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1 Introduction

The classical calculus of variations assumes that the functional is defined on a specific
set and has a very characteristic form. Thus, some problems of minimization prove to
be unsolvable in the frame of the classical calculus of variations. In the case of such an
“unsolvable” situation D.Hilbert proposed to define the functional on a suitable set such
that the functional under consideration obtains a point of a minimum on the set [4]. But
what should be done if the “proper” set does not comply with the requirement of the
known methods? The main idea of the contemporary theory of functional differential
equations is that “any problem needs its proper space of functions” [5]. Using some
given below elements of the mentioned theory, we are able to propose a new approach to
certain problems of minimization.

2 Preliminaries

Let Rn be the space of vectors α = col{α1, . . . , αn} with real components αi, L2 be
the Banach space of square integrable functions z : [a, b] → R1 under the norm ‖z‖L2
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(

b
∫

a

z2(s) ds

)
1

2

, and D be a linear space of functions x : [a, b] → R1. Denote by r =

col{r1, . . . , rn} : D → Rn a system of linearly independent linear functionals on D. Let
further L : D → L2 be a linear operator and the system

Lx = z,

rx = α
(1)

have a unique solution x ∈ D for each pair {z, α} ∈ L2 × Rn. We define the norm
‖x‖D = ‖Lx‖L2

+ ‖rx‖Rn . Then D becomes a Banach space. The solution x of (1) has
the representation

x = Gz + Y α. (2)

Here the “Green operator” G : L2 → {x ∈ D : rx = 0} is an integral one:

(Gz)(t) =

b
∫

a

G(t, s)z(s) ds

whenever the space D is continuously embedded into the space C of continuous functions
x : [a, b] → R1 under the norm ‖x‖C = max

t∈[a,b]
|x(t)|; the finite-dimensional Y : Rn → D

is defined by

(Y α)(t) =

n
∑

k=1

αkyk(t),

where yi, i = 1, . . . , n, are the solutions of the semi-homogeneous problems

Lx = 0, rkx =

{

1 if k = i,

0 if k 6= i,
k = 1, . . . , n.

According to (2) any pair {z, α} ∈ L2 × Rn defines an element x ∈ D as well as any
x ∈ D defines a pair {z, α} ∈ L2 × Rn with z = Lx, α = rx. Thus there exists an
isomorphism J = {G, Y } : L2 × Rn → D (J −1 = [L, r] : D → L2 × Rn) between D
and the direct product L2 × Rn. We will denote the fact by D ≃ L2 × Rn. Below we
consider functionals on D ≃ L2 × Rn. The first example of D ≃ L2 × Rn is the space
of continuous functions x : [a, b] → R1 such that x(i), i = 0, 1, . . . , n − 1, are absolutely

continuous and x(n) ∈ L2. In this case

(Gz)(t) =

t
∫

a

(t − s)n−1

(n − 1)!
z(s) ds,

Y (t) =

(

1, t − a, . . . ,
(t − a)n−1

(n − 1)!

)

,

Lx = x(n), rx = {x(a), ẋ(a), . . . , x(n−1)(a)}.
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In the capacity of a more complicated example consider the space of continuous functions
x : [0, 1] → R1 such that ẋ is absolutely continuous on any [c, d] ⊂ (0, 1) and t(1 − t)ẍ
is square integrable on [0, 1]. The space of such functions is isomorphic to L2 × R2,

(Gz)(t) =

1
∫

0

G(t, s)z(s) ds, (3)

G(t, s) =











− 1 − t

1 − s
if 0 ≤ s ≤ t ≤ 1,

− t

s
if 0 ≤ t < s ≤ 1,

(4)

(Y α)(t) = α1(1 − t) + α2t. (5)

Some other examples can be found in [3, 5].

3 Main Assertions

Let D ≃ L2 × Rn, J = {G, Y }, J −1 = [L, r], the linear operator T : D → L2 be

bounded, Dα
def
= {x ∈ D : rx = α}. Consider the functional

J(x) =

b
∫

a

(

1

2
(Lx)2(t) − f(t, (Tx)(t))

)

dt

defined on an open set Ω ⊂ Dα. We will say that a point x0 ∈ Dα such that J(x) ≥
J(x0) for any x from a neighbourhood of x0 is a point of a local minimum of J . The
problem of the existence of such a point is denoted by

J(x) → min, rx = α. (6)

In what follows Q = TG, Q∗ : L2 → L2 is the adjoint to Q : L2 → L2, ϕ(t, θ) =
∂
∂θ

f(t, θ), (F (y))(t) = ϕ(t, y(t)), Ψ(x) = GQ∗F (Tx) + Y α.

