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1 Introduction

Nonautonomous dynamical systems can often be formulated in terms of a cocycle map-
ping for the dynamics in the state space that is driven by an autonomous dynamical
system in what is called a parameter or base space. Traditionally the driving system
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is topological and the resulting cartesian product system forms an autonomous semi-

dynamical system that is known as a skew-product flow. Results on global attractors

for autonomous semi-dynamical systems can thus be adapted to such nonautonomous

dynamical systems via the associated skew-product flow [5, 7, 8, 11, 13, 22, 34, 38].

A new type of attractor, called a pullback attractor, was proposed and investigated

for nonautonomous deterministic dynamical systems and for random dynamical systems

[12, 15, 19, 29, 31]. Essentially, it consists of a parametrized family of nonempty compact

subsets of the state space that are mapped onto each other by the cocycle mapping as the

parameter is changed by the underlying driving system. Pullback attraction describing

such attractors to a component subset for a fixed parameter value is achieved by starting

progressively earlier in time, that is, at parameter values that are carried forward to the

fixed value. A deeper reason for this procedure is that a cocycle can be interpreted as

a mapping between the fibers of a fiber bundle. For the pullback convergence the image

fiber is fixed. (The kernels of a global attractor of the skew-product flows considered

in [13] are very similar). This differs from the more conventional forward convergence

where the parameter value of the limiting object also evolves with time, in which case

the parametrized family could be called a forward attractor.

Pullback attractors and forward attractors can, of course, be defined for nonau-

tonomous dynamical systems with a topological driving system [25 – 27]. In fact, when

the driving system is the shift operator on the real line, forward attraction to a time

varying solution, say, is the same as the attraction in Lyapunov asymptotic stability.

The situation of a compact parameter space is dynamically more interesting as the as-

sociated skew-product flow may then have a global attractor. The relationship between

the global attractor of the skew-product system and the pullback and forward attractor

of the cocycle system is investigated in this paper. It will be seen that forward attractors

are stronger than global attractors when a compact set of nonautonomous perturba-

tions is considered. In addition, an example will be presented in which the cartesian

product of the component subsets of a pullback attractor is not a global attractor of

the skew-product flow. This set is, however, a maximal compact invariant subset of

the skew-product flow. By a generalization of some stability results of Zubov [39] it is

asymptotically stable. Thus a pullback attractor always generates a local attractor of

the skew-product system, but this need not be a global attractor. If, however, the pull-

back attractor generates a global attractor in the skew-product flow and if, in addition,

its component subsets depend lower continuously on the parameter, then the pullback

attractor is also a forward attractor.

Several examples illustrating these results are presented in the final section.

In concluding this introduction, we note that although our assumption of the compact-

ness of the parameter space P is a restriction, it nevertheless occurs in many important

and interesting applications such as for nonautonomous differential equations with tem-

porally almost periodic vector fields, where P is a compact subset of a function space

defined by the hull of the vector field; see the example following Definition 2.2 in the next

section. More generally, the vector fields could be almost automorphic in time [35] or be

generated by an affine control system [14], in which case P is the space of measurable

control taking values in a compact convex set, or the driving system could itself be an

autonomous differential equation on a compact manifold P .



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 2(2) (2002) 125–144 127

2 Nonautonomous Dynamical Systems and Their Attractors

A general nonautonomous dynamical system is defined here in terms of a cocycle mapping
φ on a state space U that is driven by an autonomous dynamical system σ acting on
a base space P , which will be called the parameter space. It is based on definitions in
[4, 24]. In particular, let (U, dU ) be a complete metric space, let (P, dP ) be a compact
metric space and let T, the time set, be either R or Z.

An autonomous dynamical system (P,T, σ) on P consists of a continuous mapping
σ : T × P → P for which the σt = σ(t, ·) : P → P , t ∈ T, form a group of homeomor-
phisms on P under composition over T, that is, satisfy

σ0 = idP , σt+τ = σt ◦ στ

for all t, τ ∈ T. In addition, a continuous mapping φ : T
+ × U × P → U is called a

cocycle with respect to an autonomous dynamical system (P,T, σ) if it satisfies

φ(0, u, p) = u, φ(t+ τ, u, p) = φ(t, φ(τ, u, p), στp)

for all t, τ ∈ T
+ and (u, p) ∈ U × P .

Definition 2.1 The triple 〈U, φ, (P,T, σ)〉 is called a nonautonomous dynamical sys-
tem on the state space U .

Let (X, dX) be the cartesian product of (U, dU ) and (P, dP ). Then the mapping
π : T

+ ×X → X defined by

π(t, (u, p)) := (φ(t, u, p), σtp)

forms a semi-group on X over T
+ [33].

Definition 2.2 The autonomous semi-dynamical system (X,T+, π) = (U × P,T+,
(φ, σ)) is called the skew-product dynamical system associated with the cocycle dynamical
system 〈U, φ, (P,T, σ)〉.

For example, let U be a Banach space and let the space C = C(R×U,U) of continuous
functions f : R × U → U be equipped with the compact open topology. Consider the
autonomous dynamical system (C,R, σ), where σ is the shift operator on C defined by
σtf(·, ·) := f(· + t, ·) for all t ∈ T. Let P be the hull H(f) of a given functions f ∈ C,
that is,

P = H(f) :=
⋃

t∈R

{f(· + t, ·)},

and denote the restriction of (C,R, σ) to P by (P,R, σ). Let F : P × U → U be the
continuous mapping defined by F (p, u) := p(0, u) for p ∈ P and u ∈ U . Then, under
appropriate restrictions on the given function f ∈ C (see Sell [33]) defining P , the
differential equation

u′ = p(t, u) = F (σtp, u) (1)

generates a nonautonomous dynamical system 〈U, φ, (P,R, σ)〉, where φ(t, p, u) is the
solution of (1) with the initial value u at time t = 0.



128 D.N. CHEBAN, P.E. KLOEDEN AND B. SCHMALFUSS

Let distY denote the Hausdorff distance (semi-metric) between two nonempty sets of
a metric space (Y, dY ), that is,

distY (A,B) = sup
a∈A

inf
b∈B

dY (A,B),

and let D(U) be either Dc(U) or Db(U), classes of sets containing either the compact
subsets or the bounded subsets of the metric space (U, dU ).

