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Département de Mathématiques, Université du Québec à Montréal,
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1 Introduction

After the seminal work of Lyapunov [1], stability theory was recognized as an indepen-
dent and important field of knowledge. Since that time of 1892, it counted spectac-
ular achievements such as Chetaev’s instability theorem, Malkin’s reduction principle,
Krasovskii-Lyapunov functionals for delay differential equations, stability with respect
to a part of variables, absolute stability of control systems, vector Lyapunov functions,
matrix Lyapunov functions, to name just a few. These fundamental developments and
some other important results can be found in [1 – 24], see also references therein.

This survey of some relatively recent developments concentrates on directions where
the author personally participated.

The bibliography of the survey is limited to the topics considered which are presented
in the order that relates to the areas of application and seems convenient for the reader.
Efforts have been made to make the paper self-contained.

c© 2002 Informath Publishing Group. All rights reserved. 1
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2 Generalized Perturbation Equation

This concept was proposed in the joint work [25] with V.V.Rumyantsev. In the classical
stability theory, for a given nonlinear system

x′ =
dx

dt
= f(x, t), x ∈ Rn, t ≥ a ≥ 0, x(a) = b (2.1)

under standard conditions ensuring the existence, uniqueness and extendibility of solu-
tions in some region of initial data, the Lyapunov methods [1] can be applied to investigate
stability of a certain particular solution of interest that corresponds to

x∗(t) = x(a, b, t), x∗(a) = b. (2.2)

Stability of solutions (2.2) is studied with the use of the perturbation equation which is
obtained from (2.1), (2.2) by the transformation

x(t) = x∗(t) + w(t). (2.3)

Substituting (2.3) into (2.1) and assuming the function f in (2.1) to be analytic with
respect to x , one can use the expansion

dx∗

dt
+

dw

dt
= f(x∗ + w, t) = f(x∗, t) + ∇f(x∗, t)w + g(w, t) (2.4)

yielding, after cancellation of the first terms, the perturbation equation

w′ = A(t)w + g(w, t), g(0, t) = 0, t ≥ a. (2.5)

Here A(t) is the Jacobian matrix of f(x, t), (2.1), calculated on the solution x∗(t), (2.2),
and g(w, t) are higher order terms with all partial derivatives calculated on the same
solution (2.2).

According to (2.3), the unperturbed motion x∗(t) of (2.2) corresponds to the trivial
solution w(t) = 0 of the perturbation equation (2.5). This allows us to substitute the
problem of stability of the motion x∗(t), (2.2), of the nominal equation (2.1) by the
problem of stability of trivial solution w = 0 of the perturbation equation (2.5). This
approach led to the powerful and elegant methods that constitute the classical stability
theory, see, e.g. [1 – 16] and further references therein.

Consideration of perturbation equation (2.5) with all its comfort of using linear ap-
proximation dw/dt = A(t)w and then, if necessary, successive higher order terms (in
critical cases) has, however, some specific qualities.

First, if a particular solution x∗(t), (2.2), is not given as an explicit function of a, b, t
(i.e. as a formula), then perturbation equation (2.5) cannot be determined.

Second, if the solution (2.2) and, thus, the perturbation equation (2.5) are known,
then the results of stability on that basis are applicable to that particular solution only.

To bypass these difficulties, let us not fix x(a) in (2.1) and consider x∗(t) of (2.2) as
unknown parameter-function. Then the deviation w(t) is governed by the equation

w′ =
dw

dt
= f(x∗ + w, t) − f(x∗, t) = q(w, x∗, t), t ≥ a (2.6)
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that follows from the first equality of (2.4). In contrast with equations (2.4), (2.5), the
composite function q in (2.6) contains an unknown solution x∗(t) as its argument. On
the other hand, q(0, x∗, t) = 0 for all x∗(t), t, thus w(t) = 0 is the solution of (2.6) for
any x∗(t). It means that trivial solution w = 0 can be put in correspondence to any
particular solution x∗(t), serving therefore, the whole region of possible initial data.

If f(.) in (2.1) is analytic with respect to x, then q(.) of (2.6) is analytic with respect
to w, yielding the generalized perturbation equation

w′ = A(x∗(t), t)w + g(w, x∗(t), t), g(0, x∗(t), t) = 0, t ≥ a. (2.7)

For some particular x∗(t), it is, of course, identical to (2.5) with corresponding A(t),
g(w, t), where we use the same notation A, g for different functions. However, without
fixing x∗(t), it represents a bundle of equations given on a continuum of different partic-
ular solutions. With this meaning, we shall drop sometimes the indication of a particular
solution, writing simply

w′ = A(x, t)w + g(w, x, t), t ≥ a (2.8)

with the understanding that (2.8) is a corresponding perturbation equation for every
solution x(t) of (2.1). It means that the form (2.8) is conserved while the terms are
different for different x(t).

Example 2.1 To illustrate the point, consider an example from [3, Sections 4, 44]:

x′ = x(α2 − x2), α > 0, t ≥ a. (2.9)

According to (2.6), we have

w′ = (α2 − 3x2)w − 3xw2 − w3, t ≥ a (2.10)

which is the generalized perturbation equation (2.8) in our case of (2.9).
With (2.10) we can do the standard stability analysis for (2.9) as follows. Equation

(2.9) has three stationary solutions x1 = 0, x2,3 = ±α. Substituting those solutions
in (2.10), we immediately obtain instability for x1 = 0 and asymptotic stability for
x2,3 = ±α, all by the first approximation in (2.10). These results can also be established
by considering the Lyapunov function V = w2/2 which has the following derivative on
trajectories of (2.10)

V ′ = w2(α2 − 3x2 − 3xw − w2). (2.11)

For x1 = 0, we have from (2.11) that V ′ > 0 if α2 − w2 > 0, asserting instability and
yielding domain of repulsion w ∈ (−α, α) with respect to nominal solution x1(t) = 0.

For x2,3 = ±α, we have from (2.11)

V ′
2,3 = w2(−2α2 ∓ 3αw − w2), (2.12)

asserting asymptotic stability of both solutions for small w. To find domain of attraction
for x2 = α, we take the upper sign in (2.12) and solve the inequality w2 +3αw+2α2 > 0,
yielding w > −α or w < −2α, which in coordinates t0x corresponds to x > 0 or
x < −α since in this case w = x − x2 = x − α. However, in the region x < −α
there is another attractor, namely, x3 = −α; hence, domain of attraction for x2 = α is
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x ∈ (0,∞). For x3 = −α, the same arguments with the lower sign in (2.12) yield domain
of attraction x ∈ (−∞, 0); details are left to the reader.

We see that generalized perturbation equation can be used for all known solutions
of the nominal equation. Moreover, it can be used for stability analysis of solutions
that cannot be expressed as explicit integrals and for which one cannot write the specific
perturbation equation (2.5) corresponding to a particular solution x∗(t) (see (2.2) – (2.3)),
not given as a formula. In such cases, the generalized perturbation equation represents
a new and important tool for stability analysis.

