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Abstract: Water scarcity is one of the major problems faced by all those living
around the world. So, there should be a multiple way approach to be adopted to
conquer the water scarcity effects in future. Keeping this in mind, we developed a
mathematical model and demonstrated the effect of water scarcity through a deter-
ministic and stochastic formats. The equilibrium point of the model is found and its
stability is analyzed analytically. Numerical simulation of both the deterministic and
the stochastic model is exhibited to validate our analytical findings. The attainment
level of the equilibrium point is demonstrated by using the Runge-Kutta method.
The comparison is also made for this equilibrium. The effect of few parameters of the
model was exhibited in different figures in the numerical simulation section. Particu-
larly the effect of the water draining rate and the rate of human population affected
by water scarcity on each compartment were shown visually through plotting time
vs particular compartments. Our results show the better ways for water recovery
through the compartments of the model.
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1 Introduction

Water shortages are a severe shortage in which the rates of water availability do not
meet certain basic requirements specified. Water is one of the most essential natural
renewable resources, and no one, neither humans nor animals, can live without it. Water
comes from numerous sources, including runoff, groundwater, and surface water. The
main contributor to the world growth and development are water supplies [1].

The paper concludes that there is a fixed amount of water on our planet. But so
little of it is at our disposal to use. 70 percent of the earth surface is filled with 1400
million cubic kilometers of water (m km3): 2.5% is freshwater and 97.5% is saltwater,
2.5 percent is groundwater, 0.3 percent are lakes and rivers, 68.9 percent is frozen in
ice caps. One-third of the population of the world currently resides in countries where
the quality of the water is not adequately compromised, but by 2025, it is projected to
increase by two-thirds [2].

The primary objective of this paper is to determine the scarcity of water in selected
Middle East countries. For Iran, Iraq, and Saudi Arabia, the Anomaly Standardized
Precipitation (WASP) index was spatially computed from 1979 to 2017. The water
scarcity situation has been investigated in cities with a population of more than one
million. This was done by using the methodology of the composite index to make water-
related statistics more intelligible. A forecast was created for the years 2020 to 2030 to
show potential improvements in the supply and demand for water in selected Middle East
countries. With rising urbanization, there is a moderate to high water shortage risk for
all countries at present [3]. Water shortage is a common issue in many parts of the world.
Many previous water shortage evaluation strategies only considered the volume of water,
and overlooked the quality of water. Moreover, the Environmental Flow Criterion (EFR)
was not usually considered directly in the evaluation. In this paper, we have developed
an approach to assess water scarcity by considering both water quantity and quality [4].

The formulation of a corruption control model and its analysis using the theory of
differential equations are presented in paper [5]. The equilibria of the model and the
stability of these equilibria are discussed in detail. Yadav, A. et al. [6] propose and
evaluate mathematical models to research the dynamics of smoking activity under the
influence of educational programs and also the willingness of the person to quit smoking.
A nonlinear mathematical model is formulated and analyzed in paper [7] to research the
relationship between the criminal population and non-criminal population by taking into
account the rate of non-monotone incidence. See also [8, 9].

[10] suggested and analyzed a mathematical model using oncolytic virotherapy for
cancer care. The growth of tumor cells is presumed to obey logistic growth and the
interaction between tumor cells and viruses is of saturation type. Several nonlinear
mathematical models are proposed and analyzed in paper [11] to study the spread of
asthma due to inhaled industrial pollutants [12,13] are also referenced.

This paper aims to illustrate the requirements to and the availability of water. As a
result of growing population, rising urbanization, and rapid industrialization, combined
with the need to increase agricultural production, water demand has been found to
increase significantly. Water per capital supply is also slowly declining. More than 2.2
million people are expected to die every year from diseases related to polluted drinking
water and poor sanitation.
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As mentioned above, we have analyzed and proved that water scarcity is one of the
major problems that has been proved statistically and theoretically. We are here giving
a new try to prove the same by using the mathematical model.

Using the principle of an ordinary differential equation, we analyze our model and
record comprehensive results of numerical simulations to support the analytical results.
First, our model is expanded to the model of stochastic differential equations. The out-
comes of deterministic and stochastic models were also compared. The remainder of this
paper is structured as follows, Section 2 explains the model and the presence of equi-
libria and illustrates local stability, global equilibrium stability. Section 3 addresses the
remaining stochastic model. Section 4 displays the effects of simulation for deterministic
and stochastic models. Our results are summarized in Section 5 as a conclusion.

2 The Model and Analysis

We proposed and analyzed a non linear model for water scarcity by dividing into four
different compartments [14], namely, the total usage of water (W ), the human (H),
water scarcity (Ws), water recover (Wr). All variables are time t functions. The transfer
diagram of the model is described in Figure 1. The mathematical model is suggested as
follows, in view of the above considerations:

dW
dt = Λ− α1W − α2WH + δ2Wr,

dH
dt = α2WH − βH − µH − µ1H,

dWs

dt = α1W + βH − δ1Ws,

dWr

dt = δ1Ws − δ2Wr.

(1)

In Table 1, the parameters used in model (1) are defined.

Table 1: Description of parameters.

Parameter Description

Λ Recruitment rate
α1 Water draining rate
α2 The rate of consumption of water by a human
δ1 The recovery rate of water resource
δ2 The rate at which water becomes normal level water
β Rate of human population affected by water scarcity
µ Natural death rate
µ1 Death rate due to water scarcity

2.1 Existence of equilibria

Our model’s equilibrium is calculated by setting the right-hand side of the model to
zero [15]. The system has the following equilibria, namely, the endemic equilibrium (EE)
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Figure 1: Transfer Diagram of the Model.

E∗ (W ∗, H∗,W ∗
s ,W

∗
r ), where

W ∗ =
k1
α2

, (2)

H∗ =
Λ

k1 − β
, (3)

W ∗
s =

Λα2β − α1k1β + α1k
2
1

δ1α2(k1 − β)
, (4)

W ∗
r =

Λα2β − α1k1β + α1k
2
1

δ2α2(k1 − β)
, (5)

where k1 = β + µ+ µ1.

2.2 Stability analysis

The system’s variational matrix is given by

M =


−(α1 + α2H) −α2W 0 δ2

α2H α2W − k1 0 0
α1 β −δ1 0
0 0 δ1 −δ2

.

2.2.1 Stability analysis of EE point

The variation matrix M* corresponding to the point E∗ of the endemic equilibrium, is
given by

M∗ =


n11 n12 0 n14

n21 n22 0 0
n31 n32 n33 0
0 0 n43 n44

,

where
n11 = −(α1 + α2H), n12 = −α2W, n14 = δ2
n21 = α2H, n22 = α2W − k1
n31 = α1, n32 = β, n33 = −δ, n43 = δ1, n44 = −δ2.
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The bi-quadratic equation is

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0,

where

a1 = −(n11 + n22 + n33 + n44),
a2 = n11n22 + n22n33 + n33n44 + n11n33 + n11n44 + n22n44 − n12n21,

a3 = −n11n22n33 − n11n22n44 − n11n33n44 − n22n33n44 + n12n21n33

+ n12n21n44 − n14n43n31,
a4 = n11n22n33n44 + n14n22n31n43 − n14n21n32n43 − n12n21n33n44.

E∗ will be locally asymptotically stable by using the Routh-Hurwitz criteria if the
following conditions are satisfied: a1 > 0, a3 > 0, a1a2a3 − a23 − a21a4 > 0, a3 > 0.

If two other inequalities referred to above are satisfied, E∗ is locally asymptotically
stable [16].

2.2.2 Global stability of endemic equilibrium

In order to analyze the global stability of the endemic equilibrium E∗, we adopt the
approach developed by Korobeinikov [8] and successfully applied in [9]. E∗ exists for all
x, y, z, u > ϵ, for some ϵ > 0.

Let k1y = [β+µ+µ1]y = g(x, y, z, u) be positive and monotonic functions in R4
+ (for

more details, see [8, 9]).

V (x, y, z, u) = x−
∫ x

ϵ

g(x∗, y∗, z∗, u∗)

g(η, y∗, z∗, u∗)
dη + y −

∫ y

ϵ

h(x∗, y∗, z∗, u∗)

h(x∗, η, z∗, u∗)
dη

+z −
∫ z

ϵ

h(x∗, y∗, z∗, u∗)

h(x∗, y∗, η, u∗)
dη + u−

∫ w

ϵ

g(x∗, y∗, z∗, u∗)

h(x∗, y∗, z∗, η)
dη. (6)

If g(x, y, z, u) is monotonic with respect to its variables, then the state E is the only
extreme and the global minimum of this function. So, obviously,

∂V

∂x
= 1− g(x∗, y∗, z∗, u∗)

g(x, y∗, z∗, u∗)
,
∂V

∂y
= 1− h(x∗, y∗, z∗, u∗)

h(x∗, y, z∗, u∗)
,

∂V

∂z
= 1− h(x∗, y∗, z∗, u∗)

h(x∗, y∗, z, u∗)
,
∂V

∂u
= 1− g(x∗, y∗, z∗, u∗)

g(x∗, y∗, z∗, u)
. (7)

The functions g(x, y, z, u) and g(x, y, z, u) grow monotonically, then have only one
stationary point. Further, since

∂2V

∂x2
=

g(x∗, y∗, z∗, u∗)

[g(x, y∗, z∗, u∗)]2
.
g(x, y∗, z∗, u∗)

∂x
,

∂2V

∂y2
=

g(x∗, y∗, z∗, u∗)

[g(x∗, y, z∗, u∗)]2
.
g(x∗, y, z∗, u∗)

∂y
,

∂2V

∂z2
=

g(x∗, y∗, z∗, u∗)

[g(x∗, y∗, z, u∗)]2
.
g(x∗, y∗, z, u∗)

∂z
,
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∂2V

∂u2
=

g(x∗, y∗, z∗, u∗)

[g(x∗, y∗, z∗, u)]2
.
g(x∗, y∗, z∗, u)

∂u

are non negative, g(x, y, z, u) and h(x, y, z, u) have minimum. That is,

V (x, y, z, u) ≥ V (x∗, y∗, z∗, u∗)

and hence, V is a Lyapunov function, and its derivative is given by

dV

dt
= x′ − x′ g(x

∗, y∗, z∗, u∗)

g(x, y∗, z∗, u∗)
+ y′ − y′

h(x∗, y∗, z∗, u∗)

g(x∗, y, z∗, u∗)
+ z′ − z′

g(x∗, y∗, z∗, u∗)

g(x∗, y∗, z, u∗)
+

u′ − u′ g(x
∗, y∗, z∗, u∗)

g(x, y∗, z∗, u)

= α1x
∗(1− x

x∗ )

(
1− g(x∗, y∗, z∗, u∗)

g(x, y∗, z∗, u∗)

)
− δ2u

∗(1− u

u∗ )

(
1− g(x∗, y∗, z∗, u∗)

g(x, y∗, z∗, u∗)

)
+k1y

∗(1− y

y∗
)

(
1− h(x∗, y∗, z∗, u∗)

h(x∗, y, z∗, u∗)

)
− α1x

∗(1− x

x∗ )

(
1− h(x∗, y∗, z∗, u∗)

h(x∗, y∗, z, u∗)

)
−βy∗(1− y

y∗
)

(
1− h(x∗, y∗, z∗, u∗)

h(x∗, y∗, z, u∗)

)
+ δ1z

∗(1− z

z∗
)

(
1− h(x∗, y∗, z∗, u∗)

h(x∗, y∗, z, u∗)

)
−δ1z

∗(1− z

z∗
)

(
1− g(x∗, y∗, z∗, u∗)

g(x∗, y∗, z∗, u)

)
+ δ2u

∗(1− u

u∗ )

(
1− g(x∗, y∗, z∗, u∗)

g(x∗, y∗, z∗, u)

)
+g(x∗, y∗, z, u)

(
1− g(x, y, z, u)

g(x∗, y∗, z, u)

)(
1− g(x∗, y∗, z∗, u∗)

g(x, y∗, z∗, u∗)

)
−g(x∗, y∗, z, u)

(
1− g(x, y, z, u)

g(x∗, y∗, z, u)

)(
1− g(x∗, y∗, z∗, u∗)

g(x∗, y, z∗, u∗)

)
. (8)

It is noted here that g(x∗, y∗, z∗, u∗) = h(x∗, y∗, z, u) is explicitly given as g and h in
terms of x, y, z and u.

Since E > 0, the function g(x, y, z, u) is concave with respect to y, z and u and

∂2g(x, y, z, u)

∂y2
≤ 0,

∂2g(x, y, z, u)

∂z2
≤ 0,

then
dV

dt
≤ 0 for all x, y, z, u > 0. Also, the monotonicity of g(x, y, z, u) with respect to

x, y, z and u ensures that

(1− x
x∗ )

(
1− g(x∗,y∗,z∗,u∗)

g(x,y∗,z∗,u∗)

)
≤ 0, (1− y

y∗ )
(
1− h(x∗,y∗,z∗,u∗)

h(x∗,y,z∗,u∗)

)
≤ 0,

(1− z
z∗ )

(
1− h(x∗,y∗,z∗,u∗)

h(x∗,y∗,z,u∗)

)
≤ 0, (1− u

u∗ )
(
1− g(x∗,y∗,z∗,u∗)

g(x∗,y∗,z∗,u)

)
≤ 0

(9)

holds for all x, y, z, u > 0. Thus, we establish the following result.

Theorem 2.1 The endemic equilibrium E∗ of model (1) is globally asymptotically
stable whenever conditions outlined in Eq. (9) are satisfied [17].
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3 Stochastic Model

We are expanding our deterministic model to stochastic systems here, as stochastic mod-
els are more able to capture random variations of the biological dynamics of the prob-
lem. The derivation of an SDE model is based on the method developed by Yuan et
al. [18]. Let X(t) = (X1(t), X2(t), X3(t), X4(t))

T be a continuous random variable for
(W (t), H(t),Ws(t),Wr(t))

T and T denote the transpose of a matrix.

Let ∆X = X(t+∆t)−X(t) = (∆X1,∆X2,∆X3,∆X4)
T denote the random vector for

the change in random variables during the time interval ∆t. Here, we’ll write transition
maps that define all possible changes in the SDE model between states. Based on our
ODE model system (1), here we see that within a small time interval ∆t, there are
9 possible changes between states. Changes in the state and their probabilities are
discussed in Table 2. In the case, the state change ∆X is denoted by ∆X = (−1, 1, 0, 0).
The probability of this change is determined by

Prob (∆X1,∆X2,∆X3,∆X4) = (−1, 1, 0, 0)|(X1, X2, X3, X4) = P3 = α2X1X2 + o(∆t)
by neglecting terms higher than o(∆ t), the following expectation change E(∆X) and
its covariance matrix V (∆X) associated with ∆X, can be identified. The expectation of
∆X is

E(∆X) =

8∑
i=1

Pi(∆X)i∆t =


Λ− α1X1 − α2X1X2 + δ2X4

α2X1X2 − βX2 − µX2 − µ1X2

α1X1 + βX2 − δ1X3

δ1X3 − δ2X4

∆t

= f(X1, X2, X3, X4)∆t.

Table 2: Possible changes of states and their probabilities.

Possible stage change Probability of state changes
(∆x)1 = (1, 0, 0, 0)T P1 = Λ∆t+ o(∆t)
(∆x)2 = (−1, 0, 1, 0)T P2 = α1X1∆t+ o(∆t)
(∆x)3 = (−1, 1, 0, 0)T P3 = α2X1X2∆t+ o(∆t)
(∆x)4 = (1, 0, 0,−1)T P4 = δ2X4∆t+ o(∆t)
(∆x)5 = (0,−1, 1, 0)T P5 = βX2∆t+ o(∆t)
(∆x)6 = (0,−1, 0, 0)T P6 = µX2∆t+ o(∆t)
(∆x)7 = (0,−1, 0, 0)T P7 = µ1X2∆t+ o(∆t)
(∆x)8 = (0, 0,−1, 1)T P8 = δ1X3∆t+ o(∆t)

(∆x)9 = (0, 0, 0, 0)T P9 = (1−
∑8

i=1 Pi) + o(∆t)

It can be noted here that the expectation vector and also the function f are in the
same form as those of the ODE system (1).

Since the covariance matrix V (∆X) = E((∆X)(∆X)T ) − E(∆X)(E(∆X)T ) and
E((∆X)(∆X)T ) = f(X)(f(X)T )∆t, it can be approximated with the diffusion matrix
Ω times ∆t by neglecting the term of (∆t)2 so that V (∆X) ≈ E((∆X)(∆X)T ). That is,
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E((∆X)(∆X)T ) =

8∑
i=1

Pi(∆X)i(∆X)Ti ∆t =


V11 V12 V13 V14

V21 V22 V23 0
V31 V32 V33 V34

V41 0 V43 V44

.∆t = Ω.∆t,

where each component of the diffusion matrix of 4×4 is symmetric, positive-definite, and
can be obtained by

V11 = P1 + P2 + P3 + P4 = Λ+ α1X1 + α2X1X2 + δ2X4,

V22 = P3 + P5 + P6 + P7 = α2X1X2 + βX2 + µX2 + µ1X2,

V33 = P2 + P5 + P8 = α1X1 + βX2 + δ1X3,

V44 = P4 + P8 = δ2X4 + δ1X3,

V12 = V21 = −P3 = −α2X1X2,

V34 = V43 = −P4 = −δ1X3,

V14 = V41 = −P4 = −δ2X4,

V13 = V31 = −P2 = −α1X1,

V23 = V32 = −P5 = −βX2.

A matrix D square root of the symmetric, positive-definite diffusion matrix Ω is such
that K = Ω1/2. Use an equivalent matrix K such that Ω = KKT , where K has the
dimension of a 4×7 matrix.

K =


√
Λ −

√
α1X1 −

√
α2X1X2

√
δ2X4 0 0 0

0 0
√
α2X1X2 0 −

√
βX2 −

√
(µ+ µ1)X2 0

0
√
α1X1 0 0

√
βX2 0 −

√
δ1X3

0 0 0 −
√
δ2X4 0 0

√
δ1X3

.

Then, the Ito stochastic differential model has the following form:

dX(t) = f(X1, X2, X3, X4)dt+K.dW (t)

with the initial condition X(0) = (X1(0), X2(0), X3(0), X4(0))
T and a Wiener process,

W (t) = (W1(t),W2(t),W3(t),W4(t),W5(t),W6(t),W7(t))
T . We get the stochastic differ-

ential equation model as follows:

dW = [Λ− α1W − α2WH + δ2Wr]dt+
√
ΛdW1 −

√
α1WdW2 −

√
α2WHdW3 +

√
δ2WrdW4,

dH = [α2WH − βH − µH − µ1H]dt+
√
α2WHdW3 −

√
βHdW5 −

√
(µ+ µ1)HdW6,

dWs = [α1W + βH − δWs]dt+
√
α1WdW2 +

√
βHdW5 −

√
δ1WsdW7,

dWr = [δ1Ws − δ2Wr]dt−
√
δ2WrdW4 +

√
δ1WsdW7.

(10)

4 Numerical Simulation

Here, we simulate both deterministic and stochastic models for the following set of pa-
rameters: Λ = 200, α1 = 0.02, α2 = 0.04, µ = 0.0143, µ1 = 0.08, β = 0.093, δ1 = 0.02,
δ2 = 0.0001.

The system (1) is simulated for various sets of parameters satisfying the condition
of local and globally asymptotic stability of equilibrium E∗. For both deterministic and
stochastic models, the simulation results are shown in Fig. 2. The stochastic model
(SDE model) is simulated by the method of Euler-Maruyama, and Fig. 2 plots the mean
of the 100 runs. Here, the results of the stochastic model seem better than those of
the deterministic model as the curve corresponding to scarcity lies below the one that
corresponds to the deterministic model Λ = 100, α1 = 0.00002, α2 = 0.004, µ = 0.0143,
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µ1 = 0.08, β = 0.093, δ1 = 0.02, δ2 = 0.9. The system (1) is simulated for different
sets of parameters satisfying the condition of local and globally asymptotic stability of
equilibrium E∗ (see Fig. 3).

Figs. 4 – 7 demonstrate the impact of various parameters on the equilibrium level of
water scarcity and recovery.

Figure 2: Variation of all compartments of the model showing the effect of stochastic
and deterministic models.

Figure 3: Variation of all compartments of the model showing the stability.
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Figure 4: Effect of α1 on the variation of all compartments of the model.

Figure 5: Effect of α2 on the variation of all compartments of the model.

Figure 6: Effect of β on the variation of all compartments of the model.
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Figure 7: Effect of δ1 on the variation of all compartments of the model.

5 Result of Discussion and Conclusion

In this paper, a deterministic mathematical model on water resource-related wa-
ter scarcity problems was proposed and analyzed. We calculate the equilibrium of the
proposed model and analyze in detail the local stability and global stability of endemic
equilibria.

Further, we extended the deterministic model to a stochastic model and compared
numerical simulation results of both models. The resuls of the stochastic model showed
that the water scarcity decreased comparatively to the deterministic model. The im-
pact of various parameters on the equilibrium point of water scarcity and recovery is
demonstrated. As a society, we have a social responsibility to reduce the scarcity of
water. Therefore, we have developed a model of possible strategies to predict better re-
sults. Simulations using this model showed the effectiveness of progressing from human
to water scarcity.

When the value β (the rate of human population affected by water scarcity) increases
in time, the stable point is differed in all compartment (see Fig. 6). Figs. 4 and 5
depict if the values α1 and α2 increase or decrease, there is no major difference in all
compartments. Fig. 7 depicts if the parameter δ1 (the rate of water recovery) is increasing
in time, the water scarcity is decreased and the recovery is increased.
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