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1 Introduction

Let f : R
N → R

N be locally Lipschitz and consider the system

ẋ = f(x). (1)

By [1, Theorem 52.1], if (1) has an asymptotically stable (that is, Lyapunov stable and
attractive) equilibrium ξ, then the (isolated) zero ξ of −f has index ind(−f, ξ) = 1
and so, for all ǫ > 0 sufficiently small, degB(−f, Bǫ(ξ), 0) = 1, where degB denotes
Brouwer degree and Bǫ(ξ) denotes the open ball of radius ǫ centred at ξ. Therefore,
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by properties of Brouwer degree, f(RN ) contains an open neighbourhood of 0. Now let
f : R

N × R
M → R

N be locally Lipschitz and consider the controlled system

ẋ = f(x, u). (2)

If (2) is stabilizable in the sense that there exists a time-invariant locally Lipschitz feed-
back u = k(x) that renders some point of R

N an asymptotically stable equilibrium of
the feedback system ẋ = f(x, k(x)), then, by the above result, the image of f contains an
open neighbourhood of 0. This is Brockett’s necessary condition for stabilizability, origi-
nally proved in [2, Theorem 1]; for discussions on variants and ramifications of Brockett’s
condition, see, for example, [3 – 11]. In either case of an uncontrolled (1) or controlled
(2) system, if f : D → R

N is such that f(D) contains an open neighbourhood of 0, we
say that f has the BKZ (Brockett-Krasnosel’skĭı-Zabrĕıko) property.

In this paper, the necessity of the BKZ property is investigated in a wider context of
differential inclusions under hypotheses weaker than asymptotic stability/stabilizability
of equilibria. For example, amongst other consequences for (1), the results of the paper
imply that, if any of the following hold, then f has the BKZ property:

(a) some compact set C is globally attractive for solutions of (1);
(b) some closed ball is a locally asymptotically stable (Lyapunov stable and locally

attractive) set for (1);
(c) (1) is Lp-stable for some 1 ≤ p < ∞ (in the sense that every maximal solution

has interval of existence R+ and is of class Lp).

Within the control framework of (2), these observations have natural counterparts: f
has the BKZ property if there exists a (possibly discontinuous) feedback k such that the
feedback-controlled system (a) has a globally attractive compact set, or (b) has a locally
asymptotically stable closed ball, or (c) is Lp-stable (in the above sense).

2 Notation and Terminology

For a Banach space X and non-empty C ⊂ X , dC denotes the distance function given
by

dC(x) := inf
c∈C

‖x − c‖ ∀ x ∈ X.

For non-empty B, C ⊂ X ,
d(B, C) := sup

b∈B

dC(b).

The open ball of radius r ≥ 0 centred at z ∈ R
N is denoted Br(z) (with closure Br(z)),

to which the conventions B0(z) := ∅ and B0(z) := {z} apply; if z = 0, then we simply

write Br (respectively, Br) in place of Br(0) (respectively, Br(0)). The boundary of a set
Ω is denoted ∂Ω. We write R+ := [0,∞).

Throughout, a sequence (xn) is regarded as synonymous with a map n 7→ xn with
domain N. We shall frequently extract subsequences of sequences. In order to avoid
proliferation of subscripts, the notation (xσ(n)), where σ : N → N is a strictly increasing

map, is adopted to indicate a subsequence of (xn). If
(

(xσk(n))
)

k∈N
is a sequence of

subsequences of (xn) nested in the following sense

(xn) ⊃ (xσ1(n)) ⊃ · · · ⊃ (xσk(n)) ⊃ · · · ,
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then σk is to be interpreted as a k-fold composition of strictly increasing maps N → N,
with σk = σ̂k ◦ σk−1 for all k ≥ 2: the sequence (xσn(n)) ⊂ (xn) will be referred to as
the diagonal sequence.

AC(I; RN ) denotes the space of functions I → R
N defined on an interval I and

absolutely continuous on compact subintervals thereof.
U(D) denotes the space of upper semicontinuous maps x 7→ F (x) ⊂ R

N , defined on
D ⊂ R

N , with non-empty convex compact values: if D = R
N , then we simply write U .