Example 2.2 Use of bundles of first integrals [25].
Chetaev’s method of construction of Lyapunov functions in the form of bundles of

first integrals [2] (see also [5, Section 10] and further references therein) can be used with
the generalized perturbation equation, that is, for stability analysis of sets of solutions.
Consider the classical example of the Euler case in the motion of a rigid body around
its fixed center of mass without external forces. Equations of such motion are usually
written in the form

Ap′ + (C − B)qr = 0, (2.13)

Bq′ + (A − C)rp = 0, (2.14)

Cr′ + (B − A)pq = 0, (2.15)

where t ≥ a and p, q, r are projections of the vector of angular velocity on coordinate
axes taken as principal axes of the ellipsoid of inertia, and A, B, C are principal moments
of inertia of the rigid body.

Suppose that p∗(t), q∗(t), r∗(t) is some particular solution of (2.13) – (2.15). Substi-
tuting p = p∗ + ξ, q = q∗ + η, r = r∗ + ζ into (2.13) – (2.15), eliminating terms that are
cancelled by virtue of nominal equations (2.13) – (2.15) and dropping the superscript, we
obtain the generalized perturbation equations

Aξ′ = (B − C)(rη + qζ + ηζ), (2.16)

Bη′ = (C − A)(pζ + rξ + ζξ), (2.17)

Cζ′ = (A − B)(qξ + pη + ξη). (2.18)

Here the prime (′) denotes time derivative, and p, q, r are fixed particular solutions of
(2.13) – (2.15) defined by certain initial conditions p(a) = p0, q(a) = q0, r(a) = r0.

By inspection, one can see that equations (2.13) – (2.15) have the following first inte-
grals

T = Ap2 + Bq2 + Cr2 = const, (2.19)

M = A2p2 + B2q2 + C2r2 = const. (2.20)

Case 1 A = B = C. In this case all solutions are stationary, p = p0, q = q0, r = r0,
and all are stable.

Case 2 p = q = r = 0. Equations (2.16) – (2.18) coincide with (2.13) – (2.15). There-
fore, integrals T , M with ξ, η, ζ instead of p, q, r are also first integrals of perturbed
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motions. Being positive definite, they can be used as Lyapunov functions to conclude
about stability of this trivial solution (at rest).

Case 3 A 6= B 6= C 6= A, and p2
0 + q2

0 + r2
0 > 0. In this case, and taking into account

(2.13) – (2.15), generalized perturbation equations (2.16) – (2.18) have the following first
integrals

T ∗ = A(p + ξ)2 + B(q + η)2 + C(r + ζ)2 = const, (2.21)

M∗ = A2(p + ξ)2 + B2(q + η)2 + C2(r + ζ)2 = const, (2.22)

where constants T ∗, M∗ are defined by initial data p0, q0, r0 and initial perturbations ξ0,
η0, ζ0. Since T ∗, M∗ do not vanish at ξ = η = ζ = 0, they cannot be taken as Lyapunov
functions.

Consider the function

V = (T ∗ − T )2 + (M∗ − M)2. (2.23)

This function is nonnegative, V ≥ 0; vanishes if ξ = η = ζ = 0, and its total derivative
on trajectories of perturbed motions (2.16) – (2.18) of the system (2.13) – (2.15) is zero,
V ′ = 0, since V is a bundle of integrals. If V were positive definite, one would conclude
about stability of all motions. Unfortunately, this is not the case.

If ξ, η, ζ are not all zero, |ξ| + |η| + |ζ| > 0, then V = 0 if and only if T ∗ = T and
M∗ = M . To find the manifold on which V = 0, we can write, by virtue of (2.19) – (2.22)

T ∗ − T = A(2pξ + ξ2) + B(2qη + η2) + C(2rζ + ζ2) = 0, (2.24)

M∗ − M = A2(2pξ + ξ2) + B2(2qη + η2) + C2(2rζ + ζ2) = 0. (2.25)

Denoting parentheses in (2.24), (2.25) as x, y, z, we obtain for the case A 6= B 6= C 6= A
the integral-invariant manifold in the ξηζ-space

x

BC(B − C)
=

y

CA(C − A)
=

z

AB(A − B)
= λ(t). (2.26)

Physically, it means that ξ, η, ζ satisfying (2.26) do not affect the energy nor the angular
momentum of the body.

From conservation property of integrals at the left-hand side of (2.24), (2.25), it follows
that perturbed trajectories either lie entirely on the manifold (2.26) or do not intersect it
at all. If for nominal motions p(t), q(t), r(t) there are no perturbed trajectories that lie
on the manifold (2.26), then those motions are stable by Lyapunov’s theorem on stability
[1, Section 16] with the function V of (2.23) which is positive definite if (2.26) does not
contain perturbed trajectories. Referring the reader to [25] for details, the conclusion is
as follows.

Summary The rest p = q = r = 0 and all motions in trivial case A = B = C
are stable. The motion p = q = 0, r(t) = r0 = const in cases A ≤ B < C or
A ≥ B > C (i.e. constant rotation around extreme axis C, including circular ellipsoids
of inertia) is also stable. From the above analysis, we see that all other motions in the
case A 6= B 6= C 6= A are unstable. In the case of circular ellipsoid of inertia (ellipsoid
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of revolution, A 6= B = C), constant rotation around an equatorial axis is unstable and
all other motions are stable.

Remark 2.1 The term “stability of sets of solutions” may sometimes be misinterpreted
and confused with the notion usually referred to as “stability of sets”, see, e.g., [26, 27]
and references therein. The term “globally asymptotically stable set” means the existence
of a globally contracting Lyapunov function acting outside of the set and bringing every
trajectory from the exterior of the set onto that set. Such “stability sets” are also
“viability sets”, i.e., sets from which a trajectory cannot escape (the last term does not
imply the global attraction of outside trajectories).

The stability of a set in this sense does not mean stability of solutions within that
set. The use of Lyapunov functions to establish the global attraction of trajectories to
some set has nothing to do with stability in the sense of Lyapunov. It means, in fact, a
control application, proving certain quality referred to as ultimate boundedness, viability,
practical stability, with some variations in terminology and definitions used by different
authors. The level sets V (x) ≤ c can be used for construction of so-called overvaluing
or comparison systems dz/dt = h(t, z) with the property z(t, t0, z0) ≥ x(t, t0, x0) if
z0 ≥ x0.

In contrast, the generalized perturbation equation serves to establish stability of so-
lutions in the sense of Lyapunov that start in some region of initial conditions.

3 Nonanalytic Lyapunov Functions

When N.N.Krasovskii (then my Ph.D. thesis supervisor) suggested the use of nonana-
lytic regulators for stabilization of nonlinear systems [28, 29], this naturally led to the
introduction of nonanalytic Lyapunov functions.

Since the right-hand sides of perturbation equation are represented as convergent
Maclaurin series around the trivial solution x(t) = 0, so the nonanalytic Lyapunov
functions are also taken as finite sums of special power terms, containing absolute values
and sign-functions of critical variables see [28 – 30]. Those sums are finite since asymptotic
stability and instability are usually decided by terms up to a certain finite order.

Clearly, nonanalytic Lyapunov functions can be used also for other purposes. For
example let us find the stability (viability) set in Example 1 of [27, p.248] for the system:

dx

dt
= x(1 − x2 − y2) + yf(t, x, y), |f(.)| ≤ 1;

dy

dt
= xg(t, x, y) + y(1 − x2 − y2), |g(.)| ≤ 1.

Taking V = |x| + |y|, we obtain on trajectories of the system

dV

dt
= (|x| + |y|)(1 − x2 − y2) + yf(.) sign x + xg(.) sign y

≤ (|x| + |y|)(1 − x2 − y2) + |y| + |x| = V (2 − x2 − y2) ≤ 0,

if x2 + y2 ≥ 2 which yields the circle of radius
√

2 as the global asymptotic stability set
for the above system.
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4 Extension of the Barbashin-Krasovskii Theorem unto Nonperiodic

Systems

This theorem presents a sufficient condition for establishing asymptotic stability making
use of a Lyapunov function V (x) > 0, x 6= 0; V (0) = 0 with nonpositive derivative
dV/dt ≤ 0 on the trajectories of the perturbation equation in a neighborhood of the
origin. Such Lyapunov functions are usually constructed in practical cases of nonlinear
systems. We reproduce the theorem in a simple formulation given by Barbashin [14, p.25].

Theorem 4.1 If there is a positive definite function V (x) such that dV/dt < 0
outside of a set M and dV/dt ≤ 0 on M , where M is a set not containing entire
trajectories (except for the origin), then the solution x = 0 is asymptotically stable.

Note that it is easy to verify that M does not contain entire semitrajectories of a
differential equation. Indeed, if a system is of the form

x′ = g(x, t), x(t0) = x0, x ∈ Rn, t ≥ t0 (4.1)

and a surface M is given by F (x) = 0, then M does not contain entire trajectories if for
some t > T ≥ t0 we have

dF

dt
= ∇Fg(x, t) 6= 0.

For stationary systems x′ = g(x), not depending explicitly on t, the theorem (for the
case of stability in the large) has been proved in [31] and is known as the Barbashin-
Krasovskii theorem. For systems (4.1) where g(x, t) is periodic in t, this theorem is
proved in [4, Section 14] and is known as Krasovskii’s theorem.

Further extension of this theorem follows from Theorem 4.1 for systems of class A, see
[32, pp.21 – 27], as described below.

Definition 4.1 System (4.1) is said to be of class A if and only if the function g(x, t)
is such that for every solution x(., x0, t0) of the equation (4.1) and for any fixed t̄ > t0
there is a sequence

αs > 0, lim αs = 0, (4.2)

such that there exists a sequence

τs = τs(x0, t0, t̄, αs) > 0, τs+1 > τs, s = 1, 2, . . . , lim τs = ∞ (4.3)

for which
‖x(t̄, xs, t0) − x(t̄ + τs, x0, t0)‖ ≤ αs, s = 1, 2, . . . , (4.4)

where
xs = x(t0 + τs, x0, t0), s = 1, 2, . . . . (4.5)

Remark 4.1 If one makes a drawing to illustrate conditions (4.2) to (4.5), it can be
seen that those conditions, in application to solutions of differential equations, resemble
the Cauchy criterion: a sequence xm ∈ Rn has a finite limit x0 = lim xm if and only
if for every ε > 0 there is a number N(ε) such that ‖xp − xq‖ < ε whenever p > N(ε)
and q > N(ε). In the above conditions, the role of ε is played by αs of (4.2), the role
of N(ε) is played by τs of (4.3), and p, q, are played by t0 + τs and t̄ + τs of (4.5),
(4.4). Thus, class A contains systems with asymptotically contracting translations of
every trajectory in some region, and if that region is a neighborhood of the origin, the
Barbashin-Krasovskii Theorem follows. Conversely, if the Barbashin-Krasovskii Theorem
is valid for some systems, those systems must be of the class A defined by (4.2) to (4.5).
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Definition 4.2 If in the context of Definition 4.1 we can take αs = 0, s = 1, 2, . . . ,
in (4, 6), then the system (4.1) is said to be of class A0.

Definition 4.3 If in the context of Definition 4.1 we can take αs = 0 and τs = sω,
s = 1, 2, . . . , with ω = const > 0 defined by the function g(x, t) in (4.1) but independent
of x0, t0, t̄, then the system (4.1) is said to be of class A∗.

It is clear that
A∗ ⊆ A0 ⊆ A. (4.6)

Lemma 4.1 The class A∗ is nonempty and contains, in particular, all stationary
systems and all systems where g(x, t) is periodic in t.

It is interesting and important that, in fact, classes A∗, A0, A do not coincide: A∗ 6=
A0 6= A. Let us denote by G the general class of systems in (4.1) such that g(x, t) satisfies
only standard conditions of existence, uniqueness and extendibility.

Lemma 4.2 Strictly: A∗ ⊂ A0 ⊂ A ⊂ G.

Proof It is sufficient to provide examples, which are given in [32].

In the theorem that follows, notation θ denotes a closed neighborhood containing the
origin, the sets Ω−, Ω+ are closed neighborhoods such that Ω− ⊆ θ ⊂ Ω+, the closed set
Cθ = Ω+ − Ω−, where Ω− is open, other sets are closed and the set Ω0(t) ⊆ Cθ plays
the role of M as in the Barbashin-Krasovskii Theorem above.

Theorem 4.2* If the system (4.1) is of class A and there is a function V (x) such
that for all (x, t) ∈ Cθ × [t0,∞) we have:

∇V · g(x, t) ≤ 0, (4.7)

where the equality is valid only at points of a set Ω0(t) ⊆ Cθ, t ∈ [t0,∞), that contains
no semitrajectories of (4.1), then there exists T (x0, t0) > 0 such that

x(t, x0, t0) ∈ Ω− ⊆ θ for all x0 ∈ Ω+ − θ

and all t ∈ [t0 + T (x0, t0),∞).
(4.8)

The proof of this theorem which is cast in the context of differential games can be
found in [32, pp.25 – 27]. Considering V (x) > 0, x 6= 0, V (0) = 0 in the case g(0, t) = 0,
{0} ∈ θ, and letting θ → {0}, we obtain the case of asymptotic stability for systems of
class A of which stationary and periodic systems present particular cases of the smaller
class A∗, A∗ ⊂ A0 ⊂ A. Thus, the Barbashin-Krasovskii Theorem is valid for far more
general systems than stationary and periodic ones.

Example 4.1 Let

S : x′ = −xt(1 + sin 2t), x(0) = x0, t ≥ 0. (4.9)

Consider V = x2, then on trajectories of (4.9) we have

V ′ = 2xx′ = −2x2t(1 + sin 2t) ≤ 0, t ≥ 0. (4.10)

*Acknowledgement — Fruitful discussions with George Leitmann, especially with respect to Lem-

ma 4.1 and Theorem 4.2, are gratefully acknowledged.
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Except for x = 0, which point is excluded from the complement Cθ for any θ → {0},
derivative V ′ = 0 only at isolated points t = 0 and tn = π/2 + πn, n = 0, 1, . . . , thus,
trivial solution x = 0 is asymptotically stable. Equation (4.9) has separable variables,
and it can be verified directly by Definitions 4.1, 4.2 that S ∈ A, S /∈ A0.

5 Lyapunov’s Approach in Use for Control and Identification

Lyapunov’s methods have been applied to control problems of different nature, see, e.g.
[5, 9, 10, 18, 19, 21, 26 – 30, 32, 33, 35 – 45] and references therein. An interesting general-
ization for control of motion is developed in the joint work with J.M.Skowronski [33].

