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1 Introduction

Let f: RY — RY be locally Lipschitz and consider the system

&= f(x). (1)

By [1, Theorem 52.1], if (1) has an asymptotically stable (that is, Lyapunov stable and
attractive) equilibrium &, then the (isolated) zero ¢ of —f has index ind(—f,&) = 1
and so, for all € > 0 sufficiently small, degg(—f,Bc(£),0) = 1, where degp denotes
Brouwer degree and B.(¢) denotes the open ball of radius e centred at . Therefore,
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by properties of Brouwer degree, f(RY) contains an open neighbourhood of 0. Now let
f:RY x RM — RN be locally Lipschitz and consider the controlled system

i = fu). (2)

If (2) is stabilizable in the sense that there exists a time-invariant locally Lipschitz feed-
back u = k(x) that renders some point of RY an asymptotically stable equilibrium of
the feedback system & = f(z, k(x)), then, by the above result, the image of f contains an
open neighbourhood of 0. This is Brockett’s necessary condition for stabilizability, origi-
nally proved in [2, Theorem 1]; for discussions on variants and ramifications of Brockett’s
condition, see, for example, [3—11]. In either case of an uncontrolled (1) or controlled
(2) system, if f: D — R is such that f(D) contains an open neighbourhood of 0, we
say that f has the BKZ (Brockett-Krasnosel’skii-Zabreiko) property.

In this paper, the necessity of the BKZ property is investigated in a wider context of
differential inclusions under hypotheses weaker than asymptotic stability/stabilizability
of equilibria. For example, amongst other consequences for (1), the results of the paper
imply that, if any of the following hold, then f has the BKZ property:

(a) some compact set C' is globally attractive for solutions of (1);

(b) some closed ball is a locally asymptotically stable (Lyapunov stable and locally
attractive) set for (1);

(c) (1) is LP-stable for some 1 < p < oo (in the sense that every maximal solution
has interval of existence R and is of class LP).

Within the control framework of (2), these observations have natural counterparts: f
has the BKZ property if there exists a (possibly discontinuous) feedback k such that the
feedback-controlled system (a) has a globally attractive compact set, or (b) has a locally
asymptotically stable closed ball, or (c) is LP-stable (in the above sense).

2 Notation and Terminology

For a Banach space X and non-empty C' C X, d¢ denotes the distance function given
by
d = inf ||z — VzelX.
o(w) = inf o —c| Yz

For non-empty B, C C X,
d(B,C) :=supdc(b).
beB

The open ball of radius 7 > 0 centred at z € RY is denoted B,.(2) (with closure B,.(z)),
to which the conventions By(z) := () and By(z) := {z} apply; if z = 0, then we simply
write B, (respectively, B,.) in place of B,.(0) (respectively, B,.(0)). The boundary of a set
) is denoted 09. We write R := [0, 00).

Throughout, a sequence (x,,) is regarded as synonymous with a map n — x, with
domain N. We shall frequently extract subsequences of sequences. In order to avoid
proliferation of subscripts, the notation (2,,)), where o: N — N is a strictly increasing

map, is adopted to indicate a subsequence of (z,). If ((xgk(n))) is a sequence of

kEN
subsequences of (z,,) nested in the following sense

(CL‘n) D (xgl(n)) DD (.I'gk(n)) Do,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 2(1) (2002) 57-67 59

then oy is to be interpreted as a k-fold composition of strictly increasing maps N — N,
with oy = 6 0 0,1 for all k > 2: the sequence (2,,(n)) C () will be referred to as
the diagonal sequence.

AC(I;RYN) denotes the space of functions I — RY defined on an interval I and
absolutely continuous on compact subintervals thereof.

U(D) denotes the space of upper semicontinuous maps = +— F(x) C RY, defined on
D C RY, with non-empty convex compact values: if D = R, then we simply write U.

We record the following well-known facts (see, for example, [12]):

Proposition 2.1 Let F € U(D).

(i) If K C D is compact, then F(K) is compact.
(ii) For each € > 0, there erists locally Lipschitz f.: D — RN such that

d(graph (fc), graph (F)) < e

(any such f. is said to be an e-approximate selection for F).

3 Set-Valued Maps: Degree and the BKZ Property

If F e U(D) is such that F(D) contains an open neighbourhood of 0, then F' is said to
have the BKZ property.

Let M := {(F,Q,p) | F € U(D), Q an open bounded subset of D, p € RN\ F(9)}.
As discussed in [8] within the framework of [13] (see, also, [14—16]), there exists a map
deg: M — Z with the properties:

P1. deg(F,Q,p) = degg(fe, 2, p) for all € > 0 sufficiently small, where degy denotes

Brouwer degree and f.: Q — RY is any e-approximate selection for I’ oL

P2. if ¢: [0,1] — RN\ F(9Q) is continuous, then deg(F,,q(t)) is independent of t;

P3. if deg(F,Q,p) # 0, then p € F(x) for some = € Q.

Lemma 3.1 Let (F,Q,0) € M. If deg(F,,0) # 0, then F has the BKZ property.

Proof Since 0 ¢ F(02), dp)(0) > 0 forall z € 0Q. Let (x,,) C 952 be a convergent
sequence with limit = € 9. Let (2,(,)) be a subsequence with

lim dF(mU(n))(O) = lim inf dF(mn)(O)

For each n, let z, be a minimizer of || - || over compact F(z,(,)) (and so |z,| =
dF (2, ) (0)). By upper semicontinuity of F', for each € > 0,

2n € F(2o(n)) C F(z) + B..

By compactness of F'(x) and since € > 0 is arbitrary, we may conclude that (z,) has a
convergent subsequence (which we do not reliabel) with limit z € F(x). Therefore,

dp(2)(0) < [z[| = lim_[|zp[| = lim inf dp(,.,.) (0)

and so x — dp(;)(0) is lower semicontinuous and positive-valued on compact JQ. It
follows that there exists p > 0 such that p ¢ F(0Q) for all p € B,. By properties P2
and P3,

peB, = peF(x) forsome ze€Q.
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Therefore, F' has the BKZ property.

4 Differential Inclusions

Let F € U and consider the differential inclusion (subsuming (1))

(1) € F(x(t)). (3)
By an F-arc, we mean a function x € AC(I;RY) that satisfies (3) for almost all ¢ € I.
The following is a particular case of [17, Theorem 3.1.7].

Proposition 4.1 Let F € U, let K C RY be compact, let I := [a,b], let (e,) C
(0,00) be a decreasing sequence with €, | 0 as n — oo and, for each n € N, define
F,:x— F(z)+B,,.

Let sequence (z,) C AC(I;RYN) be such that, for each n € N, z, is an F,-arc
with ,(I) C K. Then (z,) has a subsequence that converges uniformly to an F-arc
r € AC(I;RYN).

Next, we prove (by arguments similar to those used in establishing [18, Lemma 5
(p-8)], see also remarks on page 78 therein) a variant of the above, tailored to our later
purposes.

Proposition 4.2 Let F € U and let (s,) C [a,b] be a convergent sequence with
limit s € (a,b]. If (xn) C AC([a,b];RY) is a sequence of F-arcs and there exists v > 0
such that, for all n € N, |z, ()| < r for all t € [a,sy], then (x,) has a subsequence
(To(n)) such that (T(n)la,s) converges to an F-arc x € AC([a, s|; RY).

Proof Let (dx) C (0,5 —a) be a decreasing sequence with d; | 0 as k — co. Write
I, := [a, s—dk]. By Proposition 4.1, the sequence (z,,) has a subsequence, which we label
(Zoy (n)), such that (x4, (m)|r,) converges uniformly to an F-arc z' € AC(I1;RY). Again
by Proposition 4.1, the sequence (4, (,,)) has a subsequence, which we label (74, (), such
that (2,,(n)|r,) converges uniformly to an F-arc 2? € AC(I2;RY) (with 22|, = a!).
By induction, we generate a sequence of subsequences of (z,,),

