Asymptotic Behaviour of Feedback Controlled Systems and the Ubiquity of the Brockett-Krasnosel'skii-Zabreiko Property

E.P. Ryan†

Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK

Received: February 15, 2000; Revised: June 6, 2001

Abstract: A well-known topological barrier – the Brockett-Krasnosel'skii-Zabreiko necessary condition on the underlying vector field – to stability of equilibria (or stabilizability of equilibria by regular feedback) of ordinary differential equations (or controlled differential equations) is shown to persist in a wider context of differential inclusions (encompassing controlled differential equations with nonsmooth feedback) that exhibit attracting compacta.

Keywords: Brockett-Krasnosel'skii-Zabreiko condition; feedback controlled system.

Mathematics Subject Classification (2000): 34D05, 93D15.

1 Introduction

Let \(f : \mathbb{R}^N \to \mathbb{R}^N \) be locally Lipschitz and consider the system

\[
\dot{x} = f(x).
\]

By [1, Theorem 52.1], if (1) has an asymptotically stable (that is, Lyapunov stable and attractive) equilibrium \(\xi \), then the (isolated) zero \(-f \) has index \(\text{ind}(-f, \xi) = 1 \) and so, for all \(\epsilon > 0 \) sufficiently small, \(\deg_B(-f, B_\epsilon(\xi), 0) = 1 \), where \(\deg_B \) denotes Brouwer degree and \(B_\epsilon(\xi) \) denotes the open ball of radius \(\epsilon \) centred at \(\xi \). Therefore,

†Based on work supported in part by the UK Engineering & Physical Sciences Research Council under grant GR/L78086.
by properties of Brouwer degree, \(f(\mathbb{R}^N) \) contains an open neighbourhood of 0. Now let \(f: \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N \) be locally Lipschitz and consider the controlled system

\[
\dot{x} = f(x, u).
\]

If (2) is stabilizable in the sense that there exists a time-invariant locally Lipschitz feedback \(u = k(x) \) that renders some point of \(\mathbb{R}^N \) an asymptotically stable equilibrium of the feedback system \(\dot{x} = f(x, k(x)) \), then, by the above result, the image of \(f \) contains an open neighbourhood of 0. This is Brockett’s necessary condition for stabilizability, originally proved in \([2, \text{Theorem 1}]\); for discussions on variants and ramifications of Brockett’s condition, see, for example, \([3–11]\). In either case of an uncontrolled (1) or controlled (2) system, if \(f: D \to \mathbb{R}^N \) is such that \(f(D) \) contains an open neighbourhood of 0, we say that \(f \) has the BKZ (Brockett-Krasnosel’skiǐ-Zabreiko) property.

In this paper, the necessity of the BKZ property is investigated in a wider context of differential inclusions under hypotheses weaker than asymptotic stability/stabilizability of equilibria. For example, amongst other consequences for (1), the results of the paper imply that, if any of the following hold, then \(f \) has the BKZ property:

(a) some compact set \(C \) is globally attractive for solutions of (1);
(b) some closed ball is a locally asymptotically stable (Lyapunov stable and locally attractive) set for (1);
(c) (1) is \(L^p \)-stable for some \(1 \leq p < \infty \) (in the sense that every maximal solution has interval of existence \(\mathbb{R}_+ \) and is of class \(L^p \)).

Within the control framework of (2), these observations have natural counterparts: \(f \) has the BKZ property if there exists a (possibly discontinuous) feedback \(k \) such that the feedback-controlled system (a) has a globally attractive compact set, or (b) has a locally asymptotically stable closed ball, or (c) is \(L^p \)-stable (in the above sense).

2 Notation and Terminology

For a Banach space \(X \) and non-empty \(C \subset X \), \(d_C \) denotes the distance function given by

\[
d_C(x) := \inf_{c \in C} \|x - c\| \quad \forall \ x \in X.
\]

For non-empty \(B, C \subset X \),

\[
d(B, C) := \sup_{b \in B} d_C(b).
\]

The open ball of radius \(r \geq 0 \) centred at \(z \in \mathbb{R}^N \) is denoted \(\mathbb{B}_r(z) \) (with closure \(\overline{\mathbb{B}}_r(z) \)), to which the conventions \(\mathbb{B}_0(z) := \emptyset \) and \(\overline{\mathbb{B}}_0(z) := \{z\} \) apply; if \(z = 0 \), then we simply write \(\mathbb{B}_r \) (respectively, \(\overline{\mathbb{B}}_r \)) in place of \(\mathbb{B}_r(0) \) (respectively, \(\overline{\mathbb{B}}_r(0) \)). The boundary of a set \(\Omega \) is denoted \(\partial \Omega \). We write \(\mathbb{R}_+ := [0, \infty) \).