Consider a non-linear differential equation with controls:

x′ =
dx

dt
= F (x, t, u), x ∈ RN , u ∈ U ⊂ Rm, t ∈ [0, tf ], (5.1)

x(t0) = x0 ∈ ∆1 ⊆ ∆ ⊂ RN , t0 ∈ [0, tf ], (5.2)

u = u(x, t) ∈ U ⊂ Rm, t ∈ [0, tf ]. (5.3)

Equation (5.1) with control (5.3) takes the form

x′ =
dx

dt
= f(x, t), f(x, t) = F (x, t, u(x, t)), t ∈ [0, tf ]. (5.4)

We assume that the functions F , u and the sets U , ∆ in (5.1) – (5.3) are such that the
function f in (5.4) satisfies standard conditions for the existence and uniqueness of a
solution x(t) with values in ∆, given initial condition (5.2) and a control function u(·)
with values in U . The sets U , ∆, ∆1 are open connected sets (domains) and the set of
control functions {u(·)} contains the function u(·) = 0. We allow tf = ∞.

With these hypotheses, the above relations are well defined and may be regarded in
two ways:

(a) as nominal equations of a dynamical system with the motion x(t) ∈ ∆, in phase
coordinates;

(b) as perturbation equations of certain dynamical system, whereby f(0, t) = 0 and
x(t) ∈ ∆ represents a deviation from some unperturbed nominal motion which
is not explicitly given; the nominal equations of the system are not written, but
x(t) = 0 designates precisely its nominal motion.

In his doctoral dissertation [1] A.M.Lyapunov gave a thorough study of the prob-
lem (b). The principal idea of the approach is decomposition of motion x(t) into two
motions: a motion along a certain surface V and a motion of the surface V itself. This
idea is not related to the kind of equation (the nominal or perturbation one), nor to
certain assumptions of the Lyapunov theory. This allows us to generalize the approach
in different directions.

The generalization for use in control is as follows.

(1) Equation (5.1) is regarded as a nominal equation and not as a perturbation one.
The condition f(0, t) = 0 is dropped.

(2) The sets U , ∆, ∆1 are not assumed to be small, on the contrary:

d(∆) ≥ d(∆1) = sup ‖x1 − x2‖ ≥ l > 0, (5.5)
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where ‖ · ‖ is a norm in Rn.
(3) The aim is to determine whether or not the motion x(t) tends to a certain given

domain M ⊂ ∆ which is not a neighbourhood of the origin. In control appli-
cations the function u(x, t) is to be chosen so as to make x(t) enter M in finite
time and remain there. We shall concentrate on sufficient conditions for the con-
vergence x(t) → M , and not on how to choose u(·). Consequently, the control
function is assumed to have been chosen, so that we start with (5.4). More on
how to choose u(·) can be found in [32, 35].

(4) Regarding the Lyapunov second method, the conditions V (x) > 0, x 6= 0,
V (0) = 0 are dropped, the condition dV/dt ≤ 0 modified, and certain other
conditions are imposed. The functions V (x) thus constructed are no longer Lya-
punov functions and, to avoid confusion, they are called simply V -functions. We
demonstrate, however, that stationary Lyapunov functions represent a subset in
the set of general stationary V -functions.

(5) The sets ∆, ∆1, M are explicitly introduced into the method, allowing us to
obtain quantitative results.

Such are the major changes that aim at the two-fold objective:

(a) to facilitate direct control applications of Lyapunov’s approach;
(b) to provide the means for investigation of nominal equations of a system and a

tool for quantitative design of desired motions.

5.1 Geometry of V-functions

5.1.1 V -surfaces. We consider real C1-functions V (x) : RN → R such that for each
constant ν0 ∈ B ⊂ R, B open, satisfy the following conditions:

(1∗) There exists a surface V (x) = ν0 which is unique (single-sheeted) and of a finite
measure.

(2∗) There exist x0 such that V (x0) < ν0 and x1 such that V (x1) > ν0.
(3∗) The set

Ω(ν0) = {x | V (x) < ν0} (5.6)

is bounded in RN .

We consider the closure of Ω, or the level set

clΩ(ν0) = {x | V (x) ≤ ν0}, (5.7)

its boundary
∂Ω(ν0) = {x | V (x) = ν0} (5.8)

and the open complement or the exterior of Ω:

C clΩ(ν0) = {x | V (x) > ν0} = ext cl Ω. (5.9)

The condition (2∗) means that the interior and exterior of cl Ω are not empty. If V (x)
is defined everywhere in RN , then by (5.6), (5.8) (5.9) we have Ω + ∂Ω + C cl Ω = RN .
Also extΩ = ∂Ω + C cl Ω ⊃ ext cl Ω = C clΩ.

Lemma 5.1 The boundary ∂Ω separates RN into disjoint open sets:

Ω = int cl Ω and C cl Ω = ext cl Ω, Ω ∩ Ccl Ω = ∅.
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Lemma 5.2 Any continuous curve L in RN , joining x0 ∈ Ω and x1 ∈ extΩ,
intersects the boundary ∂Ω = {x | V (x) = ν0}.

Lemma 5.3 If v′0 < v0, then for the same V (x) the surfaces ∂Ω(v′0) and ∂Ω(v0) are
strictly enclosed:

clΩ(ν′
0) ⊂ Ω = Ω(ν0). (5.10)

Remark 5.1 The requirements of uniqueness and a finite measure of a V -surface are
imposed in (1∗) to avoid unnecessary complications. Such pathological cases do exist,

for example, the function V = (x2
1 + x2

2) sin2(x2
1 + x2

2) with nice properties: V (x) = 0
for ‖x‖2 = x2

1 + x2
2 = πn, n = 0, 1, . . . , otherwise V (x) > 0, presents for each ν0 > 0

a countable (denumerable) set of surfaces V = ν0 in R2 which can be constructed

by the equation sin2(x2
1 + x2

2) = ν0/(x2
1 + x2

2). Such functions are not allowed by the
condition (1*).

The set of C1-functions satisfying (1∗) – (2∗) – (3∗) is not empty. Any real ellipsoid
centered at the origin

V =
∑

aix
2
i = ν0, ai > 0, i = 1 ÷ n

presents such a V -function for v0 > 0, that is, v0 ∈ B = R+, thereby with additional
properties: V (x) > 0 for all x 6= 0, V (0) = 0, that are not required in this research.
The property V (0) = 0 disappears for ellipsoids centered not at the origin.

Non-sign-definite functions of the type:

Vk =
∑

ai(xi − αi)
2k + β, k = 1, 2, . . . , ai > 0, i = 1 ÷ n,

where β, αi are real constants, are also allowed. Planes, cylinders, cones, paraboloids
are not allowed since Ω is unbounded. Functions of the type

Vk =
∑

ai|xi − αi|2k + β, k = 1, 2, . . . , ai > 0, i = 1 ÷ n

satisfy (1∗), (2∗), (3∗) for an appropriate interval B ⊂ R but are not differentiable at
xi = αi. If however special care is taken at those corners, such functions can be allowed
and were actually used for nonlinear stabilization in [28 – 30].

In some problems one might be interested in a bounded open region ∆ ⊂ RN only.
In this case one can consider those B ⊂ R and ν0 ∈ B = B(∆) for which the conditions
(1∗), (2∗), with x, x0, x1 all in ∆ ⊂ RN are satisfied and define the sets Ω∆, Ccl Ω∆

by the relations:

Ω∆ = {x | V (x) < ν0, x ∈ ∆} = Ω(ν0, ∆),

C cl Ω∆ = {x | V (x) > ν0, x ∈ ∆}.

Clearly, Ω∆ ⊂ ∆ and is, therefore, always bounded so that (3∗) is automatically satisfied.
To preserve the separation property in this case, we have to introduce it either directly
by the condition:

(4∗a) The sets Ω∆ and CΩ∆, nonempty by (2∗), are disjoint, that is

Ω∆ ∩ Ccl Ω∆ = ∅;
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or indirectly, by the condition:

(4∗b) There exists x1 ∈ Ccl Ω∆ such that x1 /∈ clΩ∆.

Condition (4∗a) replaces Lemma 5.1 and it follows from (4∗b) by Lemma 5.2. Ge-
ometrically it is clear that one of these conditions is necessary to exclude spiral and
other surfaces that do not partition ∆ into two disjoint subsets. Now planes, cylinders,
paraboloids are allowed. We shall see, however, that this vast collection of V -functions
is restricted by further considerations.

5.1.2 Moving V -surfaces. Suppose x = x(t) is a C1-function of time on [t0,∞). Using
one and the same V (x), we can define the level function

ν0(t) = V (x(t)). (5.11)

If this function is considered in (5.8) instead of a constant v0, then we obtain a moving
boundary

∂Ω(t) = {x | V (x) = ν0(t)} (5.12)

and so in (5.12) x ∈ RN is any point on the surface and not the same as x(t) in (5.11).
Take any t1 ∈ [t0, tf ] and let the total derivative be negative:

dν0

dt
=

dV

dt
= ∇V x′ < 0, t = t1. (5.13)

Since V (x) ∈ C1, then by continuity there exists δ > 0 such that

t2 = t1 + δ < tf and
dν0

dt
< 0 for all t ∈ [t1, t1 + δ]. (5.14)

The continuous function dv0/dt is uniformly continuous on a closed segment [t1, t2] and
attains there its maximum:

max
dν0

dt
= c, c < 0, t ∈ [t1, t2]. (5.15)

Now, (5.14) can be strengthened:

dν0

dt
≤ −|c| < 0 for all t ∈ [t1, t2]. (5.16)

Integrating (5.16) over [t1, t2] yields

ν0(t2) ≤ ν0(t1) − |c|(t2 − t1) < ν0(t1). (5.17)

Thus, the new (moved) boundary δΩ(t2) lies entirely in the interior of the old Ω(t1), cf.
Lemma 5.3:

δΩ(t2) ∈ Ω(t1) (5.18)

and is separated from δΩ(t1) by a band of the width (in terms of V -levels)

∆ν0 = ν0(t1) − ν0(t2) ≥ |c|(t2 − t1). (5.19)
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Of course, here c = c(δ). Suppose now that (5.16) holds over the entire closed segment
[t0, tf ]. Then c = const < 0 and by the same argument we obtain that the curve x(t)
in finite time ∆t = tf − t0 crosses the band between δΩ(t0) and δΩ(tf ) at the moment
t = tf +0 and stays there for a sufficiently small interval (tf , tf +ε), ε > 0. If in addition

dν0

dt
= ∇V x′ < 0 for x(t) ∈ δΩ(tf ), t ≥ tf , (5.20)

where (5.20) is understood to hold every moment t ≥ tf when the curve touches the
boundary ∂Ω(tf ), then the curve x(t) is not leaving the closure Ω(tf ), ∀ t ≥ tf .

5.1.3 Carrying V -surfaces (V -carriages). Suppose that a family of trajectories x(x0, t0, ·)
is given by a differential equation

x′ =
dx

dt
= f(x, t), x0 = x(t0), t ≥ t0. (5.21)

Then (5.20) takes the simple form

∇V f(x, t) = σ(x, t) < 0 (5.22)

and can be evaluated at every point of a region in space and time, in our case in Ω(t0)×
[t0, tf ], Ω(t0) ⊂ RN , without integration of the equation (5.21). If x0 ∈ Ω(t0) and (5.22)
holds for the closed region:

x ∈ Ω(t0) − Ω(tf ), Ω(tf ) ⊂ Ω(t0) (closed band in RN )

t ∈ [t0, tα], tα ≥ tf (closed segment in time)

then the same argument holds and the entire family of solutions of (5.21) once trapped
in Ω(t0) crosses the band Ω(t0) − Ω(tf ) in finite times (depending on x0)

∆t(x0) ≤
1

|c| [ν0(t0) − ν0(tf )], (5.23)

where
c = max σ(x, t) = const < 0, x ∈ Ω(t0) − Ω(tf ), t0 ≤ t ≤ tf

and every solution stays in Ω(tf ) at least until t = tα.
The construction resembles the well-known Lyapunov design. However, we do not

require that V (x) be sign-definite, nor that V (0) = 0.

5.2 The control theorem

Consider the set of all V -functions. Given ∆ ⊂ RN , M ⊂ ∆ and a function V (x), define
the following constants and sets (∂∆, ∂M denote the boundaries of ∆, M):

ν+ = supV (x) | x ∈ ∂∆, (5.24)

Ω+ = {x | V (x) < ν+}, (5.25)

ν− = inf V (x) | x ∈ ∂M, (5.26)

Ω− = {x | V (x) < ν−}. (5.27)
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Unless otherwise stated, Ω− is assumed to be non-empty. We assume f(x, t) of (5.4) to
be defined and solutions to exist in the closure Ω+. Suppose that Ω+ and Ω− are simply
connected. Discard all V -functions for which either ν− ≥ ν+ or ∆ 6⊆ Ω+, or Ω− 6⊆ M .
The remaining subset Π which is assumed to be non-empty contains only those V (x) for
which the following inclusions hold:

Ω− ⊆ M ⊂ ∆ ⊆ Ω+. (5.28)

Denote the closed complement
CM = Ω+ − Ω−, (5.29)

non-empty since M 6= ∆.

Theorem 5.1 Given M ⊂ ∆, x0 = x(t0) ∈ ∆ − M and a constant T , tf − t0 >
T > 0, the motion x(x0, t0, t) enters M not later than at the moment t∗ = t0 + T and
stays there, if there is a function V ∈ Π such that for all (x, t) ∈ CM × [t0, tf ) we have

∇V f(x, t) ≤ −c, (5.30)

where

c =
ν+ − ν−

T
= const > 0. (5.31)

Proof follows from the above considerations, see [33].

Remark 5.2 One cannot substitute M for Ω− in (5.29).
It is apparent that the above theorem is well in the spirit of Lyapunov, with the

difference that it presents sufficient conditions for guaranteed transfer from a given point
into a given domain in finite time specified beforehand. This theorem can be specified to
include the limit operation as t → ∞ for the case of the perturbation equation in (5.4)
with tf = ∞, f(0, t) = 0, and to deduce the well known classical results of Lyapunov [1]
in stability theory, see [34]. This makes clear that the set Π of V -functions is non-empty
and contains positive definite functions used by Lyapunov. It also opens a way to apply
known methods of constructing Lyapunov functions to more general functions V ∈ Π.

In [32] this approach is applied for differential games, cf. Theorem 4.2 above where θ
is the target set. In [35] it is applied for asymptotic observer design in differential games
with incomplete information.