The definition of a global attractor for an autonomous semi-dynamical system
(X,T+, π) is well known. Specifically, a nonempty compact subset A of X which is
π-invariant, that is, satisfies

π(t,A) = A for all t ∈ T
+, (2)

is called a global attractor for (X,T+, π) with respect to D(X) if

lim
t→∞

distX(π(t,D),A) = 0 (3)

for every D ∈ D(X). Conditions for the existence of such global attractors and examples
can be found in [3, 8, 21, 37, 38]. Of course, semi-dynamical systems need not be a skew-
product systems. When they are and when P is compact (in which case it suffices to
consider the convergence (3) just for sets in D(U)×{P}, that is of the form D×P ⊂ X ,
where D ∈ D(U)), then the following definition will be used.

Definition 2.3 The global attractor A with respect to D(U) × {P} of the skew-
product dynamical system (X,T+, π) = (U×P,T+, (φ, σ)) with P compact will be called
the global attractor with respect to D(U) of the associated nonautonomous dynamical
system 〈U, φ, (P,T, σ)〉.

Other types of attractors, in particular pullback attractors, that consist of a family of
nonempty compact subsets of the state space of the cocycle mapping have been proposed
for nonautonomous or random dynamical systems [15, 16, 27, 31, 32]. The main objective
of this paper is to investigate the relationships between these different types of attractors.

Definition 2.4 Let Â = {A(p)}p∈P be a family of nonempty compact sets of U for

which
⋃

p∈P

A(p) is pre-compact and let Â be φ-invariant with respect to a nonautonomous

dynamical system 〈U, φ, (P,T, σ)〉, that is, satisfies

φ(t, A(p), p) = A(σtp) for all t ∈ T
+, p ∈ P. (4)

The family Â is called a pullback attractor of 〈U, φ, (P,T, σ)〉 with respect to D(U) if

lim
t→∞

distU (φ(t,D, σ−tp), A(p)) = 0 (5)

for any D ∈ D(U) and p ∈ P , or a uniform pullback attractor if the convergence (5) is
uniform in p ∈ P , that is, if

lim
t→∞

sup
p∈P

distU (φ(t,D, σ−tp), A(p)) = 0.
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The family Â is called a forward attractor if the forward convergence

lim
t→∞

distU (φ(t,D, p), A(σtp)) = 0

holds instead of the pullback convergence (5), or a uniform forward attractor if this
forward convergence is uniform in p ∈ P , that is, if

lim
t→∞

sup
p∈P

distU (φ(t,D, p), A(σtp)) = 0.

It follows directly from the definition that a pullback attractor is unique. Obviously,
any uniform pullback attractor is also a uniform forward attractor, and vice versa.

If Â is a forward attractor for the nonautonomous dynamical system 〈U, φ, (P,T, σ)〉,
then ([8], Lemma 4.2) the subset

A =
⋃

p∈P

(
A(p) × {p}

)
(6)

of X is the global attractor for the skew-product dynamical system (X,T+, π); since the

global attractor is unique so is the forward attractor. A weaker result holds when Â is a
pullback attractor, but the inverse property is not true in general.

Although we could formulate our results with weaker assumptions we restrict our
attention here to the case, which arises in certain important applications, where

⋃
p∈P

A(p)

is pre-compact and D(U) consists of compact or bounded sets. A further generalization
which we will not consider here involves pullback attractors with a general domain of
attraction D consisting of family of sets D = {D(p)}p∈P such that

⋃
p∈P

D(p) is pre-

compact or bounded in U , see [32].
The following existence result for pullback attractors is adapted from [16, 23].

Theorem 2.1 Let 〈U, φ, (P,T, σ)〉, with P compact be a nonautonomous dynamical
system and suppose that there exists a family of nonempty sets C = {C(p)}p∈P ,

⋃
p∈P

C(p)
pre-compact such that

lim
t→∞

distU (φ(t,D, σ−tp), C(p)) = 0

for any bounded subset D of U and any p ∈ P . Then there exists a pullback attractor.

A related result is given by Theorem 4.3.4 in [8]: if the skew-product system (X,T+, π)
has a global attractor A, then the nonautonomous dynamical system 〈U, φ, (P,T, σ)〉 has
a pullback attractor. The proof is based on the fact that the identical sets C(p) ≡ prU A
satisfy the assumptions of the previous theorem.

Alternatively, conditions can be given on the nonautonomous dynamical system to
ensure the existence of a global attractor of the associated skew-product system. The
following theorem is from [8].

Theorem 2.2 Let 〈U, φ, (P,T, σ)〉 be a nonautonomous dynamical system with P
compact for which

(i) φ is asymptotically compact, that is, for every bounded positive invariant set D
and p ∈ P , there exists a compact set C such that

lim
t→∞

distU (φ(t,D, p), C) = 0,
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(ii) there exists a bounded set B0 that absorbs bounded subsets, that is, for every
p ∈ P and D ∈ Db(U) there exists a Tp,D ≥ 0 such that

φ(t,D, p) ⊂ B0 for all t ≥ Tp,D.

Then the skew-product system (X,T+, π) has a unique global attractor that attracts sets
from Db(U).

We now continue to derive properties of pullback attractors and the associated skew-
product dynamical systems.

Lemma 2.1 If Â is a pullback attractor of a nonautonomous dynamical system
〈U, φ, (P,T, σ)〉, where P is compact, then the subset A of X defined by (6) is the maximal
π-invariant compact set of the associated skew-product dynamical system (X,T+, π).

Proof The π-invariance follows from the φ-invariance of Â via

π(t,A) =
⋃

p∈P

(φ(t, A(p), p), σtp) =
⋃

p∈P

(A(σtp), σtp) = A.