Throughout, a sequence \((x_n) \) is regarded as synonymous with a map \(n \mapsto x_n \) with domain \(\mathbb{N} \). We shall frequently extract subsequences of sequences. In order to avoid proliferation of subscripts, the notation \((x_{\sigma(n)}) \), where \(\sigma: \mathbb{N} \to \mathbb{N} \) is a strictly increasing map, is adopted to indicate a subsequence of \((x_n) \). If \(\{(x_{\sigma_k(n)})\}_{k \in \mathbb{N}} \) is a sequence of subsequences of \((x_n) \) nested in the following sense

\[
(x_n) \supset (x_{\sigma_1(n)}) \supset \cdots \supset (x_{\sigma_k(n)}) \supset \cdots,
\]
then σ_k is to be interpreted as a k-fold composition of strictly increasing maps $\mathbb{N} \to \mathbb{N}$, with $\sigma_k = \delta_k \circ \sigma_{k-1}$ for all $k \geq 2$: the sequence $(x_{\sigma_k(n)}) \subset (x_n)$ will be referred to as the diagonal sequence.

$AC(I; \mathbb{R}^N)$ denotes the space of functions $I \to \mathbb{R}^N$ defined on an interval I and absolutely continuous on compact subintervals thereof.

$\mathcal{U}(D)$ denotes the space of upper semicontinuous maps $x \mapsto F(x) \subset \mathbb{R}^N$, defined on $D \subset \mathbb{R}^N$, with non-empty convex compact values: if $D = \mathbb{R}^N$, then we simply write \mathcal{U}.

We record the following well-known facts (see, for example, [12]):

Proposition 2.1 Let $F \in \mathcal{U}(D)$.

(i) If $K \subset D$ is compact, then $F(K)$ is compact.

(ii) For each $\epsilon > 0$, there exists locally Lipschitz $f_\epsilon: D \to \mathbb{R}^N$ such that

$$d(\text{graph}(f_\epsilon), \text{graph}(F)) < \epsilon$$

(any such f_ϵ is said to be an ϵ-approximate selection for F).

3 Set-Valued Maps: Degree and the BKZ Property

If $F \in \mathcal{U}(D)$ is such that $F(D)$ contains an open neighbourhood of 0, then F is said to have the BKZ property.

Let $\mathcal{M} := \{(F, \Omega, p) \mid F \in \mathcal{U}(D), \Omega \text{ an open bounded subset of } D, \ p \in \mathbb{R}^N \setminus F(\partial \Omega)\}$. As discussed in [8] within the framework of [13] (see, also, [14–16]), there exists a map $\deg: \mathcal{M} \to \mathbb{Z}$ with the properties:

P1. $\deg(F, \Omega, p) = \deg_B(f_\epsilon, \Omega, p)$ for all $\epsilon > 0$ sufficiently small, where \deg_B denotes Brouwer degree and $f_\epsilon: \overline{\Omega} \to \mathbb{R}^N$ is any ϵ-approximate selection for F.

P2. if $q: [0,1] \to \mathbb{R}^N \setminus F(\partial \Omega)$ is continuous, then $\deg(F, \Omega, q(t))$ is independent of t.

P3. if $\deg(F, \Omega, p) \neq 0$, then $p \in F(x)$ for some $x \in \Omega$.

Lemma 3.1 Let $(F, \Omega, 0) \in \mathcal{M}$. If $\deg(F, \Omega, 0) \neq 0$, then F has the BKZ property.

Proof Since $0 \notin F(\partial \Omega)$, $d_{F(x)}(0) > 0$ for all $x \in \partial \Omega$. Let $(x_n) \subset \partial \Omega$ be a convergent sequence with limit $x \in \partial \Omega$. Let $(x_{\sigma(n)})$ be a subsequence with

$$\lim_{n \to \infty} d_{F(x_{\sigma(n))}}(0) = \liminf_{n \to \infty} d_{F(x_n)}(0).$$

For each n, let z_n be a minimizer of $\| \cdot \|$ over compact $F(x_{\sigma(n)}$ (and so $\|z_n\| = d_{F(x_{\sigma(n))}}(0)$). By upper semicontinuity of F, for each $\epsilon > 0$,

$$z_n \in F(x_{\sigma(n)}) \subset F(x) + B_\epsilon.$$

By compactness of $F(x)$ and since $\epsilon > 0$ is arbitrary, we may conclude that (z_n) has a convergent subsequence (which we do not relabel) with limit $z \in F(x)$. Therefore,

$$d_{F(x)}(0) \leq \|z\| = \lim_{n \to \infty} \|z_n\| = \liminf_{n \to \infty} d_{F(x_n)}(0)$$

and so $x \mapsto d_{F(x)}(0)$ is lower semicontinuous and positive-valued on compact $\partial \Omega$. It follows that there exists $\mu > 0$ such that $p \notin F(\partial \Omega)$ for all $p \in B_\mu$. By properties P2 and P3,

$$p \in B_\mu \implies p \in F(x) \quad \text{for some } x \in \Omega.$$
Therefore, F has the BKZ property.