Theorem 3.1 Let Ψ: Ω → L2 be continuous and bounded. Then any point x0 ∈ Ω
of a local minimum of the functional J(x) satisfies the equation

x = Ψ(x).

Proof Using the substitution x = Gz + Y α, we get the auxiliary functional J1(z)
on L2:

J1(z) = J(Gz + Y α) =

b
∫

a

(

1

2
(L(Gz + Y α))2(t) − f(t, T (Gz + Y α)(t))

)

dt

=

b
∫

a

(

1

2
z2(t) − f(t, (Qz)(t) + (TY )(t)α)

)

dt.
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An element x0 = Gz0 + Y α is a point of a local minimum of J(x) if z0 is a point of
a local minimum of J1(z). By virtue of the generalized Fermat theorem, the point z0

such that J1(z) ≥ J1(z0) for each z from a neighbourhood of z0 satisfies the equality
δJ1(z0, ξ) = 0, where

J ′
1(z0)ξ = δJ1(z0, ξ)

def
= lim

τ→0

J1(z0 + τξ) − J1(z0)

τ
.

The differential J ′
1(z)ξ at the point z by the increment ξ has the form

J1(z)ξ =

b
∫

a

(

z(t)ξ(t) − (F (Qz + TY α))(t)(Qξ)(t)

)

dt.

Using the definition

b
∫

a

y1(t)(By2)(t) ds =

b
∫

a

(B∗y1)(t)y2(t) dt,

we obtain

J1(z)ξ =

b
∫

a

(

z(t) − (Q∗F (Qz + TY α))(t)

)

ξ(t) dt.

Therefore the point z0 ∈ L2 of a minimum of J1(z) satisfies the equation

z0 = Q∗F (Qz0 + TY α).

Thus, the solution x0 ∈ D of problem (6) satisfies the equation

x = Ψ(x).

Theorem 3.2 Let M ⊆ Ω be a nonempty closed convex set and the operator Ψ: M
→ M be contractive. Then there exists a unique point x0 ∈ M such that J(x) ≥ J(x0)

for any x ∈ Mα
def
= {x ∈ M : rx = α}.

To prove Theorem 3.2 we use the following well-known result [6, p.376].

Lemma 3.1 Let functional ω be differentiable on a convex set M and, besides,

‖ω′(x1) − ω′(x2)‖ ≤ q‖x1 − x2‖

on M . Then

|ω(x1) − ω(x2) − ω′(x2)(x2 − x1)| ≤
q

2
‖x1 − x2‖2. (7)

Proof of Theorem 3.2 By the conditions, the operator Ψ maps the set Mα into the
set Mα. By the Banach principle, there exists a unique solution x0 ∈ Mα to the equation
x0 = Ψ(x0). The Frechét differential of

ϕ(z) =

b
∫

a

f(t, (Qz)(t) + A(t)α) dt,
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where A = TY , is defined by

ϕ′(z)ξ =

b
∫

a

f ′
1(t, (Qz)(t) + A(t)α)(Qξ)(t) dt =

b
∫

a

(Q∗f ′
1(·, Qz + Aα))(t)ξ(t) dt.

Take arbitrary points x1, x2 ∈ Mα, x1 = Λz1 + Y α, x2 = Λz2 + Y α. We have

‖ϕ′(z1) − ϕ′(z2)‖L2
= ‖Q∗f ′

1(·, Tx1) − Q∗f ′
1(·, Tx2)‖L2

= ‖Ψ(x1) − Ψ(x2)‖D

= ‖Ψ(Λz1 + Y α) − Ψ(Λz2 + Y α)‖D ≤ ‖Λ(z1 − z2)‖D = q‖z1 − z2‖L2
,

where q ∈ (0, 1) is the contraction constant of Ψ on the set Mα. So, the operator ϕ′

is a contraction on the set S = {z ∈ L2 : Λz + Y α ∈ Mα} with the constant q. Thus
estimate (7) is valid for the functional ϕ on S.

Let z0 = δx0. Note that the equality x0 = Ψ(x0) implies z0 = Q∗F (T (Λz0 +Y α)) =
ϕ′(z0). The equality

J(x) − J(x0) = J(Λz + Y α) − J(Λz0 + Y α)

=
1

2

b
∫

a

(z2(t) − z2
0(t)) dt − ϕ(z) + ϕ(z0) =

1

2
(‖z‖2 − ‖z0‖2) − ϕ(z) + ϕ(z0)

is fulfilled for all x ∈ Mα. Using Lemma 3.1, we get

ϕ(z) − ϕ(z0) ≤ ϕ′(z0)(z − z0) +
q

2
‖z − z0‖2.

