Nonlinear Dynamics and Systems Theory, 25 (3) (2025) 231-242

A Primal-Dual IPM Algorithm for LO Problem Based on a New Kernel Function with a Logarithmic Barrier Term

Abderrahim Guemmaz^{1*}, Bachir Bounibane² and El Amir Djeffal²

¹ Department of Mathematics, Institute of Science, University Center of Barika, Algeria.
² Department of Mathematics, University of Batna 2, Batna, Algeria.

Received: April 7, 2024; Revised: May 20, 2025

Abstract: In this paper, we consider a primal-dual Interior Point Method (IPM) for the linear optimization(LO) problem, based on a new kernel function with a logarithmic barrier term, which plays an important role for developing a new design of primal-dual IPM algorithms. New search directions and proximity functions are proposed based on this kernel function. We proved that our algorithm has $O\left(qSn^{\frac{Sq+1}{2Sq}}\log\left(\frac{n}{\epsilon}\right)\right)$ iteration bound for large-update methods.

Keywords: primal-dual interior point algorithm; kernel function; linear optimization problem; iteration bound; complexity.

Mathematics Subject Classification (2020): 90C51, 49N15, 90C05, 68Q25.

1 Introduction

In this paper we deal with primal-dual IPMs for solving the standard linear optimization (LO) problem

(P)
$$\min\left\{c^T x : Ax = b, x \ge 0\right\},\$$

and the dual problem of (P) is given by

(D) $\max\{b^T y + s = c, s \ge 0\},\$

where $A \in \mathbb{R}^{m \times n}, x, s, c \in \mathbb{R}^n$, and $y, b \in \mathbb{R}^m$.

^{*} Corresponding author: mailto:abderrahim.guemmaz@cu-barika.dz

^{© 2025} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua231