Mathematical Analysis in a Model of Obligate Mutualism with Food Chain Populations

R. Kumar1+ and H.I. Freedman2∗

1Department of Mathematics, Dayalbagh Educational Institute, Dayalbagh Agra (U.P.) 282005, India
2Applied Mathematics Institute, Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
\textit{and}
2School of Mathematical Sciences, Swinburne University, Hawthorn, Victoria 3122, Australia

Received: June 26, 2000; Revised: June 14, 2001

Abstract: This paper is concerned with a three-species food chain whose populations interact with a mutualist. The mutualism is obligate for one of the predators, and is modeled by a system of autonomous ordinary differential equations. Persistence and extinction criteria are developed in the cases of trivial, periodic and almost periodic dynamics.

Keywords: Food chain; obligate mutualism; persistence; extinction; stability; periodic solutions; almost periodic solutions.

Mathematics Subject Classification (2000): 34A34, 34C25, 34D20, 92B99.

1 Introduction

The main thrust of this paper is to model obligate mutualism with the middle and top predators of a three-species food chain. The cases of facultative mutualism with the prey and middle predator populations have been considered in [24].

Previously, models of mutualism with predator-prey systems have been considered in [2, 12, 16, 24, 27, 34]. Models of obligate mutualism have been discussed in [7, 12, 13, 14]. For general discussions of mutualism the reader is referred to [1, 7, 11, 32].

Most models of mutualism are two dimensional. There has been a fair amount of work recently on three dimensional models, where the mutualism occurs between prey

+Research partially supported by a minor research grant from UGC (1991–993).

∗Research partially supported by the Natural Sciences and Engineering Research Council of Canada under grant no. NSERC OGP4823.