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1 Introduction

During the last decades, the analysis of mathematical models in Contact Mechanics
is rapidly growing. These models are suggested for different materials using different
boundary conditions modelling friction, lubrication, adhesion, wear, damage, etc.

The aim of this paper is to model and establish the variational analysis of a contact
problem for viscoelastic materials within the infinitesimal strain theory. The process
is supposed to be subject to thermal effects, friction and wear of contacting surfaces.
Mathematical models in Contact Mechanics can be found in [3, 4, 9, 11,13].

Wear of surfaces is the degradation phenomenon of the superficial layer caused by
many factors such as pressure, lubrication, friction and corrosion. Moreover, wear is a
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loss of use as a result of plastic deformations, material removal or fractures. Analysis of
contact problems with wear can be found in [6, 7, 12,16].

The constitutive laws with k internal variables have been used in various publications
in order to model the effect of internal variables in the behavior of real bodies like metals,
rocks, polymers and so on, for which the rate of deformation depends on the internal
variables. Some of the internal state variables considered by many authors are the spa-
tial display of dislocation, the work-hardening of materials. Here, we consider a general
model for the dynamic process of a bilateral frictional contact between a deformable
body and an obstacle which results in the wear of the contacting surface. Recent mod-
els of frictional contact problems can be found in [2, 11, 14, 15]. The material obeys a
viscoelastic constitutive law with thermal effects. Models taking into account thermal
effects can be found in [5,12]. We derive a variational formulation of the problem which
includes a variational second order evolution inequality. We establish the existence and
the uniqueness of a weak solution of the problem. The idea is to reduce the second order
evolution nonlinear inequality of the system to the first order evolution inequality. After
this, we use classical results on first order evolution nonlinear inequalities, a parabolic
variational inequality and equations and the fixed point arguments. The novelty of this
paper consists in the coupling of k internal state variable, the thermal effect and wear.

The paper is structured as follows. In Section 2, we present the thermo-viscoelastic
contact model with friction and provide comments on the contact boundary conditions.
In Section 3, we list the assumptions on the data and derive the variational formulation.
In Section 4, we present our main results on existence and uniqueness which state the
unique weak solvability.

2 Problem Statement

The physical setting is the following. A viscoelastic body occupies a bounded domain
Ω ⊂ Rd (d = 2, 3) with a smooth Γ. The body is acted upon by body forces of density
f0. It is also constrained mechanically on the boundary. We consider a partition of Γ
into three disjoint measurable parts Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. Let T > 0
and let [0, T ] be the time interval of interest. We assume that the body is fixed on
Γ1, surface traction of density f2 acts on Γ2 and a body force of density f0 acts in
Ω. Moreover, the process is dynamic, and thus the inertial terms are included in the
equation of motion. Then, the classical formulation of the mechanical contact problem
of a thermo-visco-elastic material with an internal state variable is as follows.

Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ : Ω ×
[0, T ] → Sd, an internal state variable field k : Ω × [0, T ] → Rm, a temperature field
θ : Ω× [0, T ] → R+ and the wear ω : Γ3 × [0, T ] → R+ such that

σ(t) = A(ε(u̇(t))) + F(ε(u(t))) +

t∫
0

B(t− s)ε(u(s))ds− θ(t)M, in Ω× [0, T ] (1)

.

k (t) = ϕ
(
σ (t)−Aε

( .
u (t)

)
, ε (u (t)) , k (t)

)
, (2)
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θ̇ − div (Kc∇θ) = −M∇u̇+ q, (3)

Div σ + f0 = ρü in Ω× (0, T ), (4)

u = 0 on Γ1 × (0, T ), (5)

σν = f2 on Γ2 × (0, T ), (6){
σν = −α

∣∣ .uν

∣∣ , |στ | = −µσν ,
στ = −λ

( .
uτ − v∗

)
, λ ≥ 0,

.
ω = −kυ∗σν , k > 0,

on Γ3 × [0, T ] , (7)

−kij
∂θ

∂xi
υj = ke (θ − θR) − hΓ

(∣∣ .
uΓ

∣∣) on Γ3 × (0, T ), (8)