Then

J(x) − J(x0) ≥
1

2
(‖z‖2 − ‖z0‖2) − ϕ′(z0)(z − z0) −

1

2
q‖z − z0‖2

≥ 1

2
(‖z‖2 − ‖z0‖2) −

b
∫

a

z0(t)z(t) dt + ‖z0‖2 − 1

2
q‖z − z0‖2

≥ 1

2

(

‖z‖2 − 2

b
∫

a

z0(t)z(t) dt + ‖z0‖2 − q‖z − z0‖2

)

≥ 1

2
(1 − q)‖z − z0‖2 ≥ 0.

Hence the functional J takes on its minimal value on the set Mα at the point x0.

This completes the proof.
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4 Examples

Example 4.1 The problem

b
∫

0

(

1

2
((Lx)2(t) − p(t)f((Tx)(t))

)

dt −→ min,

x(b) − x(0) = 0,

(8)

where Lx = ẋ + x(b) and f(x) = 1
2x2, was investigated in [1] for Tx = x and in [5] for

an arbitrary linear T . Consider the case with

(Tx)(t) =

{

x(h(t)) if h(t) ∈ [0, b],

0 if h(t) /∈ [0, b],
(9)

where the real function h is measurable.
Here

(Gz)(t) =

b
∫

0

G(t, s)z(s) ds,

G(t, s) =











1 + b − t

b
if 0 ≤ s ≤ t ≤ b,

1 − t

b
if 0 ≤ t < s ≤ b.

Then

(Ψx)(t) =

b
∫

0

K(t, s)f ′(x(h(s))) ds,

where x(ξ) = 0 for ξ 6∈ [0, b];

K(t, s) = p(s)























1 + (b − t)h(s)

b
if 0 ≤ h(s) ≤ t ≤ b,

1 + (b − h(s))t

b
if 0 ≤ t < h(s) ≤ b,

0 otherwise.

Let

µ(r) = sup
|x|≤r

|f ′(x)|, q(r) = sup
|x1|≤r, |x2|≤r, x1 6=x2

|f ′(x1) − f ′(x2)|
|x1 − x2|

,

(Kx)(t) =

b
∫

0

K(t, s)x(s) ds.

Then the operator Ψ maps the set M(r) = {x ∈ D : ‖x‖C ≤ r} into itself if µ(r)‖K‖C→C

≤ r, and Ψ is a contractive operator on M(r) if q(r)‖K‖L2→L2
< 1. So, problem (8) has

a solution under the condition
b
∫

0

(1 + (b − s)s)2p2(s) ds <
b

(

q(r) + |f ′(0)|
r

)2 .
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Example 4.2 Consider the singular problem (see the quadratic case with a linear
ordinary differential operator T in [2] and with a functional differential T in [5])

∫ 1

0

(

t2(1 − t)2

2
ẍ2(t) − p(t)f((Tx)(t))

)

ds −→ min,

x(0) = α1, x(1) = α2,

(10)

where T is defined by (9) for b = 1. Let (Lx)(t) = t(1−t)ẍ(t), rx = {x(0), x(1)}. Define
the elements of the space D by equalities (2) – (5).

Then

(Ψx)(t) =

1
∫

0

1
∫

0

G(t, s)G(h(τ), s)p(τ)f ′(x(h(τ))) ds dτ + α1(1 − t) + α2t,

where x(ξ) = 0 for ξ 6∈ [0, 1].

Assume that there exists a non-decreasing function f̃ such that

|f ′(x) − f ′(y)| ≤ |x − y|f̃(max{|x|, |y|}), |f ′(x)| ≤ γ|x|f̃(|x|).

Let M = {x ∈ D : rx = α, |t(1− t)ẍ(t)| ≤ r} and denote v(t) = (t− 1) ln(1− t)− t ln t,
u(t) = |α1|(1 − t) + |α2|t.

Then the operator Ψ maps the set M into itself if

γ

1
∫

0

|p(t)|(v(t)r + u(t))f̃(v(t)r + u(t)) dt ≤ r,

and Ψ is a contractive operator on M if

√
2

1
∫

0

|p(t)|f̃(v(t)r + u(t)) dt < 1.

Hence problem (10) is solvable if γ <
√

2,

1
∫

0

|p(t)|f̃
(

max{|α1|, |α2|}γ√
2 − γ

v(t) + u(t)

)

dt <
1√
2

or
1
∫

0

|p(t)| dt <
1

√
2f̃
(√

2max{|α1|,|α2|}√
2−γ

) .
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