We record the following well-known facts (see, for example, [12]):

Proposition 2.1 Let F ∈ U(D).

(i) If K ⊂ D is compact, then F (K) is compact.

(ii) For each ǫ > 0, there exists locally Lipschitz fǫ : D → R
N such that

d(graph (fǫ), graph (F )) < ǫ

(any such fǫ is said to be an ǫ-approximate selection for F ).

3 Set-Valued Maps: Degree and the BKZ Property

If F ∈ U(D) is such that F (D) contains an open neighbourhood of 0, then F is said to
have the BKZ property.

Let M := {(F, Ω, p) | F ∈ U(D), Ω an open bounded subset of D, p ∈ R
N\F (∂Ω)}.

As discussed in [8] within the framework of [13] (see, also, [14 – 16]), there exists a map
deg : M → Z with the properties:

P1. deg(F, Ω, p) = degB(fǫ, Ω, p) for all ǫ > 0 sufficiently small, where degB denotes

Brouwer degree and fǫ : Ω → R
N is any ǫ-approximate selection for F

∣

∣

Ω
;

P2. if q : [0, 1] → R
N\F (∂Ω) is continuous, then deg(F, Ω, q(t)) is independent of t;

P3. if deg(F, Ω, p) 6= 0, then p ∈ F (x) for some x ∈ Ω.

Lemma 3.1 Let (F, Ω, 0) ∈ M. If deg(F, Ω, 0) 6= 0, then F has the BKZ property.

Proof Since 0 /∈ F (∂Ω), dF (x)(0) > 0 for all x ∈ ∂Ω. Let (xn) ⊂ ∂Ω be a convergent

sequence with limit x ∈ ∂Ω. Let (xσ(n)) be a subsequence with

lim
n→∞

dF (xσ(n))(0) = lim inf
n→∞

dF (xn)(0).

For each n, let zn be a minimizer of ‖ · ‖ over compact F (xσ(n)) (and so ‖zn‖ =

dF (xσ(n))(0)). By upper semicontinuity of F , for each ǫ > 0,

zn ∈ F (xσ(n)) ⊂ F (x) + Bǫ.

By compactness of F (x) and since ǫ > 0 is arbitrary, we may conclude that (zn) has a
convergent subsequence (which we do not reliabel) with limit z ∈ F (x). Therefore,

dF (x)(0) ≤ ‖z‖ = lim
n→∞

‖zn‖ = lim inf
n→∞

dF (xn)(0)

and so x 7→ dF (x)(0) is lower semicontinuous and positive-valued on compact ∂Ω. It

follows that there exists µ > 0 such that p /∈ F (∂Ω) for all p ∈ Bµ. By properties P2
and P3,

p ∈ Bµ =⇒ p ∈ F (x) for some x ∈ Ω.
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Therefore, F has the BKZ property.

4 Differential Inclusions

Let F ∈ U and consider the differential inclusion (subsuming (1))

ẋ(t) ∈ F (x(t)). (3)

By an F -arc, we mean a function x ∈ AC(I; RN ) that satisfies (3) for almost all t ∈ I.
The following is a particular case of [17, Theorem 3.1.7].

Proposition 4.1 Let F ∈ U , let K ⊂ R
N be compact, let I := [a, b], let (ǫn) ⊂

(0,∞) be a decreasing sequence with ǫn ↓ 0 as n → ∞ and, for each n ∈ N, define

Fn : x 7→ F (x) + Bǫn
.

Let sequence (xn) ⊂ AC(I; RN ) be such that, for each n ∈ N, xn is an Fn-arc

with xn(I) ⊂ K. Then (xn) has a subsequence that converges uniformly to an F -arc

x ∈ AC(I; RN ).

Next, we prove (by arguments similar to those used in establishing [18, Lemma 5
(p.8)], see also remarks on page 78 therein) a variant of the above, tailored to our later
purposes.