θ = 0 on Γ1 ∪ Γ2 × (0, T ), (9)

u(0) = u0, u̇(0) = v0, k(0) = k0, θ (0) = θ0 in Ω, (10)

ω(0) = ω0 on Γ3. (11)

First, (1) represents the thermal viscoelastic constitutive law with long-term memory, θ
represents the temperature, M := (mij) represents the thermal expansion tensor. We
denote by ε(u) (respectively, by A, F , B) the linearized strain tensor (respectively, the
viscosity nonlinear tensor, the elasticity operator, the relaxation function), ϕ is also a
nonlinear constitutive function which depends on k. There is a variety of choices for the
internal state variables, for reference in the field, see [8, 10]. Equation (3) describes the
evolution of the temperature field, where Kc := (kij) represents the thermal conductivity
tensor, q is the density of volume heat sources. (4) represents the equation of motion,
where ρ represents the mass density; we mention that Div is the divergence operator. (5)
- (6) are the displacement and the traction boundary condition, respectively. (7) describes
the frictional bilateral contact with wear described above on the potential contact surface.
(8) represents the associated temperature boundary condition on Γ3, where θR is the
temperature of the foundation, and ke is the exchange coefficient between the body and
the obstacle. The equation (9) means that the temperature vanishes on Γ1 ∪Γ2 × (0, T ).
In (10), u0 is the initial displacement, v0 is the initial velocity, k0 is the initial internal
state variable and θ0 is the initial temperature. In (11), ω0 is the initial wear.

3 Variational Formulation and Preliminaries

For a weak formulation of the problem, first, we introduce some notations. The indices i,
j, k, l range from 1 to d and summation over the repeated indices is implied. The index
that follows the comma represents the partial derivative with respect to the corresponding
component of the spatial variable, e.g., ui.j = ∂ui

∂xj
. We also use the following notations:

H = L2(Ω)d,H = {σ = (σij)/σij = σji ∈ L2(Ω)},
H1 = {u = (ui)/ε(u) ∈ H},H1 = {σ ∈ H/Divσ ∈ H}.

The operators of deformation ε and divergence Div are defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Divσ = (σij,j).

The spaces H,H, H1, and H1 are real Hilbert spaces endowed with the canonical inner
products given by
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(u, v)H =
∫
Ω
uividx,∀u, v ∈ H, (σ, τ)H =

∫
Ω
σijτijdx,∀σ, τ ∈ H,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H,∀u, v ∈ H1, (σ, τ)H1

= (σ, τ)H + (Divσ,Divτ)H ,
σ, τ ∈ H1.

We denote by |.|
H

(respectively, by |.|
H

, |.|
H1

, and |.|
H1

) the associated norm on the

space H ( respectively, H, H1, and H1).
The following Green’s formula holds:

(σ, ε(v))H + (Div(σ), v)H =
∫
Γ
σν · vda ∀v ∈ H1(Ω)d,

and for the displacement field, we need the closed subspace of H1 defined by

V = {v ∈ H1(Ω) : v = 0 on Γ1}.

The set of admissible internal state variables is given by

Y = {α = (αi) /αi ∈ L2 (Ω) , 1 ≤ i ≤ m}.
Let us define

E = {η ∈ H1(Ω) : η = 0 on Γ1 ∪ Γ2}.
Since meas(Γ1) > 0, Korn’s inequality holds, i.e., there exists a positive constant Ck,
which depends only on Ω, Γ1, such that

|ε(v)|H ≥ Ck |v|H1(Ω)d , ∀v ∈ V.

On the space V , we consider the inner product and the associated norm given by

(u, v)V = (ε(u), ε(v))H, |v|V = |ε(v)|H ∀u, v ∈ V. (12)

It follows that |.|H1
and |.|V are equivalent norms on V . Therefore (V, |.|V ) is a real

Hilbert space. Moreover, by the Sobolev trace theorem and Korn’s inequality, there
exists a positive constant C0 which depends only on Ω, Γ1 and Γ3 such that

|v|
L2(Γ3)d

≤ C0 |v|V ∀v ∈ V. (13)

In the study of the mechanical problem (1)−(11), we make the following assumptions
that the viscosity operator A : Ω× Sd → Sd satisfies:

a) ∃ LA > 0 : |A (x, ε1)−A (x, ε2)| ≤ LA |ε1 − ε2| ,∀ε1, ε2 ∈ Sd, p.p. x ∈ Ω,

b) ∃ mG > 0 : (A (x, ε1)−A (x, ε2) , ε1 − ε2) ≥ mA |ε1 − ε2|2 ,∀ε1, ε2 ∈ Sd,
c) The mapping x → A (x, ε) is Lebesgue measurable on Ω, ∀ε ∈ Sd,
d) The mapping x 7→ A(x, 0) ∈ H.

(14)
The elasticity operator F : Ω× Sd → Sd satisfies

a) There exists a constant LF > 0 such that
|F (x, ε1)−F (x, ε2)| ≤ LF (|ε1 − ε2|)
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

b) The mapping x → F (x, ε) is Lebesgue measurable
on Ω, for any ε ∈ Sd.

c) The mapping x 7→ F(x, 0) is in H.

(15)
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The relaxation function B : [0, T ]× Ω× Sd → Sd satisfies{
a) Bijkh ∈ W 1.∞(0, T ;L∞(Ω)),
b) B (t)σ · τ = σ · B (t) τ,∀σ, τ ∈ Sd, p.p.t ∈ [0, T ] , p.p.on Ω.

(16)

The function ϕ : Ω× Sd × Sd × Rm → Rm satisfies
a) There exists a constant Lϕ > 0 such that

|ϕ (x, σ1, ξ1, k1)− ϕ (x, σ2, ξ2, k2) | ≤ Lϕ (|σ1 − σ2|+ |ξ1 − ξ2|+ |k1 − k2|) ,
∀σ1, σ2,ε1, ε2 ∈ Sd and k1, k2 ∈ Rm, a.e. x ∈ Ω.

b) For any σ, ε ∈ Sd and k ∈ Rm, x → ϕ(x, σ, ε, k) is Lebesgue measurable on Ω.
c) The mapping x 7→ ϕ(x, 0, 0, 0) is in L2(Ω)m.

(17)
The function hτ : Γ3 × R+ → R+ satisfies a ) There exists a constant Lτ > 0 such that

|hτ (x, r1)− hτ (x, r2)| ≤ Lh |r1 − r2| ∀r1, r2 ∈ R+ , a.e. x ∈ Γ3.
b) x 7→ pτ (., 0) is Lebesgue measurable on Γ3, ∀r ∈ R+.

(18)

For the temperature, we use the following Green’s formula:∫
Ω

θ̇τdx−
∫
Ω

div (Kc∇θ) =

∫
Ω

− (Me∇u̇) τdx+

∫
Ω

qτdx ∀τ ∈ E. (19)

The mass density satisfies

ρ ∈ L∞(Ω), there exists ρ∗ > 0 such that ρ ≥ ρ∗ a.e. x ∈ Ω. (20)

We also suppose that the forces, the tractions, the volume, the surface free charges
densities and the functions α and µ have the regularity f0 ∈ L2(0, T ;H), f2 ∈ L2(0, T ;L2(Γ2)

d),
α ∈ L∞(Γ3) α(x) ≥ α∗ > 0, p.p.on Γ3,
µ ∈ L∞(Γ3), µ(x) > 0, p.p.on Γ3,

(21)

q ∈ W 1,2(0, T ;L2(Ω)), θR ∈ W 1,2(0, T ;L2(Γ3)), ke ∈ L∞(Ω,R+) , (22){
Kc = (kij) , (kij = kji ∈ L∞ (Ω) ,
∀ck ≥ 0, ζi ∈ Rd, kijζiζj ≥ ckζiζj ,

(23)

M = (mij) ,mij = mji ∈ L∞ (Ω) . (24)

The initial data satisfy

u0 ∈ V, v0 ∈ H, θ0 ∈ E, k0 ∈ Y, ω0 ∈ L∞ (Γ3) . (25)

We will use a modified inner product on the Hilbert space, given by

((u, v))H = (ρu, v)H ∀ u, v ∈ H, (26)

and we let ∥.∥H be the associated norm given by

∥v∥H = (ρv, v)
1
2 ∀v ∈ H. (27)
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It follows from assumption (20) that ∥ . ∥H and | · |H are equivalent norms on H, and also
the inclusion mapping of (V, | · |V ) into (H, ∥.∥H) is continuous and dense. We denote by
V ′ the dual space of V . Identifying H with its own dual, we can write the Gelfand triple

V ⊂ H ⊂ V ′.