Now A ⊂
⋃

p∈P

A(p) × P , where P is compact and
⋃

p∈P

A(p) is pre-compact, so A is

pre-compact. Hence B := Ā is compact, from which it follows that

B(p) := {u : (u, p) ∈ B}

is a compact set in U for each p ∈ P and that the set

⋃

p∈P

B(p) ⊂ pr1 B

is pre-compact. On the other hand, B is π-invariant since

π(t,B) = π(t, Ā) = π(t,A) = Ā = B

for the continuous mapping π(t, ·). In addition, φ(t, B(p), p) = B(σtp) holds, that is,
the B(p) are φ-invariant, since

π(t,B) =
⋃

p∈P

(φ(t, B(p), p), σtp) = B =
⋃

p∈P

(B(σtp), σtp)

and σtp = σtp̂ implies that p = p̂ for the homeomorphism σt. The construction shows
B(p) ⊃ A(p). By the φ-invariance of the B(p) and the pullback attraction property it
follows then that B(p) = A(p) such that A = B. Hence A is compact.

To prove that the compact invariant set A is maximal, let A′ be any other compact

invariant set the of skew-product dynamical system (X,T+, π). Then Â′ = {A′(p)}p∈P

is a family of compact φ-invariant subsets of U and by pullback attraction

distU (A′(p), A(p)) = distU (φ(t, A
′

(σ−tp), σ−tp), A(p))

≤ distU (φ(t,K, σ−tp), A(p)) → 0
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as t → +∞, where K =
⋃

p∈P

A′(p) is compact. Hence A′(p) ⊆ A(p) for every p ∈ P ,

i.e. Â′ ⊆ Â, which means A is maximal for (X,T+, π).

A set valued mapping M with p → M(p) ⊂ U for each p ∈ P is called is upper
semi-continuous if

lim
p→p0

dU (M(p),M(p0)) = 0 for any p0 ∈ P,

lower semi-continuous if

lim
p→p0

dU (M(p0),M(p)) = 0 for any p0 ∈ P,

and continuous if it is both upper and lower semi-continuous. Note that M is upper
semi-continuous if and only if the its graph in P × U is closed in P × U , see ([2,
Proposition 1.4.8]). Then it follows straightforwardly from Lemma 2.1 that

Corollary 2.1 The set valued mapping p → A(p) formed with the components

sets of a pullback attractor Â = {A(p)}p∈P of a nonautonomous dynamical system
〈U, φ, (P,T, σ)〉 with P compact is upper semi-continuous.

The following example shows that, in general, a pullback attractor need not also be a
forward attractor nor form a global attractor of the associated skew-product dynamical
system.

Example 2.1 Let f be the function on R defined by

f(t) = −

(
1 + t

1 + t2

)2

, t ∈ R,

and let (P,R, σ) be the autonomous dynamical system P = H(f), the hull of f in
C(R,R), with the shift operator σ. Note that

P = H(f) =
⋃

h∈R

{f(· + h)} ∪ {0}.

Finally, let E be the evaluation functional on C(R,R), that is E(p) = p(0) ∈ R.

Lemma 2.2 The functional

γ(p) = −

∞∫

0

e−τE(στp) dτ = −

∞∫

0

e−τp(τ) dτ

is well defined and continuous on P , and the function of t ∈ R given by

γ(σtp) = −et

∞∫

t

e−τp(τ) dτ =






1

1 + (t+ h)2
: p = σhf

0 : p = 0

is the unique solution of the differential equation

x′ = x+ E(σtp) = x+ p(t)
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that exists and is bounded for all t ∈ R.

The proof is by straightforward calculation, so will be omitted.
Consider now the nonautonomous differential equation

u′ = g(σt(p), u), (7)

where

g(p, u) :=






−u− E(p)u2 : 0 ≤ uγ(p) ≤ 1, p 6= 0,

−
1

γ(p)

(
1 +

E(p)

γ(p)

)
: 1 < uγ(p), p 6= 0,

−u : 0 ≤ u, p = 0.

It is easily seen that this equation has a unique solution passing through any point
u ∈ U = R

+ at time t = 0 defined on R. These solutions define a cocycle mapping

φ(t, u0, p) =






u0

et(1 − u0γ(p)) + u0γ(σtp)
: 0 ≤ u0γ(p) ≤ 1, p 6= 0,

u0 +
1

γ(σtp)
−

1

γ(p)
: 1 < u0γ(p), p 6= 0,

e−tu0 : 0 ≤ u0, p = 0.

(8)

According to the construction, the cocycle mapping φ admits as its only invariant sets
A(p) = {0} for p ∈ P . To see that the A(p) = {0} form a pullback attractor, observe
that

φ(t, u0, σ−tp) =






u0

et(1 − u0γ(σ−tp)) + u0γ(p)
: 0 ≤ u0γ(σ−tp) ≤ 1, p 6= 0,

u0 +
1

γ(p)
−

1

γ(σ−tp)
: 1 < u0γ(σ−tp), p 6= 0,

e−tu0 : 0 ≤ u0, p = 0.

In particular, note that t→ γ(σtp)
−1 is a solution of the differential equation (7). Since

γ(σ−tp)
−1 tends to +∞ subexponentially fast for t→ ∞, it follows that

φ(t, u, σ−tp) ≤
1

2
L e−

1
2
t

for any u ∈ [0, L], for any L ≥ 0 and p ∈ P provided t is sufficiently large. Consequently

Â = {A(p)}p∈P with A(p) = {0} for all p ∈ P is a pullback attractor for φ. In view of
(8), the stable set W s(A) := {x ∈ X | lim

t→+∞
distX(π(t, x),A) = 0} of A, that is, the set

of all points in X that are attracted to A by π, is given by

W s(A) = {(u, p) : p ∈ P, u ≥ 0, uγ(p) < 1} 6= X.

Hence the cocycle mapping φ in this example admits a pullback attractor that is neither
a forward attractor for φ nor a global attractor of the associated skew-product flow.

Other examples for different kinds of attractors are given by Scheutzow [30] for ran-
dom dynamical systems generated by one dimensional stochastic differential equations.
However, these considerations are based on the theory of Markov processes.
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3 Asymptotic Stability in α-condensing Semi-dynamical Systems

To continue our investigation of the general relations between pullback attractors and
skew-product flows we first need to derive some results from general stability theory. We
start with some definitions.

Let (X,T+, π) be a semi-dynamical system. The ω-limit set of a set M is defined to
be

ω(M) =
⋂

τ≥0

⋃

t≥τ

π(t,M).