Proposition 4.2 Let F ∈ U and let (sn) ⊂ [a, b] be a convergent sequence with

limit s ∈ (a, b]. If (xn) ⊂ AC([a, b]; RN ) is a sequence of F -arcs and there exists r > 0
such that, for all n ∈ N, ‖xn(t)‖ ≤ r for all t ∈ [a, sn], then (xn) has a subsequence

(xσ(n)) such that (xσ(n)|[a,s]) converges to an F -arc x ∈ AC([a, s]; RN ).

Proof Let (δk) ⊂ (0, s − a) be a decreasing sequence with δk ↓ 0 as k → ∞. Write
Ik := [a, s−δk]. By Proposition 4.1, the sequence (xn) has a subsequence, which we label
(xσ1(n)), such that (xσ1(n)|I1) converges uniformly to an F -arc x1 ∈ AC(I1; R

N). Again
by Proposition 4.1, the sequence (xσ1(n)) has a subsequence, which we label (xσ2(n)), such

that (xσ2(n)|I2) converges uniformly to an F -arc x2 ∈ AC(I2; R
N ) (with x2|I1 = x1).

By induction, we generate a sequence of subsequences of (xn),

(xn) ⊃ (xσ1(n)) ⊃ · · · ⊃ (xσk(n)) ⊃ · · ·

such that, for all k,
(

xσk(n)|Ik

)

converges to an F -arc xk ∈ AC(Ik; RN ) with xk|Ik−1
=

xk−1 for all k ≥ 2. Therefore, the diagonal sequence of restrictions to [a, s), that is, the

sequence (xσn(n)|[a,s)), converges to the F -arc x : [a, s) → Br defined by the property:

∀ k ∈ N x(t) = xk(t) ∀ t ∈ Ik = [a, s − δk].

By compactness of F (Br), it follows that the bounded F -arc x is uniformly continuous
and so extends to an F -arc on the closed interval [a, s] by defining x(s) := lim

t↑s
x(t).

4.1 The initial-value problem

Let F ∈ U . For each x0 ∈ R
N , the initial-value problem

ẋ(t) ∈ F (x(t)), x(0) = x0 (4)

has a solution and every solution can be extended to a maximal solution. By a solution,
we mean an F -arc x ∈ AC([0, ω); RN ), with 0 < ω ≤ ∞ and x(0) = x0; by a maximal
solution, we mean a solution having no proper right extension which is also a solution.
Moreover, if x : [0, ω) → R

N is maximal and ω < ∞, then lim sup
t↑ω

‖x(t)‖ = +∞.
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Proposition 4.3 Let non-empty K ⊂ R
N be compact. Assume that, for each x0 ∈

K, every maximal solution of (4) has interval of existence R+. For T > 0, define

ΣT (K) :=
⋃

t∈[0,T ]

{

x(t) | x ∈ AC([0, T ]; RN)

is an F -arc with x(0) ∈ K
}

⊂ R
N

and write Σ∞(K) :=
⋃

T>0

ΣT (K).

(a) For all T > 0, the set ΣT (K) is compact.

(b) Let non-empty C1, C2 ⊂ R
N be compact, with C1 ⊂ C2 ⊂ K and C1 ∩ ∂C2 =

∅ = K ∩ ∂C2. Assume that, for every maximal solution x of (4) with x0 ∈ K,

dC1(x(t)) → 0 as t → ∞. Then there exists T > 0 such that ΣT (K) = Σ∞(K)
and, for all x0 ∈ Σ∞(K), every maximal solution x of (4) has interval of existence

R+ and has the properties:

(i) x(R+) ⊂ Σ∞(K);
(ii) x(t) ∈ C2 for some t ∈ [0, T ].

Proof (a) Let T > 0 be arbitrary. Seeking a contradiction, suppose that ΣT (K) is
unbounded. Then there exist a constant δ > 0, a sequence (tn) ⊂ [0, T ] and a sequence
(xn) of maximal solutions of (4) such that

xn(0) ∈ K and ‖xn(tn)‖ > (n + 1)δ ∀n ∈ N.