4 Differential Inclusions

Let $F \in \mathcal{U}$ and consider the differential inclusion (subsuming (1))

$$\dot{x}(t) \in F(x(t)).$$

(3)

By an F-arc, we mean a function $x \in AC(I; \mathbb{R}^N)$ that satisfies (3) for almost all $t \in I$.

The following is a particular case of [17, Theorem 3.1.7].

Proposition 4.1 Let $F \in \mathcal{U}$, let $K \subset \mathbb{R}^N$ be compact, let $I := [a, b]$, let $(\epsilon_n) \subset (0, \infty)$ be a decreasing sequence with $\epsilon_n \downarrow 0$ as $n \to \infty$ and, for each $n \in \mathbb{N}$, define $F_n: x \mapsto F(x) + \mathbb{E}_{\epsilon_n}$.

Let sequence $(x_n) \subset AC(I; \mathbb{R}^N)$ be such that, for each $n \in \mathbb{N}$, x_n is an F_n-arc with $x_n(I) \subset K$. Then (x_n) has a subsequence that converges uniformly to an F-arc $x \in AC(I; \mathbb{R}^N)$.

Next, we prove (by arguments similar to those used in establishing [18, Lemma 5 (p.8)], see also remarks on page 78 therein) a variant of the above, tailored to our later purposes.

Proposition 4.2 Let $F \in \mathcal{U}$ and let $(s_n) \subset [a, b]$ be a convergent sequence with limit $s \in (a, b)$. If $(x_n) \subset AC([a, b]; \mathbb{R}^N)$ is a sequence of F-arcs and there exists $r > 0$ such that, for all $n \in \mathbb{N}$, $\|x_n(t)\| \leq r$ for all $t \in [a, s_n]$, then (x_n) has a subsequence $(x_{s(n)})$ such that $(x_{s(n)}|_{[a, s]})$ converges to an F-arc $x \in AC([a, s]; \mathbb{R}^N)$.

Proof Let $(\delta_k) \subset (0, s - a)$ be a decreasing sequence with $\delta_k \downarrow 0$ as $k \to \infty$. Write $I_k := [a, s - \delta_k]$. By Proposition 4.1, the sequence (x_n) has a subsequence, which we label $(x_{s(n)})$, such that $(x_{s(n)}|_{I_k})$ converges uniformly to an F-arc $x^1 \in AC(I_1; \mathbb{R}^N)$. Again by Proposition 4.1, the sequence $(x_{s(n)})$ has a subsequence, which we label $(x_{s(n)})$, such that $(x_{s(n)}|_{I_2})$ converges uniformly to an F-arc $x^2 \in AC(I_2; \mathbb{R}^N)$ (with $x^2|_{I_1} = x^1$).

By induction, we generate a sequence of subsequences of (x_n),

$$(x_n) \supset (x_{s_1(n)}) \supset \cdots \supset (x_{s_{n}(n)}) \supset \cdots$$

such that, for all k, $(x_{s_k(n)}|_{I_k})$ converges to an F-arc $x^k \in AC(I_k; \mathbb{R}^N)$ with $x^k|_{I_{k-1}} = x^{k-1}$ for all $k \geq 2$. Therefore, the diagonal sequence of restrictions to $[a, s]$, that is, the sequence $(x_{s_n(n)}|_{[a, s]})$, converges to the F-arc $x: [a, s] \to \mathbb{R}^N$, defined by the property:

$$\forall k \in \mathbb{N} \quad x(t) = x^k(t) \quad \forall t \in I_k = [a, s - \delta_k].$$

By compactness of $F(\mathbb{R}^N)$, it follows that the bounded F-arc x is uniformly continuous and so extends to an F-arc on the closed interval $[a, s]$ by defining $x(s) := \lim_{t \uparrow s} x(t)$.

4.1 The initial-value problem

Let $F \in \mathcal{U}$. For each $x^0 \in \mathbb{R}^N$, the initial-value problem

$$\dot{x}(t) \in F(x(t)), \quad x(0) = x^0$$

(4)

has a solution and every solution can be extended to a maximal solution. By a solution, we mean an F-arc $x \in AC([0, \omega); \mathbb{R}^N)$, with $0 < \omega \leq \infty$ and $x(0) = x^0$; by a maximal solution, we mean a solution having no proper right extension which is also a solution. Moreover, if $x: [0, \omega) \to \mathbb{R}^N$ is maximal and $\omega < \infty$, then $\limsup_{t \uparrow \omega} \|x(t)\| = +\infty$.