(xn) D (xgl(n)) DD (xgk(n)) Do
such that, for all &, (Iak(n)hk) converges to an F-arc z¥ € AC(I;;RY) with z*|;, |, =
xF=1 for all k > 2. Therefore, the diagonal sequence of restrictions to [a, s), that is, the
sequence (Z,., (n)la,s)); converges to the F-arc x: [a,s) — B, defined by the property:
VkeN z(t)=z1t) Vtel=][a,s— 0k

By compactness of F(B,), it follows that the bounded F-arc z is uniformly continuous
and so extends to an F-arc on the closed interval [a, s] by defining z(s) := 11%11 x(t).
tTs

4.1 The initial-value problem
Let F €U. For each 20 € RV, the initial-value problem

i(t) € F(x(t), 2(0)=2° (4)
has a solution and every solution can be extended to a maximal solution. By a solution,
we mean an F-arc z € AC([0,w); RY), with 0 < w < 0o and z(0) = 2% by a maximal

solution, we mean a solution having no proper right extension which is also a solution.

Moreover, if x: [0,w) — RY is maximal and w < oo, then limsup ||z(t)| = +oo.
tTw
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Proposition 4.3 Let non-empty K C RN be compact. Assume that, for each z° €
K, every mazimal solution of (4) has interval of existence Ry. For T > 0, define

Sr(K) = |J {=(t) |z € AC([0, T};RY)
t€[0,T]

is an F-arc with (0) € K} C RY

and write Yoo(K) := |J Zr(K).
T>0
(a) For all T >0, the set L (K) is compact.
(b) Let non-empty Cy, Cy C RN be compact, with C1 C Co C K and C; NICy =
) = KNOCy. Assume that, for every mazimal solution x of (4) with 2° € K,
de, (x2(t)) — 0 as t — oo. Then there exists T > 0 such that Lr(K) = Yoo (K)
and, for all 2° € Yo (K), every mazimal solution x of (4) has interval of existence
R+ and has the properties:
(i) 2(R.) C Soe(K);
(il) z(t) € Cy for some t € [0,T].

Proof (a) Let T > 0 be arbitrary. Seeking a contradiction, suppose that Xp(K) is
unbounded. Then there exist a constant § > 0, a sequence (¢,) C [0,7] and a sequence
(2,) of maximal solutions of (4) such that

2,(0) € K and |zn(t,)|| > (n+1)6 VneN.

By continuity of the solutions, it follows that, for each n € N, there exist s*, k=1,...,n,
such that
||:z:n(sfz)|| =(k+1)5 and |z, ()| <(k+1)0 Vte [O,sﬁ) (5)

and sl < s2 <--- <" forall n> 2.

1

From (s,

), extract a convergent subsequence (s}n(n)) with limit s' € [0,7]. By
compactness of F(Bas(0)), st > 0. Write I; := [0, s']. By Proposition 4.2, and passing
to a subsequence if necessary, we may assume that (z,,(,)|r,) converges uniformly to
an F-arc z' € AC(I1;RY); moreover, by (5), ||z!(s!)| = 26. From_(sil(n)), extract
a subsequence (5(272(71)) with limit s € [0,7]. By compactness of F(Bss(0)), s? > s'.
Write I := [0,s2]. By Proposition 4.2, and passing to a subsequence if necessary, we
may assume that (z,,(n)|z,) converges uniformly to an F-arc 2? € AC(I2;RY) with

22|, = x!; moreover, by (5), ||#2(s?)|| = 3. By induction, we generate a strictly
increasing sequence (s*) C [0, 7], with limit s € [0,T], and a sequence of subsequences
of (zn),

(;vn) D (xgl(n)) DD (xgk(n)) Do
such that the diagonal sequence of restricted functions (z,,n)|r), where I := [0,s),
converges to the F-arc € AC(I;RY) defined by the property that, for each k € N,

z(t) =2"(t) Vtel,:=0,s".

Clearly, 2(0) € K. Furthermore, |z(s*)|| = (k+ 1)d for all k € N and so z has no
proper right extension that is also an F-arc. This contradicts the hypothesis that all
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maximal solutions of (4), with 2° € K, have interval of existence R.. Therefore, X7 (K)
is bounded.