By continuity of the solutions, it follows that, for each n ∈ N, there exist sk
n, k = 1, . . . , n,

such that

‖xn(sk
n)‖ = (k + 1)δ and ‖xn(t)‖ < (k + 1)δ ∀ t ∈ [0, sk

n) (5)

and s1
n < s2

n < · · · < sn
n for all n ≥ 2.

From (s1
n), extract a convergent subsequence (s1

σ1(n)) with limit s1 ∈ [0, T ]. By

compactness of F (B2δ(0)), s1 > 0. Write I1 := [0, s1]. By Proposition 4.2, and passing
to a subsequence if necessary, we may assume that (xσ1(n)|I1) converges uniformly to

an F -arc x1 ∈ AC(I1; R
N ); moreover, by (5), ‖x1(s1)‖ = 2δ. From (s2

σ1(n)), extract

a subsequence (s2
σ2(n)) with limit s2 ∈ [0, T ]. By compactness of F (B3δ(0)), s2 > s1.

Write I2 := [0, s2]. By Proposition 4.2, and passing to a subsequence if necessary, we
may assume that (xσ2(n)|I2) converges uniformly to an F -arc x2 ∈ AC(I2; R

N ) with

x2|I1 = x1; moreover, by (5), ‖x2(s2)‖ = 3δ. By induction, we generate a strictly
increasing sequence (sk) ⊂ [0, T ], with limit s ∈ [0, T ], and a sequence of subsequences
of (xn),

(xn) ⊃ (xσ1(n)) ⊃ · · · ⊃ (xσk(n)) ⊃ · · ·

such that the diagonal sequence of restricted functions (xσn(n)|I), where I := [0, s),

converges to the F -arc x ∈ AC(I; RN ) defined by the property that, for each k ∈ N,

x(t) = xk(t) ∀ t ∈ Ik := [0, sk].

Clearly, x(0) ∈ K. Furthermore, ‖x(sk)‖ = (k + 1)δ for all k ∈ N and so x has no
proper right extension that is also an F -arc. This contradicts the hypothesis that all
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maximal solutions of (4), with x0 ∈ K, have interval of existence R+. Therefore, ΣT (K)
is bounded.

Let (yn) ⊂ ΣT (K) be a convergent sequence with limit y. Then yn = xn(tn) for
some sequence (tn) ⊂ [0, T ] and some sequence of F -arcs (xn) ⊂ AC([0, T ]; RN) with
xn(0) ∈ K for all n. Without loss of generality, we may assume that (tn) is convergent,
with limit t ∈ [0, T ]. By boundedness of ΣT (K), there exists compact C such that
xn([0, T ]) ⊂ C for all n. By Proposition 4.1, passing to a subsequence if necessary,
we may assume that (xn) converges uniformly to an F -arc x ∈ AC([0, T ]; RN), with
x(0) ∈ K. Therefore,

y = lim
n→∞

yn = lim
n→∞

xn(tn) = x(t) ∈ ΣT (K),

and so ΣT (K) is closed.

(b) It suffices to show that there exists T > 0 such that, for every maximal solution
x of (4), with x0 ∈ K, x(t) ∈ C2 for some t ∈ [0, T ] (in which case, ΣT (K) =
Σ∞(K)). Seeking a contradiction, suppose that no such T exists. Then there is a
sequence (xn) ⊂ AC(R+; RN ) such that, for each n ∈ N, xn(0) ∈ K and dC2(xn(t) > 0
for all t ∈ In := [0, n]. By part (a) above, for each k ∈ N, the sequence (xn|Ik

)
is bounded. Therefore, repeated application of Proposition 4.1 yields a sequence of
subsequences (xn) ⊃ (xσ1(n)) ⊃ (xσ2(n)) · · · such that, for each k ∈ N, the sequence

(xσk(n)|Ik
) converges uniformly to an F -arc xk ∈ AC(Ik ; RN) with dC2(x

k(t)) ≥ 0

for all t ∈ Ik. It follows that the diagonal sequence (xσn(n)) converges to the F -arc

x ∈ AC(R+; RN) defined by the property that, for each k ∈ N, x(t) = xk(t) for all
t ∈ Ik. Therefore, dC2(x(t)) ≥ 0 for all t ∈ R+, which contradicts the hypothesis that
every maximal solution approaches C1 ⊂ C2 (recall that C1 ∩ ∂C2 = ∅).