A set M is called Lyapunov stable if for any ε > 0 there exists a δ > 0 such that
π(t,Uδ(M)) ⊂ Uε(M) for t ≥ 0. M is called a local attractor if there exists a neighbor-
hood U(M) of M such that U(M) ⊂ W s(M). A set M which is Lyapunov stable and
a local attractor is said to be asymptotically stable. Note that any asymptotically stable
compact set M also attracts compact sets contained in U(M).

Recall that a π-invariant compact set M is said to be locally maximal if there ex-
ists a number δ > 0 such that any π-invariant compact set contained in the open δ-
neighborhood Uδ(M) of M is in fact contained in M . In addition, a mapping γx : T → X
is called an entire trajectory through x of the semi-dynamical system (X,T+, π) if

π(t, γx(τ)) = γx(t+ τ) for all t ∈ T
+, τ ∈ T, γx(0) = x.

Finally, the alpha limit set of an entire trajectory γx is defined by

αγx = {y ∈ X : ∃ τn → −∞, γx(τn) → y}.

Let α be a measure of noncompactness on the bounded subsets of a complete metric
space (Y, dY ) ([21], P.13 ff.). Then α(A ∪ B) = max(α(A), α(B)) for all nonempty
bounded subsets A and B with α(A) = 0 whenever A is pre-compact. An example is
the Kuratowski measure of noncompactness defined by

α(A) = inf{d : A has a finite cover of diameter < d}.

An autonomous semi-dynamical system (X,T+, π) is called α-condensing if π(t, B) is
bounded and

α(π(t, B)) < α(B)

for all t > 0 for any bounded set B of X with α(B) > 0.

Remark 3.1 Examples of α-condensing systems can be found in Hale [21].

Theorem 3.1 Let M be a locally maximal compact set for an α-condensing semi-
dynamical system (X,T+, π). Then M is Lyapunov stable if and only if there exists a
δ > 0 such that

αγx ∩M = ∅

for any entire trajectory γx through any x ∈ Uδ(M) \M .

Proof A proof of the necessity direction was given by Zubov in [39, Theorem 7]
for a locally compact space X . This proof remains also true for a nonlocally compact
space under consideration here. Indeed, let M be a compact invariant Lyapunov stable
set for (X,T+, π), but suppose that the assertion of the theorem is not true. Then
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there exist x /∈ M , and a sequence τn → −∞ such that ρ(γx(τn),M) → 0 for n →
∞. Let 0 < ε < ρ(x,M) and δ(ε) > 0 the corresponding positive number for the
Lyapunov stability of set M , then for sufficiently large n we have ρ(γx(τn),M) < δ(ε).
Consequently, ρ(πtγx(τn),M) < ε for all t ≥ 0. In particular for t = −τn we have
ρ(x,M) = ρ(π−τnγx(τn),M) < ε. The obtained contradiction proves our assertion.

For the sufficiency direction, consider first the case T
+ = Z

+ and let Uδ0
(M) be

a neighborhood such that M is locally maximal in Uδ0
(M). Suppose that M is not

Lyapunov stable, but that the other condition of the theorem holds. Then there exist an
ε0 > 0 and sequences δn → 0, xn ∈ Uδn

(M), kn → ∞ such that π(k, xn) ∈ Uε0
(M)

for 0 ≤ k ≤ kn − 1 and π(kn, xn) 6∈ Uε0
(M). This ε0 has to be chosen sufficiently small

such that

distX(π(1, Uε0
(M)),M) <

δ0
2
.

Define A = {xn} and B =
⋃

n∈N

{π(k, xn)|0 ≤ k ≤ kn − 1}. Then α(A) = 0 since A

is pre-compact. In addition, π(1, B) ⊂ Uδ0
(M), so π(1, B) is bounded. Suppose that

B is not pre-compact, so α(B) > 0. It follows by the properties of the measure of
noncompactness for the non pre-compact set B that

α(B) = α(A ∪ π(1, B) ∩B) ≤ max(α(A), π(1, B)) = α(π(1, B)) < α(B)

which is a contradiction. This shows that B is pre-compact. Hence there exist subse-
quences (denoted with the same indices for convenience) such that

π(kn − 1, xn) → x̄, π(kn, xn) → π(1, x̄) = x̃ ∈ X \ Uε0
(M) for n→ ∞,

the limit γ̃x̃(m) := lim
n′→∞

γ(n′,m) exists for any m ∈ Z and some subsequence n′ given

by the diagonal procedure, where

γ(n,m) =

{
π(kn +m,xn) : −kn ≤ m < +∞,

xn : m < −kn.

Note that γ̃x̃ is an entire trajectory of the discrete-time semi-dynamical system above

with γ̃x̃(0) = x̃ and γ̃x̃(Z−) ⊂ B̄. Thus the alpha limit set αγ̃x̃ is nonempty, compact
and invariant. In addition, αγ̃x̃ ⊂ Uε0

(M), hence αγ̃x̃ ⊂ M because M is a locally

maximal invariant compact set. On the other hand, γ̃x̃(0) = x̃ ∈ Uε0
(M) \ M , so

αγ̃x̃ ∩M = ∅ holds by the assumptions. This contradiction proves the sufficiency of the
condition in the discrete-time case.

Now let T
+ = R

+ and suppose that αγx ∩ M = ∅, where x 6∈ M holds for the
continuous-time system. Then it also holds for the restricted discrete-time system gen-
erated by π1 := π(1, ·) because any entire trajectory γx of the restricted discrete-time
system can be extended to an entire trajectory of the continuous-time system via

γx(t) = π(τ, γx(n)), n ∈ Z, t = n+ τ, 0 < τ < 1.

Consequently, the set M is Lyapunov stable with respect to the restricted discrete-time
dynamical system generated by π1. Since M is compact, for every ε > 0 there exists a
µ > 0 such that

dX(π(t, x),M) < ε for all t ∈ [0, 1], x ∈ Uµ(M).
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In view of the first part of the proof above, there is a δ > 0 such that

dX(π(n, x),M) < min(µ, ε) for x ∈ Uδ(M) for n ∈ Z
+.

The Lyapunov stability ofM for the continuous dynamical system (X,R+, π) then follows
from the semi-group property of π.

The next lemma will be needed to formulate the second main theorem of this section.