Proposition 4.3 Let non-empty $K \subset \mathbb{R}^N$ be compact. Assume that, for each $x^0 \in K$, every maximal solution of (4) has interval of existence \mathbb{R}_+. For $T > 0$, define
\[
\Sigma_T(K) := \bigcup_{t \in [0, T]} \{x(t) \mid x \in AC([0, T]; \mathbb{R}^N) \}
\]
and write $\Sigma_\infty(K) := \bigcup_{T > 0} \Sigma_T(K)$.

(a) For all $T > 0$, the set $\Sigma_T(K)$ is compact.

(b) Let non-empty $C_1, C_2 \subset \mathbb{R}^N$ be compact, with $C_1 \subset C_2 \subset K$ and $C_1 \cap \partial C_2 = \emptyset = K \cap \partial C_2$. Assume that, for every maximal solution x of (4) with $x^0 \in K$, $d_{C_1}(x(t)) \to 0$ as $t \to \infty$. Then there exists $T > 0$ such that $\Sigma_T(K) = \Sigma_\infty(K)$ and, for all $x^0 \in \Sigma_\infty(K)$, every maximal solution x of (4) has interval of existence \mathbb{R}_+ and has the properties:
\begin{enumerate}
\item $x(\mathbb{R}_+) \subset \Sigma_\infty(K)$;
\item $x(t) \in C_2$ for some $t \in [0, T]$.
\end{enumerate}

Proof (a) Let $T > 0$ be arbitrary. Seeking a contradiction, suppose that $\Sigma_T(K)$ is unbounded. Then there exist a constant $\delta > 0$, a sequence $(t_n) \subset [0, T]$ and a sequence (x_n) of maximal solutions of (4) such that
\[
x_n(0) \in K \quad \text{and} \quad \|x_n(t_n)\| > (n + 1)\delta \quad \forall n \in \mathbb{N}.
\]
By continuity of the solutions, it follows that, for each $n \in \mathbb{N}$, there exist s_n^k, $k = 1, \ldots, n$, such that
\[
\|x_n(s_n^k)\| = (k + 1)\delta \quad \text{and} \quad \|x_n(t)\| < (k + 1)\delta \quad \forall t \in [0, s_n^k)
\]
and $s_1^1 < s_2^2 < \cdots < s_n^n$ for all $n \geq 2$.

From (s_n^k), extract a convergent subsequence $(s_{\sigma_1(n)}^1)$ with limit $s^1 \in [0, T]$. By compactness of $F(\mathbb{R}_{2\delta}(0))$, $s^1 > 0$. Write $I_1 := [0, s^1]$. By Proposition 4.2, and passing to a subsequence if necessary, we may assume that $(x_{\sigma_1(n)}|_{I_1)}$ converges uniformly to an F-arc $x^1 \in AC(I_1; \mathbb{R}^N)$; moreover, by (5), $\|x^1(s^1)\| = 2\delta$. From $(s_{\sigma_2(n)}^2)$, extract a subsequence $(s_{\sigma_2(n)}^2)$ with limit $s^2 \in [0, T]$. By compactness of $F(\mathbb{R}_{3\delta}(0))$, $s^2 > s^1$. Write $I_2 := [0, s^2]$. By Proposition 4.2, and passing to a subsequence if necessary, we may assume that $(x_{\sigma_2(n)}|_{I_2})$ converges uniformly to an F-arc $x^2 \in AC(I_2; \mathbb{R}^N)$ with $x^2|_{I_1} = x^1$; moreover, by (5), $\|x^2(s^2)\| = 3\delta$. By induction, we generate a strictly increasing sequence $(s^k) \subset [0, T)$, with limit $s \in [0, T]$, and a sequence of subsequences of (x_n),
\[
(x_n) \supset (x_{\sigma_1(n)}) \supset \cdots \supset (x_{\sigma_k(n)}) \supset \cdots
\]
such that the diagonal sequence of restricted functions $(x_{\sigma_k(n)}|_I)$, where $I := [0, s)$, converges to the F-arc $x \in AC(I; \mathbb{R}^N)$ defined by the property that, for each $k \in \mathbb{N}$,
\[
x(t) = x^k(t) \quad \forall t \in I_k := [0, s^k].
\]
Clearly, $x(0) \in K$. Furthermore, $\|x(s^k)\| = (k + 1)\delta$ for all $k \in \mathbb{N}$ and so x has no proper right extension that is also an F-arc. This contradicts the hypothesis that all
maximal solutions of (4), with \(x^0 \in K \), have interval of existence \(\mathbb{R}_+ \). Therefore, \(\Sigma_T(K) \) is bounded.