Remark 4.1 Proposition 4.3(a) is closely akin to [18, Theorem 3 (p.79)]. Proposi-
tion 4.3(b-i) is essentially an assertion that Σ∞(K) is compact and is an invariant set
for (4) in the sense that, for each x0 ∈ Σ∞(K), every maximal solution of (4) has
trajectory in Σ∞(K). A similar observation occurs in the proof of [7, Theorem 11].

4.2 Persistence of the BKZ property

The following is essentially Theorem 1 of [8].

Theorem 4.1 Let F ∈ U . If there exist 0 < τ < δ < ρ and T > 0 such that

‖x0‖ ≤ δ =⇒

{

‖x(t)‖ ≤ ρ ∀ t ∈ [0, T ]

‖x(t)‖ ≤ τ ∀ t ∈ [T, 2T ]

for every maximal solution x of (4), then F has the BKZ property.

In view of Lemma 3.1, to prove this result it suffices to show that deg(F, Bδ , 0) 6= 0.
In the Appendix, we provide a proof which incorporates minor corrections to the proof
in [8].

In what follows, several specific consequences of the above result are highlighted:
simply stated, the first of these (Theorem 4.2) asserts that, if there exists a compact set
that attracts all maximal solutions of (4), then F has the BKZ property.
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A non-empty set C ⊂ R
N is said to be attractive for (4) if there exists an open

neighbourhood N of C (that is, an open set containing the closure of C) with the property
that, for each x0 ∈ N , every maximal solution x : [0, ω) → R

N of (4) is such that
dC(x(t)) → 0 as t ↑ ω (if C is compact, then ω = ∞): C is globally attractive if the
latter property holds with N = R

N . Non-empty C is said to be stable for (4) if, for each
open neighbourhood N1 of C, there is an open neighbourhood N2 of C such that, for
each x0 ∈ N2, every maximal solution of (4) has trajectory in N1.

Theorem 4.2 Let F ∈ U . Let C ⊂ R
N be non-empty and compact. If C is globally

attractive for (4), then F has the BKZ property.

Proof By global attractivity of compact C, every maximal solution of (4) has interval

of existence R+. Fix r > 0 such that Br ⊃ C. By Proposition 4.3, the set Σ∞(B3r) is
compact and positively invariant.

Let τ > 3r be sufficiently large so that Σ∞(B3r) ⊂ Bτ and choose δ > τ . By
Proposition 4.3(b), there exists T > 0 such that, for every F -arc x ∈ AC(R+; RN ) with

‖x(0)‖ ≤ δ, ‖x(t)‖ ≤ 3r for some t ∈ [0, T ]. Since B3r ⊂ Σ∞(B3r), it follows that, for
each x0,

‖x0‖ ≤ δ =⇒ x(t) ∈ Σ∞(B3r) for some t ∈ [0, T ]

for every maximal solution of (4). Therefore, by (positive) invariance of Σ∞(B3r) ⊂ Bτ ,

‖x0‖ ≤ δ =⇒ ‖x(t)‖ ≤ τ ∀ t ∈ [T,∞)

for every maximal solution of (4).
By Proposition 4.3(a), there exists ρ > δ such that

‖x0‖ ≤ δ =⇒ ‖x(t)‖ ≤ ρ ∀ t ∈ [0, T ].

Therefore, the hypotheses of Theorem 4.1 hold and so the result follows.

Next, we highlight a further consequence of the above theorem which, for example,
implies that, if (1) generates a global semiflow and is Lp stable in the sense that all
solutions are of class Lp for some 1 ≤ p < ∞, then f has the BKZ property.

Corollary 4.1 Let F ∈ U . Let g : R
N → R+ be lower semicontinuous with the

properties:

(a) C := g−1(0) is compact;

(b) inf
z∈K

g(z) > 0 for any closed set K ⊂ R
N with K ∩ C = ∅.