Lemma 3.1 Let M be a compact subset of X that is positively invariant for a semi-
dynamical system (X,T+, π). Then M is asymptotically stable if and only if ω(M) is
locally maximal and asymptotically stable.

Proof Suppose that M is asymptotically stable. Then there exists a closed positively
invariant bounded neighborhoodC ofM contained in its stable setW s(M). The mapping
π can be restricted to the complete metric space (C, dX) to form a semi-dynamical system
(C,T+, π). Since M is a locally attracting set it attracts compact subsets of C. The
assertion then follows by Theorems 2.4.2 and 3.4.2 in [21] because ω(M) =

⋂
t∈T+

π(t,M).

Suppose instead that ω(M) is asymptotically stable and locally maximal. Since M is
compact, ω(M) =

⋂
t≥0

π(t,M). Hence there exist η > 0 and τ ∈ T
+ such that

π(τ,M) ⊂ Uη(ω(M)) ⊂W s(ω(M)).

Now π−1(τ, Uη(ω(M))), where π−1 denotes the pre-image of π(τ, ·) for fixed τ , is an
open neighborhood of M and π(τ, π−1(τ, Uη(ω(M)))) ⊂ W s(ω(M)). Hence for any

x ∈ π−1(τ, Uη(ω(M))) ⊂ W s(ω(M)) we have that π(t, x) tends to ω(M) as t → ∞,
from which it follows that π(t, x) also tends to M because M ⊃ ω(M).

Then, ifM were not Lyapunov stable, there would exist ε0 > 0, δn → 0, xn ∈ Uδn
(M)

and tn → ∞ such that
distX(π(tn, xn),M) ≥ ε0. (9)

For sufficiently large n0, the set {xn}n≥n0
would then be contained in the pre-image

π−1(1, Uη(ω(M))). Since M is compact, so is the set {xn}n≥n0
. This set would thus be

attracted by ω(M) ⊂M , which contradicts (9).

Lemma 3.2 Let M be a compact subset of X that is a positively invariant set for an
asymptotically compact semi-dynamical system (X,T+, π). Then the set M is asympto-
tically stable if and only if ω(M) is locally maximal and Lyapunov stable.

Proof The necessity follows by Lemma 3.1. Suppose instead that ω(M) is locally
maximal and Lyapunov stable; it is automatically π-invariant since it is an omega limit
set. Then for any ε > 0 there exists a δ > 0 such that

π(t, Uδ(ω(M))) ⊂ Uε(ω(M)) for all t ≥ 0.

By the assumption of asymptotical compactness, ω(Uδ(ω(M))) is nonempty and compact
with

lim
t→∞

distX(π(t, Uδ(ω(M))), ω(Uδ(ω(M)))) = 0

(see [21, Corollary 2.2.4]). Since ω(M) is locally maximal, ω(Uδ(ω(M))) ⊂ ω(M) for
sufficiently small δ > 0, which means that ω(M) is asymptotically stable. The conclusion
then follows by Lemma 3.1.
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Corollary 3.1 Let (X,T+, π) be asymptotically compact and let M be a compact π-
invariant set. Then M is asymptotically stable if and only if M is locally maximal and
Lyapunov stable.

Indeed, M = ω(M) here, so just apply Lemma 3.2.
The next theorem is a generalization to infinite dimensional spaces and α-condensing

systems of Theorem 8 of Zubov [39] characterizing the asymptotic stability of a compact
set.

Theorem 3.2 Let (X,T+, π) be an α-condensing semi-dynamical system and let
M ⊂ X be a compact invariant set. Then the set M is asymptotically stable if and
only if

(i) M is locally maximal, and
(ii) there exists a δ > 0 such that αγx ∩M = ∅ for any entire trajectory γx through

any x ∈ Uδ(M) \M .

Proof By Lemma 2.3.5 in [21] any α-condensing semi-dynamical system is asymp-
totically compact, so the assertion follows easily from Theorem 3.1 and Corollary 3.1.

A cocycle mapping φ of a nonautonomous dynamical system 〈U, φ, (P,T, σ)〉 will be
called α-condensing if the set φ(t, B, P ) is bounded and

α(φ(t, B, P )) < α(B)

for all t > 0 for any bounded subset B of U with α(B) > 0.

Lemma 3.3 Suppose that the cocycle mapping φ of a nonautonomous dynamical
system 〈U, φ, (P,T, σ)〉 is α-condensing. Then the mapping π of the associated skew-
product flow (P,T, σ) is also α-condensing.

Proof Let M =
⋃

p∈P

(M(p) × {p}) be a bounded set in X . Then M can be covered

by finitely many balls Mi ⊂ X , i = 1, . . . , n, of largest radius α(M)+ ε for an arbitrary
ε > 0. The sets pr1Mi ⊂ U , i = 1, . . . , n, cover pr1M . The sets Mi are balls so
α(pr1Mi) = α(Mi) < α(M) + ε for i = 1, . . . , n. It is easily seen that

π(t,M) =
⋃

p∈P

{π(t, (M(p), p))} =
⋃

p∈P

{(φ(t,M(p), p), σtp)} ⊂ φ(t, pr1M,P ) × P.

Since φ is α-condensing, the set φ(t, pr1M,P ) is bounded. Hence

α(π(t,M)) ≤ α(φ(t, pr1M,P ) × P )

≤ α(φ(t, pr1M,P )) < α(pr1M) ≤ α(M) for each t > 0.
(10)

The second inequality above is true by the compactness of P . Indeed, P can be covered
by finitely many open balls Pi of arbitrarily small radius. Hence

α(φ(t, pr1M,P ) × P ) ≤ max
i
α(φ(t, pr1M,P ) × Pi) ≤ α(φ(t, pr1M,P )) + ε

for arbitrarily small ε > 0. The conclusion of the Lemma follows by (10).
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4 Uniform Pullback Attractors and Global Attractors

It was seen earlier that the set
⋃

p∈P

(A(p) × {p}) ⊂ X which was defined in terms

of the pullback attractor Â = {A(p)}p∈P of a nonautonomous dynamical system
〈U, φ, (P,T, σ)〉 is the maximal π-invariant compact subset of the associated skew-product
system (X,T+, π), but need not be a global attractor. However, this set is always a local
attractor under the additional assumption that the cocycle mapping φ is α-condensing.

