

Numerical Solution of the Black-Scholes Partial Differential Equation for the Option Pricing Model Using the ADM-Kamal Method

M. D. Johansyah ^{1*}, I. Sumiati ¹, E. Rusyaman ¹, Sukono ¹, M. Muslikh ², M. A. Mohamed ³ and A. Sambas ^{3,4}

Received: February 8, 2023; Revised: June 6, 2023

Abstract: Option contracts are financial derivatives developed as investment alternatives which are useful for minimizing the risk of loss. One of the most well-known models for calculating option prices is the Black-Scholes equation. This equation is a partial differential equation (PDE) of the order of natural and fractional numbers. In this paper, we have proposed a combined method of the Adomian Decomposition Method (ADM) and the Kamal Integral Transform (KIT) to solve the Black-Scholes Fractional Partial Differential Equation (FPDE) for the Option Pricing Model (OPM). The Black-Scholes FPDE approach solution can be used to build a buy and sell option pricing model. Numerical simulation results show that this method has an accurate performance in determining option pricing.

Keywords: price of buy and sell options; fractional partial differential equation; Black-Scholes; Kamal integral transform; Adomian decomposition method.

Mathematics Subject Classification (2010): 70K75, 93A10, 35Q91, 34A08, 34K37.

¹ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia.

² Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Indonesia.

³ Faculty of Informatics and Computing, University Sultan Zainal Abidin, Gong Badak, 21300, Terenggan, Malaysia.

 $^{^4}$ Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya, Jawa Barat 46196, Indonesia

^{*} Corresponding author: mailto:muhamad.deni@unpad.ac.id