In control applications, usually a part of coordinates of the state vector x ∈ RN

are directly measured, or a function thereof that constitute the information vector y =
g(x, t) + γ, y ∈ Rk, k < n, containing measurement noise γ(t). In this case, a controller
is taken either in the form u = u(y, t) for the output feedback control, or in the form
u = u(z, t), where z(t) is the observer, that is, an approximation to x(t) computed from
a model

dz

dt
= h(y, u, t), z(t0) = z0, t ≥ t0 (5.32)

constructed in such a way that the error

ǫ(t) = z(t) − x(t) (5.33)

does not leave some neighborhood of the origin and is attracted to the origin sufficiently
fast. This way of obtaining an acceptable estimate of x(t) for use in control is called
asymptotical observation or adaptive identification [35, 37 – 44].
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For a linear stationary control system

dx

dt
= Ax + Bu, y(t) = Cx (5.34)

the construction of a model (5.32) is very simple [38, 39]:

dz

dt
= Hz + Qy + Bu, H = A − QC. (5.35)

Subtracting (5.34) from (5.35), we get the error equation, cf. (5.33):

dǫ

dt
= Hz − Ax + Qy = H(z − x) = Hǫ(t). (5.36)

The matrices A, B, C are known, and it remains to provide appropriate eigenvalues for
the matrix H in (5.35), (5.36) by the choice of the matrix Q, see [40, 44].

For a nonlinear control system, the construction of the model (5.32) is not so sim-
ple and Lyapunov’s approach should be used for a proper asymptotic observer design
[35, 37, 41 – 43].

6 Stability by Time-Space Mosaic with Discontinuous Lyapunov Function

By a theorem of Massera [46], if the trivial solution x = 0 of a perturbation equation
with Lipschitzian right-hand side is uniformly asymptotically stable in the large, then
there exists a Lyapunov function V (x, t) that guarantees this type of stability.

In practical cases, a particular solution may be uniformly asymptotically stable but not
in the large. Too, stability in the large as well as uniform stability, though comfortable,
are not usually required in practice.

Even if the existence of a Lyapunov function is established, there is no universal
method for constructing Lyapunov functions, and its construction is difficult in almost
all nontrivial cases. These difficulties led to the development of vector [22, 23] and matrix
[24] Lyapunov functions which act on regions of the subdivided state space through which
trajectories are passing.

The generalized perturbation equation described in Section 2 opens a way to use
different contracting Lyapunov functions for different periods of time. The surfaces
defined by such Lyapunov functions form a time-space mosaic, or in other words, a
discontinuous Lyapunov function, which is easier to construct and which can serve for
establishing stability of motion. This approach was developed in the joint work [25] with
V.V.Rumyantsev.

In stability analysis, deviations w(t) are studied in a neighborhood H of the origin
and one is interested to determine whether or not for every η > 0 there exists δ(η) > 0
such that if

‖w0‖ ≤ δ(η), (6.1)

then
‖w(t)‖ < η for all t > t0, (6.2)

where ‖·‖ is the Euclidean norm. If the answer to this question is in the affirmative, then
the motion w(t) = 0 is called stable, otherwise, unstable. It means that if there exists
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η0 > 0 such that, whatever small δ > 0 may be, there is a moment t∗ > t0 at which
‖w(t∗)‖ = η0, then the motion is unstable. If at some moments t∗i > t0, perturbations
grow to a fraction of the magnitude of a nominal coordinate, |wj(t

∗
i )| = αj |xj(t

∗
i )|,

αj = const ≥ 1, 1 ≤ j ≤ n, then the motion is unstable.
A stable motion with the additional property

lim ‖w(t)‖ = 0, t → ∞ (6.3)

is called asymptotically stable. These are the classical definitions of stability given by
Lyapunov [1]. With the notation (2.3), it refers, of course, to the stability of the solution
x0(t). Let us not fix the initial condition x0(t0) = x0 ∈ ∆0, considering instead a
collection of nominal solutions {x0(t)} = x0({x0}, t0, t) corresponding to a set {x0} ⊆
∆0 of initial conditions; the notation {x0} may mean a finite collection or a set, a
continuum.

To study and solve the problem by Lyapunov’s second (direct) method, C1-functions
V (w, t), W (w), W 1(w), W ∗(w) are considered that vanish if w = 0,

V (0, t) = W (0) = W 1(0) = W ∗(0) = 0, t ≥ t0, (6.4)

and have some additional properties.
Recall the basic theorems of Lyapunov’s second method.

Theorem 6.1 (Lyapunov [1]) If there exists a function V (w, t) satisfying the condi-
tions

(a) V (w, t) ≥ W (w) > 0, w ∈ H, w 6= 0, t ≥ t0; (6.5)

(b)
dV

dt
=

∂V

∂t
+ ∇V · q(w, x0, t) ≤ 0, w ∈ H, t ≥ t0 (6.6)

on the trajectories of the perturbation equation, then the solution w(t) = 0 is stable.

Theorem 6.2 (Lyapunov [1]) If there is a function V (w, t) satisfying condition (a)
and the strengthened (cf. (b)) conditions:

(c)
dV

dt
=

∂V

∂t
+ ∇V · q(w, x0, t) ≤ −W 1(w) < 0, (6.7)

w ∈ H, w 6= 0, t ≥ t0;

(d) W ∗(w) ≥ V (w, t), w ∈ H, t ≥ t0, (6.8)

then the solution w(t) = 0 is asymptotically stable.

Theorem 6.3 (Chetaev [2]) If there exists a function V (w, t) satisfying the condi-
tions:

(e) the set Σt
η = {w ∈ H | V (w, t) > 0, t ≥ t0}
∩ {‖w‖ < η, η > 0} 6= ∅ (6.9)

is nonempty for all t ≥ t0 and any small η > 0;

(f) V (w, t) is bounded within Σt
η; (6.10)

(g)
dV

dt
=

∂V

∂t
+ ∇V · q(w, x0, t) > 0, w ∈ Σt

η, w 6= 0, (6.11)
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on the trajectories of the perturbation equation, meaning that dV/dt is positive definite
in Σt

η, in the sense that for every small ε > 0 there is γ > 0 such that if V (w, t) ≥ ε,
then

dV

dt
≥ γ for all t ≥ t0, (6.12)

then the motion w(t) = 0 is unstable.

Geometrically, condition (6.11) together with (6.12) mean that if w(t) ∈ Σt
η is uni-

formly separated from the boundary ∂Σt
η for all t ≥ t0, then dV/dt ≥ γ > 0 is uniformly

separated from zero for all t ≥ t0, see [2, Section 13]. As distinct from (6.5), a function
V (w, t) in (6.9) need not be positive definite.

Of course, stability, asymptotic stability or instability of the solution w(t) = 0 implied
by Theorems 6.1 – 6.3 means the same property of all nominal solutions {x0(t)} for which
(6.6), or (6.7), or (6.11) – (6.12), respectively, are fulfilled.

Consider x0 in (2.6), (2.7) and x in (2.8) not as a particular solution, but as a param-
eter. Then inequalities (6.6), (6.7), (6.11) become characteristics of a domain (simply
connected open set)

E = D × (t′, t′ + T ), D ⊆ ∆ ⊆ Rn, t′ ≥ t0 fixed, T > 0, (6.13)

where D may vary with t ∈ (t′, t′ + T ).
With x, t considered as independent variables, the left-hand side of (6.6), (6.7), (6.11)

becomes a function F : Rn × Rn × R → R of three arguments

F (w, x, t) =
∂V

∂t
+ ∇V · q(w, x, t), (6.14)

which coincides with the total derivative V ′ = dV/dt of a chosen function V (w, t) on
trajectories w(t) of the perturbation equation (2.6).