Let (yn) C Tr(K) be a convergent sequence with limit y. Then y, = x,(t,) for
some sequence (t,) C [0,7] and some sequence of F-arcs (z,) C AC([0,T);RY) with
2, (0) € K for all n. Without loss of generality, we may assume that (¢,) is convergent,
with limit ¢ € [0,7]. By boundedness of Yr(K), there exists compact C such that
2,([0,T]) C C for all n. By Proposition 4.1, passing to a subsequence if necessary,
we may assume that (z,,) converges uniformly to an F-arc x € AC([0,T];RY), with
x(0) € K. Therefore,

y= lim y, = lim xn(tn) = ‘T(t) € ET(K)u

n—oo n—oo

and so X (K) is closed.

(b) It suffices to show that there exists 7' > 0 such that, for every maximal solution
x of (4), with 2° € K, z(t) € Cy for some t € [0,7] (in which case, Y (K) =
Yoo(K)). Seeking a contradiction, suppose that no such T exists. Then there is a
sequence (z,) C AC(R4;RY) such that, for each n € N, z,,(0) € K and d¢,(x,(t) > 0
for all ¢t € I, := [0,n]. By part (a) above, for each k € N, the sequence (x,|1,)
is bounded. Therefore, repeated application of Proposition 4.1 yields a sequence of
subsequences (2,,) O (Zyy(n)) O (Toy(n)) - such that, for each k& € N, the sequence
(Top(n)|1,) converges uniformly to an F-arc ¥ € AC(Iy;RY) with de,(2%(t)) > 0
for all ¢ € I. Tt follows that the diagonal sequence (z,,(n)) converges to the F-arc
r € AC(Ry;RY) defined by the property that, for each k € N, x(t) = 2*(¢) for all
t € Ii;. Therefore, dec,(z(t)) > 0 for all ¢ € Ry, which contradicts the hypothesis that
every maximal solution approaches C; C Cs (recall that C; N9Cy = 0).

Remark 4.1 Proposition 4.3(a) is closely akin to [18, Theorem 3 (p.79)]. Proposi-
tion 4.3(b-1) is essentially an assertion that 3. (K) is compact and is an invariant set
for (4) in the sense that, for each 2° € Y (K), every maximal solution of (4) has
trajectory in oo (K). A similar observation occurs in the proof of [7, Theorem 11].

4.2 Persistence of the BKZ property

The following is essentially Theorem 1 of [8].
Theorem 4.1 Let F € U. If there exist 0 <17 <3J < p and T >0 such that

le@®)l<p  Viel0,T]

l2°l <6 =
lz() <+ Vte[T,2T]

for every mazimal solution x of (4), then F has the BKZ property.

In view of Lemma 3.1, to prove this result it suffices to show that deg(F,Bs,0) # 0.
In the Appendix, we provide a proof which incorporates minor corrections to the proof
in [8].

In what follows, several specific consequences of the above result are highlighted:
simply stated, the first of these (Theorem 4.2) asserts that, if there exists a compact set
that attracts all maximal solutions of (4), then F has the BKZ property.
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A non-empty set C C RY is said to be attractive for (4) if there exists an open
neighbourhood A of C' (that is, an open set containing the closure of C) with the property
that, for each z° € N, every maximal solution z: [0,w) — RY of (4) is such that
de(z(t)) — 0 as t T w (if C is compact, then w = 00): C is globally attractive if the
latter property holds with A= R¥. Non-empty C is said to be stable for (4) if, for each
open neighbourhood N7 of C, there is an open neighbourhood ANy of C such that, for
each 20 € N3, every maximal solution of (4) has trajectory in Nj.

Theorem 4.2 Let F €U. Let C C RN be non-empty and compact. If C is globally
attractive for (4), then F has the BKZ property.

Proof By global attractivity of compact C, every maximal solution of (4) has interval
of existence R,. Fix r > 0 such that B, D C. By Proposition 4.3, the set Y. (Bs,) is
compact and positively invariant.