We use the notation (., .)V ′×V to represent the duality pairing between V ′ and V , recall
that

(u, v)V ′×V = ((u, v))H ∀u ∈ H,∀v ∈ V. (28)

Let f : [0, T ] → V ′ be the function defined by

(f(t), v)V ′×V =

∫
Ω

f0(t).vdx+

∫
Γ2

f2(t).vda ∀ v ∈ V. (29)

Next, we denote by j : L2(Γ3)× V × V → R

j(u, v) =

∫
Γ3

α |uν | (µ |vτ − v∗|) da . (30)

Let φ : V × V → R be the function defined by

φ(u, v) =

∫
Γ3

α |uν | |vν | da, ∀v ∈ V. (31)

Let us introduce the operator A : V → V ′

(Au, v)V ′×V = (A(ε(u)), ε(v))H

for all u, v ∈ V and t ∈ [0, T ]. Note that

f ∈ L2(0, T ;V ′). (32)

Using standard arguments based on Green’s formulas we can derive the following varia-
tional formulation of problem P.

Problem PV. Find a displacement field u : [0, T ] → V , a stress field σ : [0, T ] → H,
an internal state variable field k : [0, T ] → Y , a temperature field θ : Ω × [0, T ] → R+

and the wear ω : Γ3 × [0, T ] → R+ such that

σ(t) = A(ε(u̇(t))) + F(ε(u(t))) +

t∫
0

B(t− s)ε(u(s))ds− θ(t)M, in Ω× [0, T ] , (33)

.

k (t) = ϕ
(
σ (t)−Aε

( .
u (t)

)
, ε (u (t)) , k (t)

)
, (34)

(ü(t), w − u̇(t))V ′×V + (σ(t), ε(w − .
u(t)))H + j(

.
u,w)− j(

.
u,

.
u(t)) + φ(

.
u,w)− φ(

.
u,

.
u(t))

≥
(
f(t), w − .

u(t)
)
, ∀u,w ∈ V,

(35)

θ̇ (t) +Kθ (t) = R
.
u (t) +Q (t) t ∈ (0, T ), (36)

.
ω = −kυ∗σν , (37)

u(0) = u0, u̇(0) = v0, k(0) = k0, θ (0) = θ0, (38)
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where Q : [0, T ] → E′,K : E → E′, R : V → E′ are given by

(Q(t), µ)
E′×E

=

∫
Γ3

keθR (t)µda+

∫
Ω

q (t)µdx, (39)

(Kτ, µ)E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂µ

∂xi
dx+

∫
Γ3

keτµda, (40)

(Rv, µ)
E′×E

=

∫
Γ3

hτ (|vτ |)µda−
∫
Ω

(M∇v) dx (41)

for all v ∈ V, µ, τ ∈ E.
The proof of the existence and uniqueness of solution to problem PV will be given in

the next section.

4 Existence and Uniqueness Result

Now, we propose our existence and uniqueness result.

Theorem 4.1 Let the assumptions (14)−(25) hold. Then the problem has a unique
solution {u, σ, k, ω, θ} satisfying

u ∈ C1 (0, T ;H) ∩W 1.2 (0, T ;V ) ∩W 2.2 (0, T ;V ′) (42)

σ ∈ L2(0, T ;H), Divσ ∈ L2(0, T ;V ′), (43)

k ∈ W 1,2(0, T ;Y ), (44)

ω ∈ C1(0, T ;L2(Γ3)), (45)

θ ∈ W 1,2(0, T ;E′) ∩ L2(0, T ;E) ∩ C(0, T ;L2 (Ω)). (46)

We conclude that under the assumptions (14)−(25), the mechanical problem (1)-(11)
has a unique weak solution with the regularity (42)-(46).

The proof of this theorem will be carried out in several steps.
The first step: let g ∈ L2(0, T ;V ) and η =

(
η1, η2

)
∈ L2 (0, T ;V ′ × Y ) be given,

and prove that there exists a unique solution ugη of the following intermediate problem.
Problem PVgη. Find the displacement field ugη : [0, T ] → V such that for a.e.

t ∈ (0, T ) ,

{
(ügη(t), w − u̇gη(t))V ′×V + (Aε(u̇gη(t)), ε(w − .

ugη(t)))H+(
η1, w − .

ugη(t)
)
V ′×V

+ j(g, w)− j(g,
.

ugη(t)) ≥
(
fgη(t), w − .

ugη(t)
)
, ∀w ∈ V,

(47)

ugη(0) = u0, u̇gη(0) = v0. (48)

We define fgη(t) ∈ V for a.e.t ∈ [0.T ] by

(fgη(t), w)V ′×V =
(
f(t)− η1 (t) , w

)
V ′×V

, ∀w ∈ V. (49)

From (29), we deduce that
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fη ∈ L2(0, T ;V ′). (50)

Let now uη : [0.T ] → V be the function defined by

uη (t) =

∫ t

0

vη (s) ds+ u0,∀t ∈ [0, T ] . (51)

Concerning Problem PVgη, we have the following result.

Lemma 4.1 There exists a unique solution to problem PVgη with the regularity.

vη ∈ L2(0, T ;V ) and v̇η ∈ L2(0, T ;V ′). (52)

Proof. The proof by nonlinear first order evolution inequalities is given in [9].

The second step: we use the displacement ugη to consider the following variational
problem.

Let us consider now the operator Λη (g) : L2(0, T ;V ) → L2(0, T ;V ) defined by

Λη (g) = vgη . (53)

We have the following lemma.

Lemma 4.2 The operator Λη has a unique fixed point g∗η ∈ L2(0, T ;V ).

Proof. Let g1, g2 ∈ L2(0, T ;V ) and let η =
(
η1, η2

)
∈ L2 (0, T ;V ′ × Y ). Using

similar arguments as in (47), (51), we find

(
.
v1 (t)−

.
v2 (t) , v1 (t)− v2 (t)) + (Aε (v1 (t))−Aε (v2 (t)) , ε (v1 (t))− ε (v2 (t)))+

+j(g1, v1 (t))− j(g1, v2 (t))− j(g2, v1 (t)) + j(g2, v2 (t)) ≤ 0.
(54)

From the definition of the functional j given by (30), we have

j(g1, v2 (t))− j(g1, v1 (t))− j(g2, v2 (t)) + j(g2, v1 (t)) =
∫
Γ3

(α |g1ν | − α |g2ν |)
(µ |v1τ − v∗| − µ |v2τ − v∗|) da. (55)

From (13), (21) we find

j(g1, v2 (t))− j(g1, v1 (t))− j(g2, v2 (t)) + j(g2, v1 (t)) ≤ C |g1 − g2|V |v1 − v2|V . (56)

Integrating the inequality (54) with respect to time, using the initial conditions v2 (0) =
v1 (0) = v0, using (14) , (56) and the inequality

2ab ≤ C

mA
a2 +

mA

C
b2,

we find

|v2 (t)− v1 (t)|2V ≤ C

∫ t

0

|g2 (s)− g1 (s)|2V ds. (57)

From (53) and (57), we find that

|Ληg2 (t)− Ληg1 (t)|2V ≤ C

∫ t

0

|g2 (s)− g1 (s)|2V ds.
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Reiterating this inequality m times, we obtain∣∣Λm
η g2 (t)− Λm

η g1 (t)
∣∣
L2(0,T ;V )

≤ CmTm

m!
|g2 (t)− g1|L2(0,T ;V ) . (58)

Since lim
m→+∞

CmTm

m! = 0, it follows that exists a positive integerm such that CmTm

m! < 1

and, therefore, (58) shows that Λm
η is a contraction on the Banach space L2(0, T ;V ).

Thus, from Banach’s fixed point theorem, the operator Λη has a unique fixed point g∗η ∈
L2(0, T ;V ).

Lemma 4.3 Now, define kη ∈ W 1,2(0, T ;Y ) by

kη (t) = k0 +

∫ t

0

η2 (s) ds. (59)

Then there exists C > 0 such that

|k1 (s)− k2 (s)|2
Y
≤ C

∫ t

0

∣∣η21 (s)− η22 (s)
∣∣2
Y ′ ds. (60)

In the third step, we use the displacement field uη obtained in Lemma 4.1 and kη defined
in (59) to consider the following variational problem for the temperature field.

Problem PVθ. Find θη : [0, T ] → E′ satisfying for a.e. t ∈ (0, T ),

θ̇η(t) +Kθη (t) = Ru̇η (t) +Q (t) t ∈ (0, T ), in E′, (61)

θη (0) = θ0. (62)

Lemma 4.4 Problem PVθ has a unique solution

θη ∈ W 1,2(0;T ;E
′
) ∩ L2(0;T ;E) ∩ C(0;T ;L2(Ω)), ∀η ∈ L2(0, T ;V ′),

satisfying

|θη1 (t)− θη2 (t) |2L2(Ω) ≤ C

∫ t

0

|υ1(s)− υ2(s)|2V ds ∀ t ∈ (0, T ). (63)

Proof. The existence and uniqueness result verifying (61) follows from the classical

result on the first order evolution equation, applied to the Gelfand evolution triple

E ⊂ F ≡ F
′
⊂ E

′
.

We verify that the operator K is linear continuous and strongly monotone. Now
from the expression of the operator R, vη ∈ W 1,2(0, T ;V ) ⇒ Rvη ∈ W 1,2(0, T ;F ), as
Q ∈ W 1,2(0, T ;E), then Rvη +Q ∈ W 1,2(0, T ;E), we deduce (63), (See [1]).

Finally, as a consequence of these results, and using the properties of F , E , G, ϕ, and
j for t ∈ [0, T ], we consider the element

Λη (t) =
(
Λ1η (t) ,Λ2η (t)

)
∈ V ′ × Y, (64)(

Λ1(η), w
)
V ′×V

= (F(ε(uη(t)), w)V +

+(
t∫
0

B(t− s)ε(uη(s))ds, w)V − (θη(t)M,ε(w))H +φ(
.
u,w) ∀w ∈ V,

(65)

Λ2η (t) = ϕ (ση (t) , ε (uη (t)) , kη (t)) . (66)
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Here, for every η ∈ L2(0, T ;V ′ × Y ), uη, θη represent the displacement field and the
temperature field obtained in Lemmas 4.1, 4.4, respectively, and kη is the internal state
variable given by (59). We have the following result.

Lemma 4.5 The operator Λ has a unique fixed point η∗ ∈ L2(0, T ;V ′ × Y ).

Proof. Let η1, η2 ∈ L2(0, T ;V ′ × Y ). Write for i = 1.2, uηi = ui, u̇ηi = vηi = vi,
σηi = σi, kηi = ki, θηi = θi. Using (12), (15), (16), (24), (31), we have∣∣Λ1η1 (t)− Λ1η2 (t)

∣∣2
V ′ ≤ C(|u1 (t)− u2 (t)|2V +

∫ t

0
|u1 (s)− u2 (s)|2V ds+

|θ1 (t)− θ2 (t)|2L2(Ω + |v1 (t)− v2 (t)|2V ).
(67)

By similar arguments, from (66), (33) and (17), it follows that∣∣Λ2η1 (t)− Λ2η2 (t)
∣∣2
Y
≤ C(|σ1 (t)− σ2 (t)|2H + |u1 (t)− u2 (t)|2V + |k1 (t)− k2 (t)|2

Y
).
(68)

Taking into account that

σi(t) = A(ε(
.
ui(t))) + η1i (t) , ∀t ∈ [0, T ], (69)

by (14), and using (69), we find

|σ1 (t)− σ2 (t)|2H1
≤ C

(
|v1 (t)− v2 (t)|2V +

∣∣η11 (t)− η12 (t)
∣∣2
V ′

)
. (70)

So∣∣Λ2η1 (t)− Λ2η2 (t)
∣∣2
Y

≤ C(|v1 (t)− v2 (t)|2V +
∣∣η11 − η12

∣∣2
V ′ + |u1 (t)− u2 (t)|2V

+ |k1 (t)− k2 (t)|2
Y
). (71)

Consequently,

|Λη1 (t)− Λη2 (t)|2V ′×Y ≤ C(|u1 (t)− u2 (t)|2V + |k1 (t)− k2 (t)|2
Y
+

∣∣η11 (t)− η12 (t)
∣∣2
V ′

+ |θ1 (t)− θ2 (t)|2L2(Ω + |v1 (t)− v2 (t)|2V +
∫ t

0
|u1 (s)− u2 (s)|2V ds.

(72)
Since u1 and u2 have the same initial value, we get

|u1 (t)− u2 (t)|2V ≤ C

∫ t

0

|v1 (s)− v2 (s)|2V ds.

From this inequality, (72) and (63), we obtain

|Λη1 (t)− Λη2 (t)|2V ′×Y ≤ C(
∫ t

0
|v1 (s)− v2 (s)|2V ds+ |v1 (t)− v2 (t)|2V +

|k1 (t)− k2 (t)|2
Y
+
∣∣η11 (t)− η12 (t)

∣∣2
V ′),∀t ∈ [0, T ] .

Moreover, from (54), we obtain( .
v1 (t)−

.
v2 (t) , v1 (t)− v2 (t)

)
+ (Aε (v1 (t))−Aε (v2 (t)) , ε (v1 (t))− ε (v2 (t)))+

+ (η1 (t)− η2 (t) , v1 (t)− v2 (t)) ≤ j(v1 (t) , v2 (t))− j(v1 (t) , v1 (t))
−j(v2 (t) , v2 (t)) + j(v2 (t) , v1 (t)).

(73)
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From the definition of the functional j given by (30), and using (13),(23), we get

j(v1 (t) , v2 (t))−j(v1 (t) , v1 (t))−j(v2 (t) , v2 (t)) + j(v2 (t) , v1 (t)) ≤ C |v1 (t)− v2 (t)|2V .
(74)

Integrating the inequality(73) with respect to time, using the initial conditions v2(0) =
v1(0) = v0, using (14),(74) and using the Cauchy-Schwartz inequality and the inequality

2ab ≤ mAa
2 +

1

mA
b2,

we find ∫ t

0

|v1 (s)− v2 (s)|2V ds ≤ C

∫ t

0

∣∣η11 (s)− η12 (s)
∣∣2
V ′ ds. (75)

It follows now from (59),(63) and (75) that

|Λη1 (t)− Λη2 (t)|2V ′×Y ≤ C

∫ t

0

|η1 (s)− η2 (s)|2V ′×Y ′ ds.

Reiterating the previous inequality n times, we find that

|Λnη1 − Λnη2|2L2(0,T ; V ′×Y ) ≤
CnTn

n!

∫ t

0
|η1 (s)− η2 (s)|2V ′×Y ds.

This inequality shows that for n large enough, the operator Λn is a contraction on the
Banach space L2 (0, T ; V ′ × Y ) , and so Λ has a unique fixed point. Next, we consider
the operator L : C(0, T ;L2(Γ3)) → C(0, T ;L2(Γ3)) defined by

Lω (t) = −kυ∗
∫ t

0

σν (s) ds,∀t ∈ [0, T ]. (76)

Lemma 4.6 The operator L : C(0, T ;L2(Γ3)) → C(0, T ;L2(Γ3)) has a unique point
element ω∗ ∈ C(0, T ;L2(Γ3)) such that Lω∗ = ω∗.

Proof. Using ω1, ω2 ∈ C(0, T ;L2(Γ3)), we have

|Lω1 (t)− Lω2 (t)|2L2(Γ3)
≤ kυ∗

∫ t

0

|σ1 (s)− σ2 (s)|2 ds.

From (12) and using (14)-(16), we find

|σ1 (t)− σ2 (t)|2H1
≤ C(|u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V +∫ t

0
|u1 (s)− u2 (s)|2V ds+ |θ1 (t)− θ2 (t)|2H1(Ω)).

(77)

Using (63), we obtain

|σ1 (t)− σ2 (t)|2H1
≤ C(

∫ t

0
|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V +

|v1 (t)− v2 (t)|2V +
∫ t

0
|v1 (s)− v2 (s)|2V ds.

(78)

From (51), we have∫ t

0
|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V ≤

C
∫ t

0
|v1 (s)− v2 (s)|2V ds.
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So ∫ t

0
|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V ≤

C(
∫ t

0
|v1 (s)− v2 (s)|2V ds+ |ω1 (t)− ω2 (t)|2L2(Γ3)

).
(79)

By Gronwall’s inequality, we find∫ t

0

|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V ≤ C |ω1 (t)− ω2 (t)|2L2(Γ3)
.

So, we have

|σ1 (t)− σ2 (t)|2H1
≤ C

∫ t

0

|ω1 (s)− ω2 (s)|2L2(Γ3)
ds. (80)

Using (80), we find

|Lω1 (t)− Lω2 (t)|L2(Γ3)
≤ C

∫ t

0

|ω1 (s)− ω2 (s)|L2(Γ3)
ds.

Reiterating the previous inequality p times, we find that

|Lω1 (t)− Lω2 (t)|L2(Γ3)
≤ (Ct)

p

p!
|ω1 (t)− ω2 (t)|L2(Γ3)

.

This inequality shows that for p large enough, the operator Lp is a contraction on the
Banach space C(0, T ;L2(Γ3)), and so L has a unique fixed point ω∗ ∈ C(0, T ;L2(Γ3)).

Now we have all the ingredients to prove Theorem 4.1.

Existence. Let g∗ = g∗η∗ be the fixed point of Λη∗ defined by Lemma 4.2, let

η∗ =
(
η1∗, η

2
∗
)
∈ L2 (0, T ;V ′ × Y ) be the fixed point of Λ defined by (65) and (66),

kη∗ (t) = k0 +
∫ t

0
η2∗ (s) ds, and let ω∗ ∈ C(0, T ;L2(Γ3)) be the fixed point L defined

by (76) and let (uη∗ , θη∗) be the solution to Problems PVgη, PVθ for η = η∗, that is,
u = uη∗ , k = kη∗ , θ = θη∗ , and

σ(t) = A(ε(u̇(t))) + F(ε(u(t))) +

t∫
0

B(t− s)ε(u(s))ds− θ(t)M.

It results from (65) and (66), for Λ1(η∗) = η1 and Λ2(η∗) = η2, that (u, σ, k, θ, ω) is a
solution of Problem PV. The regularities (42)-(46) follow from Lemmas 4.1, 4.3, 4.4 and
4.6.

Uniqueness. The uniqueness of the solution follows from the uniqueness of the fixed
point of the operators Λη, Λ and L.

5 Concluding Remark

Scientific research and recent papers in mechanics are articulated around two main com-
ponents, one devoted to the laws of behavior and the other devoted to the boundary
conditions imposed on the body.

The constitutive laws with internal variables have been used in various publications
in order to model the effect of internal variables on the behavior of real bodies like
metals, rocks, polymers and so on, for which the rate of deformation depends on the
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internal variables. Some of the internal state variables considered by many authors are
the spatial display of dislocation, the work-hardening of materials. Our model is obtained
by combining the thermoviscoelastic constitutive law with a long memory term, wear,
friction and the internal state variable k. The model is developed to describe the self-
heating and stress-strain behavior of thermoviscoelastic polymers under tensile loading
when the rate of deformation depends on the internal variable k.

Mathematically, the idea is to reduce the second order nonlinear evolution inequality
of the system to the first order evolution inequality. After this, we use classical results on
first order evolution nonlinear inequalities, parabolic inequalities, differential equations
and fixed point arguments.
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