Stability of an Autonomous System with Quadratic Right-Hand Side in the Critical Case

J. Diblík† and D. Khusainov‡

1Department of Mathematics, Faculty of Electrical Engineering and Computer Science, Brno University of Technology, Technická 8, 616 00 Brno, Czech Republic
2Department of Complex Systems Modeling, Faculty of Cybernetics, Kiev University, Vladimirskaja 64, Kiev 252033, Ukraine

Received: July 18, 2001; Revised: May 15, 2002

Abstract: In this paper an autonomous system of differential equations with quadratic right-hand side is considered. In the case when the matrix of linear approximation has just one zero eigenvalue, the stability of trivial solution is investigated. System is written in the vectors-matrices form and under some additional conditions a Liapunov function of the quadratic form is constructed. A guaranteed zone of stability of trivial solution is given as well.

Keywords: Zero eigenvalue; Lyapunov stability.

Mathematics Subject Classification (2000): 34A34, 34D20, 93D30.

1 Introduction

Many problems of biological sciences, medicine sciences etc. lead to investigation of systems that are described by means of ordinary differential equations with quadratic right-hand sides (e.g. [3, 5]). Zero solution of the system with quadratic right-hand side in the case of presence of zero eigenvalue of matrix of corresponding linear part can be, in general, unstable. This effect occurs already in the scalar case. For instance, the trivial solution of simple scalar equation \(\dot{x} = -x^2 \) is unstable, since the solution of the initial

†Research partially supported by the grant 201/99/0295 of Czech Grant Agency (Prague) and by the plan of investigations J22/98: 26 00000 13 of the Czech Republic.
‡Research supported by the grant of Ministry of Education of the Czech Republic No 1058/1999 FRVŠ (Fund of development of Czech universities).