Consideration of such functions (6.14) and domains (6.13) is motivated by the need
to evaluate the rate of attraction of perturbed motions to a nominal solution of (2.1)
within a finite time interval, and for all nominal trajectories passing through domain E
of (6.13). For processes evolving in a finite space-time region, such information may be
useful irrespective of stability properties on [t0,∞). In such considerations, perturbations
w do not have to be small.

Definition 6.1 If for a chosen V (w, t) satisfying (6.5) on an interval (t′, t′ + T ),
the condition (6.6) or (6.7) holds for (x, t) ∈ E, then domain E is called neutral or
contractive, respectively.

Definition 6.2 If for a chosen V (w, t) satisfying (6.9), (6.10) on an interval (t′, t′+T ),
the condition (6.11) holds for (x, t) ∈ E, then domain E contains a repulsive sector Σt

η;
such domain E is called repulsive.

The statement that a certain domain E is contractive, neutral or repulsive means
that there is a function V (w, t) mentioned in Definitions 6.1, 6.2 which renders the
corresponding property of E. The availability of such a function defines the corresponding
domains. For example, if V (w, t) satisfies (6.5), (6.7) for all t ≥ t0, then our domain
becomes a contractive band E = D × [t0,∞) with one sole Lyapunov function which is
the classical case.
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Remark 6.1 The names contractive or repulsive domain relating to the (x, t)-space
should not be confused with the names domain of attraction or repulsion relating to the
w-space, as in Example 2.1.

To illustrate the geometry corresponding to Definitions 6.1, 6.2, we can use the stan-
dard argument of the Lyapunov stability theory [1, 2]. Consider, for example, a neutral
domain E1 = D1 × [t0, t1). For a given η > 0, let

γ1 = inf W1, ‖w‖ = η; due to (6.5), γ1 > 0. (6.15)

Since V1(w, t0) does not depend on t, so due to (6.4) and to the continuity of V1 there
is δ > 0 such that for ‖w‖ ≤ δ we have V1(w0, t0) < γ1. Choosing such initial conditions
and due to the relation

V1 − V1(w0, t0) =

t∫

t0

V ′
1 dt, V ′

1 ≤ 0 as of (6.6), t ∈ [t0, t1], (6.16)

we obtain that w(t) is such that the following conditions are satisfied

W1 ≤ V1(w, t) ≤ V1(w0, t0) < γ1, t ∈ [t0, t1] (6.17)

implying ‖w(t)‖ < η for t ∈ [t0, t1].
It means that, over a neutral domain, perturbations within a ball ‖w‖ < η, where

(6.4) – (6.6) are satisfied cannot escape this ball whatever (x, t) ∈ E1 = D1 × [t0, t1). If
t1 = ∞, stability follows.

If we have strict inequality V ′
1 < 0 in (6.16), compare with (6.7), then domain E1

is contractive. If t1 = ∞ and we use the additional condition (6.8), then asymptotic
stability follows by the standard argument [1, 2].

However, if we consider two adjacent domains with different functions V1, V2 (with
one common function it would be one single domain), then neutrality or contractivity
of the union does not follow from the same property for component domains. Indeed,
continuing the argument (6.13) – (6.17) for E2 = D2 × [t1, t2], we denote η1 = ‖w(t1)‖.
Clearly, η ≥ η1 > 0 since, otherwise, the value w(t1) = 0 of the solution w(t) 6≡ 0
would contradict the uniqueness of a solution emanating from the point (t1, 0) due to the
existence of the trivial solution w(t) ≡ 0. Let

γ2 = inf
‖w‖=η1

W2. (6.18)

Since V2(w, t1) does not depend on t so due to (6.4) and to the continuity of V2, there
is δ2 > 0 such that for ‖w1‖ ≤ δ2 we have V2(w1, t1) < γ2. However, w1 = w(t1) =
w(w0, t0, t1) comes from E1 and cannot be chosen so as ‖w1‖ ≤ δ2 for appropriate
δ2 > 0. Hence, to continue the argument and to assure that finite or countable union of
adjacent neutral (contractive) domains be also neutral (contractive), we have to impose
the following condition.

Consistency condition. A sequence of adjacent or overlapping neutral (contractive)
domains E1, E2, . . . with functions V1, V2, . . . , acting on [t0, t1), [t1, t2), . . . , and satis-
fying (6.4) – (6.6), or (6.7) for contractive domains, is called consistent if the functions
V1, V2, . . . are such that, with the initial condition ‖w‖ ≤ δ(γ1) for a given η > 0
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in (6.15), we have V2(w1, t1) < γ2 for w1 = w(w0, t0, t1) and any x ∈ D2(t1), then
V3(w2, t2) < γ3 for w2 = w(w1, t1, t2) = w(w0, t0, t2) and any x ∈ D3(t2), etc., for all
Vn, n = 2, 3, 4, . . . in the sequence. It simply means that the solution w(w0, t0, t) at times
t = t1, t2, . . . , tn, . . . is picked by the next function with the same properties as previous
functions plus the property of no escape from the sphere (ball) already attained. Con-
sistent domains do exist, for example, if Vn = cn‖w‖2 or if Vn are considered as pieces
on [tn−1, tn) of one single Lyapunov function V (w, t), t ∈ [t0,∞), existing under certain
conditions [4, 46].

Definition 6.3 If there is a band E0 = D0 × (t0,∞), D0 ⊆ ∆, that can be covered
by a finite or countable chain of consistent neutral (respectively, contractive) domains,
such a band is called neutral (respectively, contractive).

Theorem 6.4 Every solution which is entirely in a neutral band is stable.

Proof There is a sequence of functions V1, V2, . . . acting on [t0, t1), [t1, t2), . . . and
satisfying (6.4) – (6.6) that corresponds to a cover by a finite or countable chain of con-
sistent neutral domains. If the chain is finite, we prove the theorem after a number of
repetitions of the above argument (6.13) – (6.17) since the last tk = ∞. If the chain is
countable, then tn → ∞, thus, for every t ∈ [t0,∞) there is a subsegment to which it
belongs, yielding ‖w(t)‖ < η for all t ≥ t0.

A solution which is entirely in a contractive band may not be asymptotically stable
though its stability follows from Theorem 6.4 since (6.6) is implied by (6.7). If the chain
is finite and for the last function Vk(w, t) acting on [tk,∞) the condition (6.8) is satisfied,
then asymptotic stability follows from the classical Lyapunov Theorem [1].

For a countable chain of consistent contractive domains, consider a sequence of corre-
sponding functions

Vi(w, t), t ∈ [ti−1, ti), ti → ∞ as i → ∞, i = 1, 2, . . . , (6.19)

each acting over corresponding domain Ei of finite time length ∆ti = ti − ti−1 ≥ τ > 0.
Functions (6.19) may be regarded as components of a piecewise continuous function
V (w, t) acting on [t0,∞), which components should satisfy the consistency condition
stated above.