Theorem 4.1 Let 〈U, φ, (P,T, σ)〉 with P compact be an α-condensing dynamical

system with a pullback attractor Â = {A(p)}p∈P and define A =
⋃

p∈P

(A(p) × {p}).
Then

(i) The α-limit set αγx of any entire trajectory γx passing through x ∈ X \ A is
empty.

(ii) A is asymptotically stable with respect to π.

Proof Suppose that there exists an entire trajectory γx through x = (u, p) ∈ X \ A
such that αγx 6= ∅. Then there exists a subsequence −τn → ∞ such that γx(τn)

converges to a point in αγx . The set K = pr1
⋃

n∈N

γx(τn) is compact since
⋃

n∈N

γx(τn) is

compact. Also Â = {A(p)}p∈P is a pullback attractor, so

lim
n→∞

distU (φ(−τn,K, στn
p), A(p)) = 0

from which it follows that u ∈ A(p). Hence (u, p) ∈ A, which is a contradiction. This
proves the first assertion.

By Lemma 3.3 (X,T+, π) is α-condensing. According to Lemma 2.1 A is a maximal

compact invariant set of (X,T+, π) since Â is a pullback attractor of the cocycle φ.
The second assertion then follows from Theorem 3.2 and from the first assertion of this
theorem.

Remark 4.1 (i) The skew-product system in the example in Section 2 has only a local
attractor associated with the pullback attractor.

(ii) If in addition to the assumptions of Theorem 4.1 the stable setW s(A) of A satisfies
W s(A) = X , then A is in fact a global attractor ([6, Lemma 7]).

Theorem 4.2 Suppose that 〈U, φ, (P,T, σ)〉 with P compact is a nonautonomous

dynamical system with a pullback attractor Â = {A(p)}p∈P and suppose that W s(A) =
X, where A =

⋃
p∈P

(A(p) × {p}).

If the mapping p → A(p) is lower semi-continuous, then Â is a uniform pullback
attractor and hence a uniform forward attractor.

Proof Suppose that the uniform convergence

lim
t→∞

sup
p∈P

distU (φ(t,D, p), A(σtp)) = 0

is not true for some D ∈ Dc. Then there exist ε0 > 0, a set D0 ∈ Dc and sequences
tn → ∞, pn ∈ P and un ∈ D0 such that:

distU (φ(tn, un, pn), A(σtn
p)) ≥ ε0. (11)
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Now P is compact and A is a global attractor by Remark 4.1 (ii), so it can be supposed
that the sequences {φ(tn, un, pn)} and {σtn

p} are convergent. Let ū = lim
n→∞

φ(tn, un, pn)

and p̄ = lim
n→∞

σtn
pn. Then ū ∈ A(p̄) because x̄ = (ū, p̄) ∈ A. On the other hand,

by (11),

ε0 ≤ distU (φ(tn, pn, xn), A(σtn
pn))

≤ distU (φ(tn, pn, xn), A(p̄)) + distU (A(p̄), A(σtn
pn)).

By the lower semi-continuity of p → A(p) it follows then that ū /∈ A(p̄), which is a
contradiction.

Remark 4.2 The example in Section 2 shows that Theorem 4.2 is in general not true
without the assumption that W s(A) = X . In view of Corollary 2.1, the set valued
mapping p→ A(p) will, in fact, then be continuous here.

5 Examples of Uniform Pullback Attractors

Several examples illustrating the application of the above results, in particular of The-
orem 4.2, are now presented. More complicated examples will be discussed in another
paper.

5.1 Periodic driving systems

Consider a periodical dynamical system (P,T, σ), that is, for which there exists a minimal
positive number T such that σT p = p for any p ∈ P .

Theorem 5.1 Suppose that a nonautonomous α-condensing dynamical system
〈U, φ, (P,R, σ)〉 with a periodical dynamical system (P,R, σ) has a pullback attractor

Â = {A(p)}p∈P . Then Â is a uniform forward attractor for 〈U, φ, (P,R, σ)〉.

Proof Consider a sequence pn → p. By the periodicity of the driving system there
exists a sequence τn ∈ [0, T ] such that pn = στn

p. By compactness, there is a convergent
subsequence (indexed here for convenience like the full one) τn → τ ∈ [0, T ]. Hence

p = lim
n→∞

pn = lim
n→∞

στn
p = στp

which means τ = 0 or T . Suppose that τ = T . Then

lim
n→∞

distU (A(p), A(pn)) = lim
n→∞

distU (A(p), φ(τn, A(p), p))

= distU (A(p), φ(T,A(p), p))

= distU (A(p), A(σT p)) = 0

since φ is continuous and A(pn) = A(στn
p) = φ(τn, A(p), p) by the φ-invariance of Â.

Hence the set valued p→ A(p) is lower semi-continuous.
Now φ(nT, u0, p) = φ(nT, u0, σ−nT p) since p = σ−nT p by the periodicity of the

driving system (P,R, σ). Hence from pullback convergence

lim
n→∞

distU (φ(nT, u0, p), A(p)) = lim
n→∞

distU (φ(nT, u0, σ−nT p), A(p)) = 0
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for any (u0, p) ∈ U × P . On the other hand

sup
s∈[0,T ]

distU (φ(s + nT, u0, p), A(σs+nT p))

= sup
s∈[0,T ]

distU (φ(s, φ(nT, u0, p), σnT p), φ(s,A(σnT p), σnT p)) = 0

by the cocycle property of φ and the φ-invariance of Â. Hence

lim
t→∞

distX((φ(t, u0, p), σtp),A) = 0,

where A =
⋃

p∈P

(A(p) × {p}). This shows that W s(A) = X . The result then follows by

Theorem 4.2.

Consider the 2-dimensional Navier–Stokes equation in the operator form

du

dt
+ νAu+B(u) = f(t), u(0) = u0 ∈ H, (12)

which can be interpreted as an evolution equation on the rigged space V ⊂ H ⊂ V ′,
where V and H are certain Banach spaces. In particular, here U = H , which is in fact
a Hilbert space, for the phase space. Then, from [36, Chapter 3],

Lemma 5.1 The 2-dimensional Navier–Stokes equation (12) has a unique solu-
tion u(·, u0, f) in C(0, T ;H) for each initial condition u0 ∈ H and forcing term f ∈
C(0, T ;H) for every T > 0. Moreover, u(t, u0, f) depends continuously on (t, u0, f) as
a mapping from R

+ ×H × C(R, H) to H.

Now suppose that f is a periodic function in C(R, H) and define σtf(·) := f(· + t).
Then P =

⋃
t∈R

σtf is a compact subset of C(R, H). By Lemma 5.1 the mapping

(t, u0, p) → φ(t, u0, p) from R
+ ×H × C(R, H) → H defined by φ(t, u0, p) = u(t, u0, p)

is continuous and forms a cocycle mapping with respect to σ on P . By [36, Theo-
rem III.3.10] the mapping φ is completely continuous and hence α-condensing.

Lemma 5.2 The nonautonomous dynamical system 〈H,φ, (P,R, σ)〉 generated by
the Navier–Stokes equation (12) with periodic forcing term in C(R, H) has a pullback
attractor.

Proof The solution of the Navier–Stokes equation satisfies an energy inequality

‖u(t)‖2
H + λ1ν

t∫

0

‖u(τ)‖2
Hdτ ≤ ‖u0‖

2
H +

1

ν

t∫

0

‖p(τ)‖2
V ′ dτ,

where λ1 is the smallest eigenvalue of A. It follows that the balls B(p) in H with center
zero and square radii

R2(p) =
1

ν

0∫

−∞

eνλ1τ‖p(τ)‖2
V ′ dτ

is a pullback attracting family of sets in the sense of Theorem 2.1. In particular,
C(p) := φ(1, B(σ−1p), σ−1p) satisfies all of the required properties of Theorem 2.1 be-
cause φ(1, ·, p) is completely continuous.

This theorem and Theorem 5.1 give
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Theorem 5.2 The nonautonomous dynamical system 〈H,φ, (P,R, σ)〉 generated by
the Navier–Stokes equation (12) with periodic forcing term in C(R, H) has a uniform
pullback attractor which is also a uniform forward attractor.

Remark 5.1 See [18] for a related result involving a different type of nonautonomous
attractor.

5.2 Pullback attractors with singleton component sets

Now pullback attractors with singleton component sets, that is with

A(p) = {a(p)}, a(p) ∈ U,

will be considered.

Lemma 5.3 Let 〈U, φ, (P,T, σ)〉 a nonautonomous dynamical system and let Â =
{A(p)}p∈P be a pullback attractor with singleton component sets. Then the mapping
p→ A(p) is continuous, hence lower semi-continuous.

Proof This follows from Corollary 2.1 since the upper semi-continuity of a set valued
mapping p→ A(p) reduces to continuity when the A(p) are single point sets.

It follows straightforwardly from this lemma and Theorem 4.2 that

Theorem 5.3 Suppose that 〈U, φ, (P,T, σ)〉 with compact P has at pullback attractor

Â = {A(p)}p∈P with singleton component sets which generates a global attractor A =⋃
p∈P

A(p) × {p}. Then Â is a uniform pullback attractor and, hence, also a uniform

forward attractor.

The previous theorem can be applied to differential equations on a Hilbert space
(H, 〈·, ·〉) of the form

u′ = F (σtp, u), (13)

where F ∈ C(P ×H,H) is uniformly dissipative, that is, there exist ν ≥ 2, α > 0

〈F (p, u1) − F (p, u2), u1 − u2〉 ≤ −α‖u1 − u2‖
ν (14)

for any u1, u2 ∈ H and p ∈ P .

Theorem 5.4 [10] The nonautonomous dynamical system 〈H,ϕ, (P,T, σ)〉 generated
by (13) has a uniform pullback attractor that consists of singleton component subsets.

For example, the equation

u′ = F (σtp, x) = −u|u| + g(σtp)

with g ∈ C(P,R) satisfies

〈u1 − u2, F (σtp, u1) − F (σtp, u2)〉 ≤ −
1

2
|u1 − u2|

2(|u1| + |u2|) ≤ −
1

2
|u1 − u2|

3,

which is condition (14) with α = 1
2 and ν = 3.
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The above considerations apply also to nonlinear nonautonomous partial differential
equations with a uniform dissipative structure, such as the dissipative quasi-geostrophic
equations

ωt + J(ψ, ω) + βψx = ν∆ω − rω + f(x, y, t), (15)

with relative vorticity ω(x, y, t) = ∆ψ(x, y, t), where J(f, g) = fxgy − fygx is the Jaco-
bian operator. This equation can be supplemented by homogeneous Dirichlet boundary
conditions for both ψ and ω

ψ(x, y, t) = 0, ω(x, y, t) = 0 on ∂D, (16)

and an initial condition,
ω(x, y, 0) = ω0(x, y) on D,

where D is an arbitrary bounded planar domain with area |D| and piecewise smooth
boundary. Let U be the Hilbert space L2(D) with norm ‖ · ‖.

Theorem 5.5 Assume that

r

2
+
πν

|D|
>

1

2
β

(
|D|

π
+ 1

)

and that the wind forcing f(x, y, t) is temporally almost periodic with its L2(D)-norm
bounded uniformly in time t ∈ R by

||f(·, ·, t)|| ≤

√
πr

3|D|

[
r

2
+
πν

|D|
−

1

2
β

(
|D|

π
+ 1

)] 3
2

.

Then the dissipative quasigeostrophic model (15) – (16) has a unique temporally almost
periodic solution that exists for all time t ∈ R.

The proof in [17] involves explicitly constructing a uniform pullback and forward
absorbing ball in L2(D) for the vorticity ω, hence implying the existence of a uniform
pullback attractor as well as a global attractor for the associate skew-product flow system
for which the component sets are singleton sets. The parameter set P here is the hull of
the forcing term f in L2(D) and a completely continuous cocycle mapping φ(t, u0, p) =
ω(t, u0, p) with respect to the shift operator σ on P that is continuous in all variables.

