(7k)]| < d4. Let 6 = min{ég, } When ||z(m)| < d1, we

Tk+1

AT By (¢, 2(t), 2(mh)) dr

Tk+1

€1 T x (T dr
< / Uz + (1) -

< e1e™Aeo + ()| = ellz ().

Tk
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Since €1 < €, we get from the second inequality of (22) that

1Gippr (s (i) (T < el )N+ [l (me)ll- (24)

This completes the proof of the lemma.
We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3 Let Sy = S(15), and let V(z) = (z7x)Y/2. For any solution
x(t) of (15), let y(t) = V(x(t)). Then for ¢ € [Tk, Th+1),

2 02 (0)F (1) #(0) + (1) (1)
= £ @) @O (A, + AL )a() + 20 My () + 2(m) M a(t) )
+ a(t) Py (b at), 2(n)) + Py (6 2(2), 2(7) (1),

Assumption (16) implies that for € > 0 (e < 1, which will be specified later) there exists
d = 6(e) > 0 such that

[1E5 (&, 2(8), 2(m) | < e(llz(@)]] + lz(m) 1),

(26)
1Gigss (8 2(7), ()| < (| (@) + [l (7))

forall z € B(§) = {x € R": ||z|| < ¢} and ¢t € RT, k € N. According to Lemma 3.3, for
the given € > 0, there exists a 1 > 0 such that (17) holds. Updating 6 with min{J, d1}
and combining (25), (26), we obtain for ¢ € [Tk, Tg+1),

(@(t)"2(@)) "2 (20 + 26) [« ()]* + (27 + 2€)|2()[|2(7) )

INA
N =

y(t) @)
<

—

a+ Dy(t) + (v + Dy(7r).

We now apply Lemma 2.1. We let X; = B(d) to derive local stability results. For
t = Tp+1, we have

Y1) = 2 (e )] = [ Bigsa 2(mi0) + Ny 2(100) + Gy (T, 2(734) (7)) |

Tk4+1—Tk
SHBZ-W(eA%(TH”kM{ / eAwdT}Mik)Jer
0

Tk41
‘ / e T B (4 (), x (1)) dr

Tk

()

(28)

+1Big |l + e(llz(reg DI+ lz(m)l)

< (g+e(B+co+1))llz(me)ll-
Since ¢ < 1, there exists an €y > 0 such that

qO:q+60(ﬁ+Co+1)<1. (29)
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Clearly B(d(ep)) is included in the region of attraction.
Now consider the discontinuous system determined by

{ g(t) < (a+ Dy + (v +Dy(me), 7 <t <7,
Y(Tk+1) < qoly(Te)l, VkeN.

The function V(z(t)) induces a mapping V from S; = S(15) to S2 = S(39) which satisfies
V(S1) C S3. Since the equilibrium y. = 0 of (30) is uniformly asymptotically stable, it
now follows from Lemma 2.1 that the equilibrium z, = 0 of system (15) is uniformly
asymptotically stable.

(30)

4 Concluding Remarks

In this paper, we have analyzed the stability properties of a large class of switched systems
by using the stability preserving mapping theory. By first considering an existing result
and then analyzing more general switched systems, we have shown that the stability
preserving mapping theory is very practical in the stability analysis and design of switched
systems. We suggest that the same idea applies also to logic-based switched systems or
discrete event systems, provided that we can model the state change when switchings
occur.

References

[1] Michel, A.N., Wang, K. and Hu, B. Qualitative Theory of Dynamical Systems. (Second
Edition), Marcel Dekker, New York, 2001.

[2] Ye, H., Michel, A.N. and Antsaklis, P.J. A general model for the qualitative analysis of
hybrid dynamical systems. In: Proceedings of the 34th IEEE Conference on Decision and
Control, 1995, P.1473-1477.

[3] Ye, H., Michel, A.N. and Hou, L. Stability theory for hybrid dynamical systems. IEEE
Transactions on Automatic Control 43(4) (1998) 461-474.

[4] Michel, A.N. Recent trends in the stability analysis of hybrid dynamical systems. IEEE
Transactions on Circuits and Systems-I: Fundamental Theory and Applications 45(1)
(1999) 120-134.

[5] DeCarlo, R., Branicky, M., Pettersson, S. and Lennartson, B. Perspectives and results
on the stability and stabilizability of hybrid systems. In: Proceedings of the IEEE 88(T)
(2000) P.1069-1082.

[6] Liberzon, D. and Morse, A.S. Basic problems in stability and design of switched systems.
IEEE Control Systems Magazine 19(5) (1999) 59-70.

[7] Morse, A.S. Supervisory control of families of linear set-point controllers-part 1: Exact
matching. IEEE Transactions on Automatic Control 41(10) (1996) 1413-1431.

[8] Hu, B. and Michel, A.N. Stability analysis of digital feedback control systems with time-
varying sampling periods. Automatica 36 (2000) 897-905.

[9] Hespanha, J.P. and Morse, A.S. Stability of switched systems with average dwell-time. In:
Proceedings of the 38th IEEE Conference on Decision and Control, 1999, P.2655-2660.

[10] Hespanha, J.P. Logic-Based Switching Algorithms in Control. Ph.D. Dissertation, Yale
University, 1998.

[11] Zhai, G., Hu, B., Yasuda, K. and Michel, A.N. Piecewise Lyapunov functions for switched
systems with average dwell time. Asian Journal of Control 2(3) (2000) 192-197.

[12] Zhai, G., Hu, B., Yasuda, K. and Michel, A.N. Stability analysis of switched systems with
stable and unstable subsystems: An average dwell time approach. International Journal
of Systems Science 32(8) (2001) 1055-1061.