Let \((y_n) \subset \Sigma_T(K) \) be a convergent sequence with limit \(y \). Then \(y_n = x_n(t_n) \) for some sequence \((t_n) \subset [0,T] \) and some sequence of \(F \)-arcs \((x_n) \subset AC([0,T]; \mathbb{R}^N) \) with \(x_n(0) \in K \) for all \(n \). Without loss of generality, we may assume that \((t_n) \) is convergent, with limit \(t \in [0,T] \). By boundedness of \(\Sigma_T(K) \), there exists compact \(C \) such that \(x_n([0,T]) \subset C \) for all \(n \). By Proposition 4.1, passing to a subsequence if necessary, we may assume that \((x_n) \) converges uniformly to an \(F \)-arc \(x \in AC([0,T]; \mathbb{R}^N) \), with \(x(0) \in K \). Therefore,

\[
y = \lim_{n \to \infty} y_n = \lim_{n \to \infty} x_n(t_n) = x(t) \in \Sigma_T(K),
\]

and so \(\Sigma_T(K) \) is closed.

(b) It suffices to show that there exists \(T > 0 \) such that, for every maximal solution \(x \) of (4), with \(x^0 \in K \), \(x(t) \in C_2 \) for some \(t \in [0,T] \) (in which case, \(\Sigma_T(K) = \Sigma_\infty(K) \)). Seeking a contradiction, suppose that no such \(T \) exists. Then there is a sequence \((x_n) \subset AC(\mathbb{R}_+; \mathbb{R}^N) \) such that, for each \(n \in \mathbb{N} \), \(x_n(0) \in K \) and \(d_{C_2}(x_n(t)) > 0 \) for all \(t \in I_n := [0,n] \). By part (a) above, for each \(k \in \mathbb{N} \), the sequence \((x_n|_{I_k}) \) is bounded. Therefore, repeated application of Proposition 4.1 yields a sequence of subsequences \((x_n) \supset (x_{\sigma_1(n)}) \supset (x_{\sigma_2(n)}) \cdots \) such that, for each \(k \in \mathbb{N} \), the sequence \((x_{\sigma_k(n)}|_{I_k}) \) converges uniformly to an \(F \)-arc \(x^k \in AC(I_k; \mathbb{R}^N) \) with \(d_{C_2}(x^k(t)) \geq 0 \) for all \(t \in I_k \). It follows that the diagonal sequence \((x_{\sigma_1(n)}) \) converges to the \(F \)-arc \(x \in AC(\mathbb{R}_+; \mathbb{R}^N) \) defined by the property that, for each \(k \in \mathbb{N} \), \(x(t) = x^k(t) \) for all \(t \in I_k \). Therefore, \(d_{C_2}(x(t)) \geq 0 \) for all \(t \in \mathbb{R}_+ \), which contradicts the hypothesis that every maximal solution approaches \(C_1 \subset C_2 \) (recall that \(C_1 \cap \partial C_2 = \emptyset \)).

Remark 4.1 Proposition 4.3(a) is closely akin to [18, Theorem 3 (p.79)]. Proposition 4.3(b-i) is essentially an assertion that \(\Sigma_\infty(K) \) is compact and is an invariant set for (4) in the sense that, for each \(x^0 \in \Sigma_\infty(K) \), every maximal solution of (4) has trajectory in \(\Sigma_\infty(K) \). A similar observation occurs in the proof of [7, Theorem 11].

4.2 Persistence of the BKZ property

The following is essentially Theorem 1 of [8].

Theorem 4.1 Let \(F \in \mathcal{U} \). If there exist \(0 < \tau < \delta < \rho \) and \(T > 0 \) such that

\[
\|x^0\| \leq \delta \quad \Rightarrow \quad \left\{ \begin{array}{ll}
\|x(t)\| \leq \rho & \forall t \in [0,T] \\
\|x(t)\| \leq \tau & \forall t \in [T,2T]
\end{array} \right.
\]

for every maximal solution \(x \) of (4), then \(F \) has the BKZ property.

In view of Lemma 3.1, to prove this result it suffices to show that \(\deg(F, \mathbb{B}_3, 0) \neq 0 \). In the Appendix, we provide a proof which incorporates minor corrections to the proof in [8].