5.3 Distal dynamical systems

A function γ(u,p) : R → U represents an entire trajectory γ(u,p) of a nonautonomous dy-
namical system 〈U, φ, (P,T, σ)〉 if γ(u,p)(0) = u ∈ U and φ(t, γ(u,p)(τ), στp) = γ(u,p)(t+
τ) for t ≥ 0 and τ ∈ R. A nonautonomous dynamical system is called distal on T

− if

inf
t∈T−

dU

(
γ(u1,p)(t), γ(u2,p)(t)

)
> 0

for any entire trajectories γ(u1,p) and γ(u2,p) with u1 6= u2 ∈ U and any p ∈ P . A
nonautonomous dynamical system is said to be uniformly Lyapunov stable if for any
ε > 0 there exists a δ = δ(ε) > 0 such that

dU (φ(t, u1, p), φ(t, u2, p)) < δ

for all u1, u2 ∈ U with dU (u1, u2) < ε, p ∈ P and t ≥ 0. Finally, an autonomous
dynamical system (P,T, σ) is called minimal if P does not contain proper compact subsets
which are σ-invariant.

The following lemma is due to Furstenberg [20] (see also [4, Chapter 3] or [28, Chapter
7, Proposition 4]).
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Lemma 5.4 Suppose that a nonautonomous dynamical system 〈U, φ, (P,T, σ)〉 is dis-
tal on T

− and that (P,T, σ) is minimal. In addition suppose that a compact subset A of
X is π-invariant with respect to the skew-product system (X,T+, π). Then the mapping
p→ A(p) := {u ∈ U : (u, p) ∈ A} is continuous.

The following theorem gives the existence of uniform forward attractors.

Theorem 5.6 Suppose that the nonautonomous dynamical system 〈U, φ, (P,T, σ)〉
is uniformly Lyapunov stable and that the skew-product system (X,T+, π) has a global

attractor A =
⋃

p∈P

A(p) × {p}. Then Â = {A(p)}p∈P is a uniform forward attractor

for 〈U, φ, (P,T, σ)〉.

Proof Suppose that the nonautonomous dynamical system 〈U, φ, (P,T, σ)〉 is not dis-

tal. Then there is a p0 ∈ P , a sequence tn → ∞ and entire trajectories γ(u1,p0), γ(u2,p0)

with u1 6= u2 such that

lim
n→∞

dU

(
γ(u1,p0)(−tn), γ(u2,p0)(−tn)

)
= 0.

Let ε = dU (u1, u2) > 0 and choose δ = δ(ε) > 0 from the uniformly Lyapunov stability
property. Then

dU

(
γ(u1,p0)(−tn), γ(u2,p0)(−tn)

)
< δ

for sufficiently large n. Hence

dU

(
φ(t, γ(u1,p0)(−tn), σ−tn

p0), φ(t, γ(u2,p0)(−tn), σ−tn
p0)

)
< ε

for t ≥ 0 and, in particular,

ε = dU (u1, u2) = dU

(
φ(tn, γ

(u1,p0)(−tn), σ−tn
p0), φ(tn, γ

(u2,p0)(−tn), σ−tn
p0)

)
< ε

for t = tn, which is a contradiction. The nonautonomous dynamical system is thus distal,
so p → A(p) is continuous by Lemma 5.4. The result then follows from Theorem 4.2
since {A(p)}p∈P generates a pullback attractor.

This theorem will now be applied to the nonautonomous differential equation (13)
on a Hilbert space H , which is assumed to generate a cocycle φ that is continuous on
T

+ × P ×H and asymptotically compact.

Theorem 5.7 Suppose that F ∈ C(H × P,H) satisfies the dissipativity conditions

〈F (u1, p) − F (u2, p), u1 − u2〉 ≤ 0, (17)

〈F (u, p), u〉 ≤ −µ(|u|) (18)

for u1, u2, u ∈ H and p ∈ P , where µ : [R,∞) → R
+ \ {0}. Suppose also that (13)

generates a cocycle φ that is continuous and asymptotically compact. Finally, suppose
that (P,T, σ) is a minimal dynamical system.

Then the nonautonomous dynamical system 〈H,φ, (P,T+, σ)〉 has a uniform pullback
attractor.

Proof It follows by the chain rule applied to ‖u‖2 for a solution of (13) that

‖φ(t, u, p)‖ < ‖u‖ for |u| > R, t > 0 and p ∈ P.
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Hence the nonautonomous dynamical system (X,T+, π) has a global attractor [9]. On
the other hand, by (17),

‖φ(t, u1, p) − φ(t, u2, p)‖ ≤ ‖u1 − u2‖

for t ≥ 0, p ∈ P and u1, u2 ∈ H . Theorem 5.6 then gives the result.

The above theorem holds for a differential equation (13) on H = R with

F (p, u) =






−(u+ 1) + g(p) : u < −1,

g(p) : |u| ≤ 1,

−(u− 1) + g(p) : u > 1,

where g ∈ C(P,R).
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[3] Babin, A.B. and Vishik, M.I. Attractors of Evolution Equations. North-Holland, Amster-

dam, 1992.
[4] Bronshteyn, U.I. Extensions of Minimal Transformation Groups. Nordhoff, Groningen,

1979.
[5] Cheban, D.N. Nonautonomous dissipative dynamical systems. Differentsial’nye Urav-

neniya 23(3) (1987) 464–474.
[6] Cheban, D.N. Structure of a Levinson center of a dissipative dynamical system. Differ-

entsial’nye Uravneniya 24(9) (1988) 1564–1576.
[7] Cheban, D.N. Nonautonomous dynamical systems with a convergence. Differentsial’nye

Uravneniya 25(9) (1989) 1633–1635.
[8] Cheban, D.N. Global attractors of infinite-dimensional nonautonomous dynamical sys-

tems I. Bulletin Acad. Sci. Rep. Moldova. Mathematics 25(3) (1997) 42–55.
[9] Cheban, D.N. Global attractors of infinite-dimensional nonautonomous dynamical sys-

tems II. Bulletin Acad. Sciences Rep. Moldova. Mathematics 27(2) (1998) 25–38.
[10] Cheban, D.N. The global attractors of nonautonomous dynamical systems and almost

periodic limit regimes of some classes of evolution equations. Anale Fac. de Mat. şi
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