If, for each x0 ∈ R
N , every maximal solution of (4) has interval of existence R+ and

∞
∫

0

g(x(t)) dt < ∞, then F has the BKZ property.

Proof By [19, Theorem 10 (i)], the compact set C = g−1(0) is globally attractive
for (4) and the result follows by Theorem 4.2.

In Theorem 4.2, in order to conclude that F has the BKZ property, hypotheses of a
global nature were imposed (global in the sense that, for each x0 ∈ R

N , every maximal
solution was posited to approach C). The following theorem imposes hypotheses of a
local nature under which the BKZ property again persists: in particular, if there exists
a closed ball that is locally asymptotically stable for (4), then F has the BKZ property.
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Theorem 4.3 If there exists a closed ball Br(z) =: B which is both stable and

attractive for (4), then F has the BKZ property.

Proof Without loss of generality, we may assume z = 0 and so B = Br ≡ Br(0).
By stability and attractivity of compact B, there exist α, β ∈ R+ such that, for all
x0 ∈ R

N ,

dB(x0) ≤ α =⇒

{

dB(x(t)) ≤ β ∀ t ∈ R+

dB(x(t)) → 0 as t → ∞

for every maximal solution of (4). Let γ ∈ (0, α) be arbitrary. By stability of B, there
exists µ ∈ (0, γ) such that, for all x0,

dB(x0) ≤ µ =⇒ dB(x(t)) ≤ γ ∀ t ∈ R+ (6)

for every maximal solution of (4). By Proposition 4.3(b), there exists T > 0 such that,
for all x0,

dB(x0) ≤ α =⇒ dB(x(t)) ≤ µ for some t ∈ [0, T ]

which, together with (6), yields

dB(x0) ≤ α =⇒ dB(x(t)) ≤ γ ∀ t ≥ T

for every maximal solution x of (4). We may now conclude that the hypotheses of
Theorem 4.1 hold (with τ = γ + r, δ = α + r and ρ = β + r) and the proof is complete.

5 Feedback Control

We now turn to the main concern of the paper, namely, the consequences of the above
results in a context of feedback control systems.

Let f : R
N × R

M → R
N be continuous and consider the controlled system

ẋ = f(x, u). (7)

Henceforth, we assume that f has the property that, for every non-empty convex set
C ⊂ R

M , the set f(x, C) ⊂ R
N is convex for all x ∈ R

N .
As admissible feedback controls for (7), we take the class K of upper semicontinuous

maps x 7→ k(x) ⊂ R
M on R

N , with non-empty convex and compact values. Therefore,
for every feedback k ∈ K, the map Fk : x 7→ f(x, k(x)) is of class U .

5.1 Persistence of the BKZ property in feedback systems

For system (7), a feedback k ∈ K is said to render a compact set C ⊂ R
N stable

(respectively, attractive) if C is stable (respectively, attractive) for (4) with F = Fk.
The following theorem and corollary are immediate consequences of Theorem 4.2 and

Corollary 4.1.

Theorem 5.1 Let k ∈ K and let C ⊂ R
N be non-empty and compact. If either of

the following holds, then f has the BKZ property:

(i) k renders C globally attractive for (4);
(ii) k renders some closed ball B stable and attractive for (4).
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Corollary 5.1 Let k ∈ K and let g : R
N → R+ be as in Corollary 4.1. If, for each

x0 ∈ R
N , every maximal solution of (4) with F = Fk has interval of existence R+ and

g ◦ x ∈ L1(R+), then f has the BKZ property.
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Appendix: Proof of Theorem 4.1

Let D := Bρ and let F̂ ∈ U(D) denote the restriction of F ∈ U to D.