Now, condition (6.8) can be extended onto the sequence (6.19) as follows. From (6.5),
(6.8) we have

W ∗(w) ≥ V (w, t) ≥ W (w) > 0, w ∈ H, w 6= 0, (6.20)

where V (w, t) represents Vi(w, t) over each [ti−1, ti) of (6.19). Since W ∗(w) → 0 as
‖w‖ → 0, so for appropriate η > η∗ > 0 the surface V (w, t) = γ is enclosed in the
spherical ring

η ≥ ‖w‖ ≥ η∗, (6.21)

provided that η > γ > η∗ and the ring (6.21) is in the region H . Indeed, it is sufficient to
take such η, η∗ that the sphere ‖w‖ = η is circumscribed around W ∗(w) = η1 ≤ η, and
the sphere ‖w‖ = η∗ is inscribed in W (w) = η2 ≥ η∗, η1 > η2. Since η1 = W ∗(w) → 0,
as ‖w‖ → 0, we can take η → 0. Vice versa, if (6.8) holds, then for any spherical ring
(6.21) in the region H , by virtue of (6.20), (6.8), there exist functions of (6.19) acting
over this ring (we say in such case that ring (6.21) is covered by consistent contractive
domains).
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Take a decreasing sequence η = η1 > · · · > ηk > ηk+1 > . . . , lim ηk = 0, and consider
rings Rk = {w ∈ H | ηk ≥ ‖w‖ ≥ ηk+1}, k = 1, 2, . . . . Consider all functions Vi(w, t)
from (6.19) acting over the ring Rk. By (6.7) every V ′

i < 0 which means that there exists
W 1

i (w) such that over the segment of definition of Vi(w, t) we have definite negative and
bounded from zero total derivatives

−V ′
i (w, x, t) ≥ W 1

i (w) > 0, w ∈ H, w 6= 0,

(x, t) ∈ Ei = Di × [ti−1, ti).
(6.22)

Let
γik = inf W 1

i (w) ≥ γk > 0, w ∈ Rk. (6.23)

The uniform bound γk > 0 exists for all Vi acting over Rk since otherwise W 1
i (w) would

not be separated from zero within closed Rk, not containing zero, in contradiction with
definition of a positive definite function.

Now, integrating the piecewise continuous function V (w, t) with components (6.19)
along a trajectory (or a part thereof) lying entirely within Rk, we obtain by (6.22),
(6.23)

V − V (w∗, t∗) =

t∫

t∗

V ′ dt ≤ −
∑

i

γik(ti − ti−1) ≤ −γk(t − t∗), (6.24)

where the sum covers all components Vi(w, t) acting over Rk and t∗ is the starting time
of a perturbed trajectory. From (6.5), (6.24), we get

0 < V (w, t) ≤ V (w∗, t∗) − γk(t − t∗), γk > 0, (6.25)

meaning that there is only finite time (t − t∗) ≤ Tk < ∞ during which a trajectory
can stay within Rk. Since the band is contractive, the perturbed trajectory w(t) will
leave Rk, approaching zero, so that for t > t∗ + Tk we have ‖w(t)‖ < ηk+1. By (6.8),
for any ring Rk, k = 1, 2, . . . , there are Vi from (6.19) that act over that ring, hence
lim

t→∞
‖w(t)‖ = lim

k→∞
ηk = 0. This proves the following theorem.

Theorem 6.5 If a contractive band is such that for any η > 0 there is N(η) such
that for all i ≥ N(η) functions Vi(w, t) of (6.19) satisfy the condition η ≥ Vi(w, t) > 0,
w ∈ H, w 6= 0, t ∈ [ti−1, ti), ti → ∞, as i → ∞, then every solution passing entirely
within such a band is asymptotically stable.

Remark 6.2 The above arguments resemble the analysis based on property (A) or
(B) in [4, Sections 4, 5], under which there exists a Lyapunov function V (w, t) acting on
[t0,∞) with sign definite derivative that renders asymptotic stability of certain nominal
solution x0(t). However, it may be difficult to find such a function and, if found, it serves
one particular solution only. Functions (6.19) may be easier to construct, and they serve
all solutions passing through corresponding domains Ei. If considered as components
of one function V (w, t), this function, though generally discontinuous, renders, under
certain conditions, the same conclusions about stability or asymptotic stability as a
classical Lyapunov function.

Remark 6.3 In contrast and similarity with vector Lyapunov functions introduced, e.g.
in [22, 23], that create a space mosaic based on the idea that each subsequent function
(all acting on [t0,∞)) covers a manifold (or a part thereof) where preceding functions
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are inconclusive (e.g. where V ′ = 0), the functions (6.19) correspond to a time-space
mosaic of consistent domains which domains, if forming a band extending over [t0,∞),
deliver the same stability properties as a conventional Lyapunov function.

Functions Vi of (6.19) corresponding to a chain of consistent contractive domains can
be used to obtain quantitative results concerning the measure of contraction within every
domain Ei, see [25].

7 Conclusions

Developments presented in this survey complement the classical stability theory in differ-
ent directions. First, it seems important that investigation of stability should be possible
without integration of equations of motion. This possibility is provided by the general-
ized perturbation equation which implicitly contains trajectories of the nominal equation
passing through the x-space included as parameter-space in the generalized perturbation
equation acting in the w-space of perturbations. As a by-product, such relaxation of a
fixed particular solution around which the classical perturbation equation is constructed
allows us to investigate stability of all nominal solutions passing through the x-space.
Thus, the explicit integration of the nominal equation which is difficult if not impossible
in many practical cases becomes unnecessary. This also opens the avenue for numerical
investigation of stability.

Second, Lyapunov functions usually constructed as smooth functions do not have to
be differentiable. They can be even discontinuous, if certain consistency condition is
respected. This expansion of the class of possible Lyapunov functions is of much interest
in view of difficulties encountered in attempts to construct a Lyapunov function for a
more complicated practical system.

Further, the extension of the Barbashin-Krasovskii theorem onto nonperiodic systems
has been long overdue. Indeed, it was puzzling that this important and much used
theorem should be valid only for systems with such easy-to-see fashionable property as
being stationary or with a periodic right-hand side. The result presented in Section 4
extends the validity of this theorem to systems of class A whose solutions satisfy a
condition that resembles the Cauchy compactness criterion.

Another generalization was to apply the idea of decomposition of motion (embodied
in Lyapunov’s approach) to the controller and observer design for nominal systems. This
development required the relaxation or modification of classical Lyapunov conditions,
leading, in fact, to new functions and to a different framework. Well in the spirit of
Lyapunov, this approach can be used for new classes of problems such as motion con-
trol, dynamic games and asymptotic observer design. Quite naturally, in application to
stability and stabilization it brings us back to the classical Lyapunov results.

Using this framework and the generalized perturbation equation, it became possible to
develop a time-space mosaic method, a sort of Lyapunov-like assembly line along the time
axis, that allows us to substitute a single continuous Lyapunov function acting on [t0,∞)
by separate independent functions easier to construct, provided the consistency condition
is satisfied. Apart from analytical advantages in stability analysis, it opens a way to
“practical stability” evaluations (on a finite interval of time, cf. [17, 27]) through on-line
computations of the rate of attraction. If combined with the space-splitting furnished
by vector and matrix Lyapunov functions, see [22 – 24], this presents a complete time-
space mosaic in Rn ×R which could provide a powerful tool for solution of complicated
practical problems.
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