Let 7 > 3r be sufficiently large so that EOO(E;gT) C B, and choose § > 7. By
Proposition 4.3(b), there exists 7> 0 such that, for every F-arc # € AC(R,;R"Y) with
lz(0)|| <6, ||=(t)|| < 3r for some t € [0,T]. Since Bz, C Yoo (Bs,), it follows that, for
each z0,

2% <6 = a(t) € X(Bs,) for some ¢t € [0,T]

for every maximal solution of (4). Therefore, by (positive) invariance of ¥ (Bs,) C B,
Iz’ <6 = 2z <7 Vte T, 00)

for every maximal solution of (4).
By Proposition 4.3(a), there exists p > § such that

2% <6 =z <p Vte[0,T].

Therefore, the hypotheses of Theorem 4.1 hold and so the result follows.

Next, we highlight a further consequence of the above theorem which, for example,
implies that, if (1) generates a global semiflow and is L? stable in the sense that all
solutions are of class LP for some 1 < p < oo, then f has the BKZ property.

Corollary 4.1 Let F € U. Let g: RN — R, be lower semicontinuous with the
properties:
(a) C:=g~1(0) is compact;
(b) in}f{g(z) > 0 for any closed set K C RN with KNC = ().
ze

If, for each x° € RY, every mazximal solution of (4) has interval of evistence Ry and

[ g(x(t)) dt < oo, then F has the BKZ property.
0

Proof By [19, Theorem 10 (i)], the compact set C' = g=1(0) is globally attractive
for (4) and the result follows by Theorem 4.2.

In Theorem 4.2, in order to conclude that F' has the BKZ property, hypotheses of a
global nature were imposed (global in the sense that, for each z° € RV, every maximal
solution was posited to approach C'). The following theorem imposes hypotheses of a
local nature under which the BKZ property again persists: in particular, if there exists
a closed ball that is locally asymptotically stable for (4), then F has the BKZ property.
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Theorem 4.3 If there exists a closed ball B,.(z) =: B which is both stable and
attractive for (4), then F has the BKZ property.

Proof Without loss of generality, we may assume z = 0 and so B = B, = B,.(0).
By stability and attractivity of compact B, there exist a, § € R4 such that, for all
20 e RV,

(z(t) <B  VteRy
(x(t)) = 0

for every maximal solution of (4). Let v € (0,«) be arbitrary. By stability of B, there
exists u € (0,7) such that, for all 29,

as t— o0

d
dp(?’) <a = o
dp

dp(a®) <p = dp(z(t)) <v VieRy (6)

for every maximal solution of (4). By Proposition 4.3(b), there exists T > 0 such that,
for all 29,
dp(2’) <a == dp(x(t)) <p for some t€[0,T]

which, together with (6), yields
dp(a’) <a = dp(z(t) <y Vt>T

for every maximal solution z of (4). We may now conclude that the hypotheses of
Theorem 4.1 hold (with 7 =~ +7r, d = a+r and p = G+ r) and the proof is complete.

5 Feedback Control

We now turn to the main concern of the paper, namely, the consequences of the above
results in a context of feedback control systems.
Let f: RY x RM — RYN be continuous and consider the controlled system

&= fx,u). (7)

Henceforth, we assume that f has the property that, for every non-empty convex set
C C RM  the set f(z,C) CRY is convex for all z € RV,

As admissible feedback controls for (7), we take the class K of upper semicontinuous
maps z — k(z) C RM on RY, with non-empty convex and compact values. Therefore,
for every feedback k € IC, the map Fy: z — f(x, k(x)) is of class U.

5.1 Persistence of the BKZ property in feedback systems

For system (7), a feedback k € K is said to render a compact set C C R¥ stable
(respectively, attractive) if C' is stable (respectively, attractive) for (4) with F = Fy.

The following theorem and corollary are immediate consequences of Theorem 4.2 and
Corollary 4.1.