Observe that 0 /∈ F̂ (∂Bδ) (otherwise, there exists a constant solution t 7→ x0 of (4) with

‖x0‖ = δ, contradicting the hypotheses). Therefore deg(F̂ , Bδ, 0) is well-defined and, in view

of Lemma 3.1, to complete the proof it suffices to show that deg(F̂ , Bδ, 0) 6= 0.
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By Proposition 2.1(ii) and property P1 of degree, there exists a sequence (fn) of locally

Lipschitz functions D → R
N such that:

deg(F̂ , Bδ, 0) = degB(fn, Bδ, 0) ∀n ;

d(graph (fn), graph (F̂ )) → 0 as n → ∞.
(8)

By compactness of F̂ (D), the functions fn are bounded and so, for each n, the equation

ẋ = fn(x) generates a semiflow ϕn : R+ × R
N → R

N .

Write I := [0, 2T ] and X := C(I; RN ) (with the uniform norm). On Bδ define

F : x0 7→
{

x ∈ X | x an F̂ -arc with x(0) = x0
}

with graph (F) := {(x0, x) | x0 ∈ Bδ, x ∈ F(x0)}. For each n, define φn : Bδ → X by

(φn(x0))(t) := ϕn(t, x0) ∀ t ∈ I.

Fix ǫ such that 0 < ǫ < δ − τ . We claim that

d(graph (φm), graph (F)) < ǫ for some m ∈ N. (9)

Suppose otherwise. Then there exists a sequence (x0
n) ⊂ Bδ such that

dgraph (F)((x
0
n, φn(x0

n))) ≥ ǫ ∀n. (10)

By Proposition 4.1, we may assume (without loss of generality) that (φ(x0
n)) ⊂ X converges

uniformly to an F̂ -arc x ∈ AC(I; RN ) with x(0) ∈ Bδ (and so (x(0), x) ∈ graph (F)),
which contradicts (10). Therefore, (9) is true.

Let x0 ∈ Bδ be arbitrary. By (9), there exists y0 ∈ Bδ , with ‖x0−y0‖ < ǫ, and y ∈ F(y0)

such that ‖ϕm(t, x0) − y(t)‖ < ǫ for all t ∈ I . Since the set {y(t) | y ∈ F(Bδ)} lies in the

ball Bτ for all t ∈ [T, 2T ], we may conclude:

for all x0 ∈ Bδ, ϕm(t, x0) ∈ Bδ for all t ∈ [T, 2T ]. (11)

Define continuous h : [0, 1] × Bδ → R
N by

h(s, x0) :=

{

fm(x0), s = 0

1
sT

[

(φm(x0))(sT ) − x0
]

, 0 < s ≤ 1.

We conclude that h(s, x0) 6= 0 for all (s, x0) ∈ [0, 1] × ∂Bδ by the following argument.

Suppose h(0, x0) = fm(x0) = 0 for some x0 ∈ ∂Bδ . Then, ϕm(t, x0) = x0 ∈ ∂Bδ for all

t ∈ I , which contradicts (11). Now suppose h(s, x0) = 0 for some (s, x0) ∈ (0, 1] × ∂Bδ .

Then ϕm(nsT, x0) = x0 ∈ ∂Bδ for all n ∈ N with ns ≤ 2. In particular, there exists n ∈ N

such that 1 ≤ ns ≤ 2 and ϕm(nsT, x0) = x0 ∈ ∂Bδ. This contradicts (11).

Therefore, by (8) and the homotopic invariance property of the Brouwer degree,

deg(F̂ , Bδ, 0) = degB(fm, Bδ, 0) = degB(h(0, ·), Bδ, 0)

= degB(h(1, ·), Bδ, 0) = degB(gm, Bδ, 0),
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where, for notational convenience, gm denotes the function

gm : x0 7→ [(φm(x0))(T ) − x0]/T.

Now consider the continuous map

h0 : [0, 1]× Bδ, (s, x0) 7→ (1 − s)gm(x0) − sx0.

Noting that h0 is a homotopic connection of the function gm and the odd map o : x0 7→ −x0

and h0(s, x
0) 6= 0 for all (s, x0) ∈ [0, 1] × ∂Bδ by properties of the Brouwer degree, we may

now conclude that

deg(F̂ , Bδ, 0) = degB(o, Bδ, 0) 6= 0.

This completes the proof.


