

Generalized *n*-Characteristic, Coincidence and Fixed Point Theorems for a Class of Pairs of Morphisms

C. Matmat*

Department of Mathematics, University Constantine 1 Frères Mentouri, BP 325 Route Ain El Bey, Constantine, Algeria.

Received: March 7, 2025; Revised: September 11, 2025

Abstract: This paper is devoted to the construction and study of a topological invariant for a class of pairs of morphisms $(f,g) \in Mor_{Top}(X,Z) \times Mor_{Top}(Y,Z)$, where Top denotes the category of Hausdorff topological spaces and continuous single valued maps and X,Y,Z represent subsets of \mathbb{R}^{n+1} such that X,Y contain the sphere S^n . This invariant termed as a generalized n-characteristic of the pair (f,g), is derived using homotopy methods serving as a valuable tool in coincidence point theory. The paper establishes several properties of this invariant, extends it to a class of admissible multivalued mappings, and presents a fixed point theorem among its results.

Keywords: homotopy; topological invariant; n-connected spaces; multivalued mappings.

Mathematics Subject Classification (2020): 70K99, 93B25.

1 Introduction

The concept of topological invariants, degrees, characteristics, or generalized characteristics, has been extensively explored by numerous authors for various classes of single-valued and multivalued mappings (see, for example, [7,10,13]. By exploration of various topological techniques, this concept serves as a powerful tool in analyzing and proving results in fixed point theory. This provides practical applications across diverse fields such as nonlinear analysis [6], economics [3], biology [5] and physics [9]. In some cases, they are very useful to prove the existence of solutions for linear or semi-linear dynamical systems [8].

Moreover, topological invariants are highly instrumental for the study of bifurcations and nonlinear dynamical systems (see [9]). In the case when nonlinearities are not smooth enough, they help to identify fixed points and their stability, which are critical

^{*} Corresponding author: mailto:c.matmat@yahoo.fr