Theorem 5.1 Let k € K and let C C RY be non-empty and compact. If either of
the following holds, then f has the BKZ property:

(i) k renders C globally attractive for (4);
(ii) k renders some closed ball B stable and attractive for (4).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 2(1) (2002) 57-67 65

Corollary 5.1 Let k€ K and let g: RV — R, be as in Corollary 4.1. If, for each
20 € RN, every mazimal solution of (4) with F = Fy has interval of existence Ry and
gox € LY(Ry), then f has the BKZ property.
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Appendix: Proof of Theorem 4.1

Let D :=B, and let Fe U(D) denote the restriction of F € U to D.

Observe that 0 ¢ 13“(8185) (otherwise, there exists a constant solution ¢ +— x° of (4) with
||x0|| = J, contradicting the hypotheses). Therefore deg(ﬁ',lﬂ%g, 0) is well-defined and, in view
of Lemma 3.1, to complete the proof it suffices to show that deg(F, Bs,0) # 0.
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By Proposition 2.1(ii) and property P1 of degree, there exists a sequence (f,) of locally
Lipschitz functions D — RY such that:

deg(F,IB%g, 0) = degg(fn,Bs,0) Vn;

. (8)
d(graph (f,), graph (F)) - 0 as n — oc.

By compactness of F (D), the functions f,, are bounded and so, for each n, the equation
@ = fn(x) generates a semiflow ©,: Ry x RN — RV,
Write I :=[0,27] and X := C(I;RY) (with the uniform norm). On B define

Fia®—{zeX|zan F-arc with 2(0) = 2}
with graph (F) := {(2°,2) | 2° € Bs, = € F(2°)}. For each n, define ¢,,: Bs — X by

(¢n(z))(t) := @n(t,z") Viel
Fix € such that 0 < € < § — 7. We claim that

d(graph (ém,), graph (F)) <€ for some m € N. 9)
Suppose otherwise. Then there exists a sequence (x%) C Bs such that

dgraph (f)((w2,¢n(w2))) >e Vn. (10)

By Proposition 4.1, we may assume (without loss of generality) that (¢(x%)) C X converges
uniformly to an F-arc z € AC(I;RY) with x(0) € Bs (and so (2(0),z) € graph (F)),
which contradicts (10). Therefore, (9) is true.

Let 2° € B be arbitrary. By (9), there exists y° € Bs, with [|2°—1°|| < ¢, and y € F(y?)
such that || (t,7%) — y(t)|| < € for all t € I. Since the set {y(t) | y € F(Bs)} lies in the
ball B, for all ¢ € [T, 2T, we may conclude:

for all 2° € Bs, @m(t,2%) €Bs forall t ¢ [T,2T). (11)
Define continuous h: [0,1] x Bs — RY by

psa) o= ) =0
T L (@) (sT) —2),  0<s<l.

We conclude that h(s,z°) # 0 for all (s,2°) € [0,1] x OBs by the following argument.
Suppose h(0,2%) = f,,(z°) = 0 for some 2° € OB;s. Then, @, (t,2%) = 2° € 9B; for all
t € I, which contradicts (11). Now suppose h(s,z2%) = 0 for some (s,2°) € (0,1] x IBs.
Then ¢y, (nsT, 2°) = 2° € B; for all n € N with ns < 2. In particular, there exists n € N
such that 1 < ns <2 and @,,(nsT,2°) = 2° € OBs. This contradicts (11).

Therefore, by (8) and the homotopic invariance property of the Brouwer degree,

deg(ﬁ’}357 0) = degB(f’ma}BJv 0) = degB(h’(Oa ')5}357 0)
= degp(h(1,),Bs,0) = degg(gm, Bs, 0),
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where, for notational convenience, g,, denotes the function
gm: 2% = [(fm(2)(T) — 2°]/T.
Now consider the continuous map

ho: [0,1] x Bs,  (5,2°) — (1 — 8)gm(z") — s2°.
Noting that hg is a homotopic connection of the function g, and the odd map o : a9 — —20
and ho(s,2%) # 0 for all (s,2°) € [0,1] x dBs by properties of the Brouwer degree, we may
now conclude that

deg(F‘,IB%g, 0) = degg(0,Bs,0) # 0.

This completes the proof.



