A DC Algorithm for Solving non-Uniquely Solvable Absolute Value Equations

N. Anane*, Z. Kebaili and M. Achache
Fundamental and Numerical Mathematics Laboratory, Ferhat Abbas University, Setif 1, Setif 19000, Algeria.

Received: January 19, 2023; Revised: March 20, 2023

Abstract

In this paper, we deal with the solution of non-uniquely solvable absolute value equations (AVE) of the form $A x-B|x|=b$, where $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$. To do so, a non-convex quadratic optimization is considered, where its first-order optimality conditions are reduced to AVEs. Therefore, solving the AVE is equivalent to computing the local minimum of the non-convex quadratic optimization. Next, by exploiting the technique of DC programming, a reformulation of the latter as a DC program is presented. The resulting DC algorithm (DCA) is simple and consists of solving a successive linear system of equations. Numerical experiments on some nonuniquely solvable AVE problems are given to illustrate the efficiency of this approach.

Keywords: absolute value equations; DC programming; linear system; nonlinear modes; nonlinear systems in control theory.

Mathematics Subject Classification (2010): 90C50, 90C33, 14C20, 70K75, 93C10.

1 Introduction

In this paper, we consider the absolute value equation (AVE) of the form

$$
\begin{equation*}
A x-B|x|=b, \tag{1}
\end{equation*}
$$

where $A, B \in \mathbb{R}^{n \times n}, b, x \in \mathbb{R}^{n}$ and $|x|$ denotes the component-wise absolute value of the vector x. When $B=I$, the AVE (1) reduces to a special form

$$
\begin{equation*}
A x-|x|=b \tag{2}
\end{equation*}
$$

[^0]
[^0]: * Corresponding author: mailto:nasimaannan@gmail.com.