In what follows, several specific consequences of the above result are highlighted: simply stated, the first of these (Theorem 4.2) asserts that, if there exists a compact set that attracts all maximal solutions of (4), then \(F \) has the BKZ property.
A non-empty set $C \subset \mathbb{R}^N$ is said to be attractive for (4) if there exists an open neighbourhood \mathcal{N} of C (that is, an open set containing the closure of C) with the property that, for each $x^0 \in \mathcal{N}$, every maximal solution $x: [0, \omega) \to \mathbb{R}^N$ of (4) is such that $d_C(x(t)) \to 0$ as $t \uparrow \omega$ (if C is compact, then $\omega = \infty$): C is globally attractive if the latter property holds with $\mathcal{N} = \mathbb{R}^N$. Non-empty C is said to be stable for (4) if, for each open neighbourhood \mathcal{N}_1 of C, there is an open neighbourhood \mathcal{N}_2 of C such that, for each $x^0 \in \mathcal{N}_2$, every maximal solution of (4) has trajectory in \mathcal{N}_1.

Theorem 4.2 Let $F \in \mathcal{U}$. Let $C \subset \mathbb{R}^N$ be non-empty and compact. If C is globally attractive for (4), then F has the BKZ property.

Proof By global attractivity of compact C, every maximal solution of (4) has interval of existence \mathbb{R}_+. Fix $r > 0$ such that $\overline{B}_r \supset C$. By Proposition 4.3, the set $\Sigma_\infty(\overline{B}_3r)$ is compact and positively invariant.

Let $\tau > 3r$ be sufficiently large so that $\Sigma_\infty(\overline{B}_3r) \subset \overline{B}_\tau$ and choose $\delta > \tau$. By Proposition 4.3(b), there exists $T > 0$ such that, for every F-arc $x \in AC(\mathbb{R}_+: \mathbb{R}^N)$ with $\|x(0)\| \leq \delta$, $\|x(t)\| \leq 3r$ for some $t \in [0, T]$. Since $\overline{B}_3r \subset \Sigma_\infty(\overline{B}_3r)$, it follows that, for each x^0,

$$\|x^0\| \leq \delta \quad \Rightarrow \quad x(t) \in \Sigma_\infty(\overline{B}_3r) \quad \text{for some} \quad t \in [0, T]$$

for every maximal solution of (4). Therefore, by (positive) invariance of $\Sigma_\infty(\overline{B}_3r) \subset \overline{B}_\tau$,

$$\|x^0\| \leq \delta \quad \Rightarrow \quad \|x(t)\| \leq \tau \quad \forall t \in [T, \infty)$$

for every maximal solution of (4).

By Proposition 4.3(a), there exists $\rho > \delta$ such that

$$\|x^0\| \leq \delta \quad \Rightarrow \quad \|x(t)\| \leq \rho \quad \forall t \in [0, T].$$

Therefore, the hypotheses of Theorem 4.1 hold and so the result follows.

Next, we highlight a further consequence of the above theorem which, for example, implies that, if (1) generates a global semiflow and is L^p stable in the sense that all solutions are of class L^p for some $1 \leq p < \infty$, then f has the BKZ property.

Corollary 4.1 Let $F \in \mathcal{U}$. Let $g: \mathbb{R}^N \to \mathbb{R}_+$ be lower semicontinuous with the properties:

(a) $C := g^{-1}(0)$ is compact;

(b) $\inf_{z \in K} g(z) > 0$ for any closed set $K \subset \mathbb{R}^N$ with $K \cap C = \emptyset$.

If, for each $x^0 \in \mathbb{R}^N$, every maximal solution of (4) has interval of existence \mathbb{R}_+ and

$$\int_0^\infty g(x(t)) \, dt < \infty,$$

then F has the BKZ property.

Proof By [19, Theorem 10 (i)], the compact set $C = g^{-1}(0)$ is globally attractive for (4) and the result follows by Theorem 4.2.

In Theorem 4.2, in order to conclude that F has the BKZ property, hypotheses of a global nature were imposed (global in the sense that, for each $x^0 \in \mathbb{R}^N$, every maximal solution was posited to approach C). The following theorem imposes hypotheses of a local nature under which the BKZ property again persists: in particular, if there exists a closed ball that is locally asymptotically stable for (4), then F has the BKZ property.
Theorem 4.3 If there exists a closed ball $B_r(z) = B$ which is both stable and attractive for (4), then F has the BKZ property.

Proof Without loss of generality, we may assume $z = 0$ and so $B = B_r \equiv B_r(0)$. By stability and attractivity of compact B, there exist $\alpha, \beta \in \mathbb{R}^+$ such that, for all $x^0 \in \mathbb{R}^N$,

$$d_B(x^0) \leq \alpha \implies \begin{cases} d_B(x(t)) \leq \beta & \forall t \in \mathbb{R}^+ \\ d_B(x(t)) \to 0 & \text{as } t \to \infty \end{cases}$$

for every maximal solution of (4). Let $\gamma \in (0, \alpha)$ be arbitrary. By stability of B, there exists $\mu \in (0, \gamma)$ such that, for all x^0,

$$d_B(x^0) \leq \mu \implies d_B(x(t)) \leq \gamma \forall t \in \mathbb{R}^+$$

(6)

for every maximal solution of (4). By Proposition 4.3(b), there exists $T > 0$ such that, for all x^0,

$$d_B(x^0) \leq \alpha \implies d_B(x(t)) \leq \mu \text{ for some } t \in [0, T]$$

which, together with (6), yields

$$d_B(x^0) \leq \alpha \implies d_B(x(t)) \leq \gamma \forall t \geq T$$

for every maximal solution x of (4). We may now conclude that the hypotheses of Theorem 4.1 hold (with $\tau = -r, \delta = \alpha + r$ and $\rho = \beta + r$) and the proof is complete.

5 Feedback Control

We now turn to the main concern of the paper, namely, the consequences of the above results in a context of feedback control systems.

Let $f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N$ be continuous and consider the controlled system

$$\dot{x} = f(x, u).$$

(7)

Henceforth, we assume that f has the property that, for every non-empty convex set $C \subset \mathbb{R}^M$, the set $f(x, C) \subset \mathbb{R}^N$ is convex for all $x \in \mathbb{R}^N$.

As admissible feedback controls for (7), we take the class \mathcal{K} of upper semicontinuous maps $x \mapsto k(x) \subset \mathbb{R}^M$ on \mathbb{R}^N, with non-empty convex and compact values. Therefore, for every feedback $k \in \mathcal{K}$, the map $F_k : x \mapsto f(x, k(x))$ is of class \mathcal{U}.

5.1 Persistence of the BKZ property in feedback systems

For system (7), a feedback $k \in \mathcal{K}$ is said to render a compact set $C \subset \mathbb{R}^N$ stable (respectively, attractive) if C is stable (respectively, attractive) for (4) with $F = F_k$.

The following theorem and corollary are immediate consequences of Theorem 4.2 and Corollary 4.1.

Theorem 5.1 Let $k \in \mathcal{K}$ and let $C \subset \mathbb{R}^N$ be non-empty and compact. If either of the following holds, then f has the BKZ property:

(i) k renders C globally attractive for (4);
(ii) k renders some closed ball B stable and attractive for (4).
Corollary 5.1 Let \(k \in K \) and let \(g : \mathbb{R}^N \to \mathbb{R}_+ \) be as in Corollary 4.1. If, for each \(x^0 \in \mathbb{R}^N \), every maximal solution of (4) with \(F = F_k \) has interval of existence \(\mathbb{R}_+ \) and \(g \circ x \in L^1(\mathbb{R}_+) \), then \(f \) has the BKZ property.

References

Appendix: Proof of Theorem 4.1

Let \(D := \overline{B}_\rho \) and let \(\hat{F} \in \mathcal{U}(D) \) denote the restriction of \(F \in \mathcal{U} \) to \(D \).

Observe that \(0 \notin \hat{F}(\partial B_\delta) \) (otherwise, there exists a constant solution \(t \mapsto x^0 \) of (4) with \(\|x^0\| = \delta \), contradicting the hypotheses). Therefore \(\deg(\hat{F}, B_\delta, 0) \) is well-defined and, in view of Lemma 3.1, to complete the proof it suffices to show that \(\deg(\hat{F}, B_\delta, 0) \neq 0 \).
By Proposition 2.1(ii) and property P1 of degree, there exists a sequence \((f_n)\) of locally Lipschitz functions \(D \to \mathbb{R}^N\) such that:

\[
\deg(\hat{F}, \mathbb{B}_\delta, 0) = \deg_B(f_n, \mathbb{B}_\delta, 0) \quad \forall n;
\]

\[
d(\text{graph}(f_n), \text{graph}(\hat{F})) \to 0 \quad \text{as} \quad n \to \infty.
\]

By compactness of \(\hat{F}(D)\), the functions \(f_n\) are bounded and so, for each \(n\), the equation \(\hat{x} = f_n(x)\) generates a semiflow \(\varphi_n : \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}^N\).

Write \(I := [0, 2T]\) and \(X := C(I; \mathbb{R}^N)\) (with the uniform norm). On \(\mathbb{B}_\delta\) define

\[
\mathcal{F} : x^0 \mapsto \{x \in X \mid x \text{ an } \hat{F}\text{-arc with } x(0) = x^0\}
\]

with \(\text{graph}(\mathcal{F}) := \{(x^0, x) \mid x^0 \in \mathbb{B}_\delta, x \in \mathcal{F}(x^0)\}\). For each \(n\), define \(\phi_n : \mathbb{B}_\delta \to X\) by

\[
(\phi_n(x^0))(t) := \varphi_n(t, x^0) \quad \forall t \in I.
\]

Fix \(\epsilon\) such that \(0 < \epsilon < \delta - \tau\). We claim that

\[
d(\text{graph}(\phi_m), \text{graph}(\mathcal{F})) < \epsilon \quad \text{for some} \quad m \in \mathbb{N}.
\]

Suppose otherwise. Then there exists a sequence \((x^0_n) \subset \mathbb{B}_\delta\) such that

\[
d(\text{graph}(\phi_n), \text{graph}(\mathcal{F})) \geq \epsilon \quad \forall n.
\]

By Proposition 4.1, we may assume (without loss of generality) that \((\phi(x^0_n)) \subset X\) converges uniformly to an \(\hat{F}\)-arc \(x \in AC(I; \mathbb{R}^N)\) with \(x(0) \in \mathbb{B}_\delta\) (and so \((x(0), x) \in \text{graph}(\mathcal{F}))\), which contradicts (10). Therefore, (9) is true.

Let \(x^0 \in \mathbb{B}_\delta\) be arbitrary. By (9), there exists \(y^0 \in \mathbb{B}_\delta\), with \(\|x^0 - y^0\| < \epsilon\), and \(y \in \mathcal{F}(y^0)\) such that \(\|\varphi_m(t, x^0) - y(t)\| < \epsilon\) for all \(t \in I\). Since the set \(\{y(t) \mid y \in \mathcal{F}(\mathbb{B}_\delta)\}\) lies in the ball \(\mathbb{B}_\tau\) for all \(t \in [T, 2T]\), we may conclude:

\[
\text{for all} \quad x^0 \in \mathbb{B}_\delta, \quad \varphi_m(t, x^0) \in \mathbb{B}_\delta \quad \text{for all} \quad t \in [T, 2T].
\]

Define continuous \(h : [0, 1] \times \mathbb{B}_\delta \to \mathbb{R}^N\) by

\[
h(s, x^0) := \begin{cases} f_m(x^0), & s = 0 \\ \frac{1}{T} ([\phi_m(x^0)](sT) - x^0), & 0 < s \leq 1. \end{cases}
\]

We conclude that \(h(s, x^0) \neq 0\) for all \((s, x^0) \in [0, 1] \times \partial \mathbb{B}_\delta\) by the following argument. Suppose \(h(0, x^0) = f_m(x^0) = 0\) for some \(x^0 \in \partial \mathbb{B}_\delta\). Then, \(\varphi_m(t, x^0) = x^0 \in \partial \mathbb{B}_\delta\) for all \(t \in I\), which contradicts (11). Now suppose \(h(s, x^0) = 0\) for some \((s, x^0) \in (0, 1] \times \partial \mathbb{B}_\delta\). Then \(\varphi_m(nsT, x^0) = x^0 \in \partial \mathbb{B}_\delta\) for all \(n \in \mathbb{N}\) with \(ns \leq 2\). In particular, there exists \(n \in \mathbb{N}\) such that \(1 \leq ns \leq 2\) and \(\varphi_m(nsT, x^0) = x^0 \in \partial \mathbb{B}_\delta\). This contradicts (11).

Therefore, by (8) and the homotopic invariance property of the Brouwer degree,

\[
\deg(\hat{F}, \mathbb{B}_\delta, 0) = \deg_B(f_m, \mathbb{B}_\delta, 0) = \deg_B(h(0, \cdot), \mathbb{B}_\delta, 0)
\]

\[
= \deg_B(h(1, \cdot), \mathbb{B}_\delta, 0) = \deg_B(g_m, \mathbb{B}_\delta, 0),
\]
where, for notational convenience, g_m denotes the function

$$g_m: x^0 \mapsto [(\phi_m(x^0))(T) - x^0]/T.$$

Now consider the continuous map

$$h_0: [0, 1] \times \overline{B}_\delta, \quad (s, x^0) \mapsto (1 - s)g_m(x^0) - sx^0.$$

Noting that h_0 is a homotopic connection of the function g_m and the odd map $o: x^0 \mapsto -x^0$ and $h_0(s, x^0) \neq 0$ for all $(s, x^0) \in [0, 1] \times \partial \overline{B}_\delta$ by properties of the Brouwer degree, we may now conclude that

$$\deg(\hat{F}, \overline{B}_\delta, 0) = \deg_B(o, \overline{B}_\delta, 0) \neq 0.$$

This completes the proof.