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Abstract: We consider a dynamic contact problem between two thermo-electro-
viscoelastic bodies with damage and an internal state variable. The contact is bilateral
and is modeled by Tresca’s friction law. The damage of the materials is caused by
elastic deformations. We derive a variational formulation for the model which is in the
form of a system involving the displacement field, the electric potential, the internal
state variable field, the temperature and the damage. Then we proved the existence
of a unique weak solution to the model.
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1 Introduction

Our research paper tackles a frictional bilateral contact problem including the topic of
piezoelectric, which can be explained as follows: when we apply mechanical pressure to
some types of crystalline materials such as ceramics BaTiO3, BiFe(O3, a voltage propor-
tional to the pressure is produced. Meanwhile, changes in shape and dimension occur if an
electric field is applied to some types of crystalline materials. At present, there is a great
interest in the study of piezoelectric materials for their importance in radio-electronics,
electroacoustics and instrumentation. Thus, a big interest in the contact problems occurs
because of the fact that parts of the equipment are in contact. So, many models have
been developed to explain the interaction between the electrical and mechanical fields,
see for example [2,/8] and the references therein. Frictional contact problem is a static
problem of electro-elastic materials mentioned in [3] and [10], considering that the basis is
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isolated. Contact problems involving elasto-piezoelectric materials [3], viscoelastic piezo-
electric materials |1] and the contact problem for electro-elastio-viscoplastic materials
were studied in [7].

A mathematical investigation has been conducted for some models taking into consid-
eration the influence of the internal damage of the material in the contact process. From
the virtual power principle, general models for damage were derived in [6]. In [4], we can
find the modes of mechanical damage which are derived from thermo-dynamical consid-
eration. The ratio between the elastic moduli of the damage and damage-free materials
is expressed by the function called the damage function ¢* = (*(z,t) mentioned in [5L[6].
In an isotropic and homogeneous elastic material, let E{ be the Young modulus of the
original material and Ef;, be the current modulus, then the damage function is defined
by (" = Efy; / E§. This definition shows that the damage function ¢ is restricted to
have values between zero and one; when (* = 1, there is no damage in the material,
when (" = 0, the material is completely damaged, when 0 < (" < 1, there is partial
damage and the system has a reduced load carrying capacity. The contact problem with
damage has been mentioned in [9]. The differential inclusion used for the evolution of
the damage field is

" — AC® + K"Oxk™(C") 2 S™(e(u”), (") in Q x [0,T7, (1.1)
where k" is a positive coefficient and K" is the set of admissible damages defined by
Kf={CcH'(Q%);0< (< 1. aec Q") (1.2)

The paper is structured as follows. In Section [2| we present the physical setting and
describe the mechanical problem. We derive a variational formulation, list the assump-
tions on the data, and give the variational formulation of the problem. In Section [3] we
state our main existence and uniqueness result which is based on the classical result of
non-linear first order evolution inequalities and equations with monotone operators and
the fixed point arguments.

2 Problem Statement and Variational Formulation

The physical setting is the following. Let us consider two electro-thermovisco-elastic
bodies, occupying two bounded domains Q', Q? of the space R? (d = 2, 3 in applications).
We put a superscript & to indicate that the quantity is related to the domain Q*. In the
following, the superscript x ranges between 1 and 2. For each domain €%, the boundary
I'* is assumed to be Lipschitz continuous, and is partitioned into three disjoint measurable
parts I'Y, I'y and I'§, on one hand, and in two measurable parts Iy and I'j, on the other
hand, such that measT'§{ > 0, measI'¥ > 0. Let T'> 0 and let [0, T] be the time interval
of interest. The 2 body is subject to f§ forces and volume electric charges of density
q5. The bodies are assumed to be clamped on T'Y x [0,T]. The surface tractions f&
act on I'§ x [0,T]. We also assume that the electrical potential vanishes on I'¥ x [0, 7]
and a surface electric charge of density ¢5 x [0,T] is prescribed on I'j x [0,T]. The two
bodies can enter in contact along the common part I'; = I'2 = I's. The classical form of
the bilateral contact with Tresca’s friction and damage between two electro-thermovisco-
elastic bodies with damage and an internal state variable is the following.

Problem P. For k = 1,2, find a displacement field u® : Q% x [0,7] — R% a stress
field o : QF x [0,7] — S%, an electric potential ¥* : QF x [0,7] — R, an electric
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displacement field D* : Q x [0,7] — R%, a temperature 7 : Q* x [0,7] — R, a
damage o : Q% x [0,7] — R and an internal state variable field " : Q" x [0,T] — R™
such that for all ¢ € (0,T), we have

o"(t) = Ame(a” (1)) + B"(e(u™(t)), @ (t)) — (£%)"E(¢" (1))

—~
[\
—

S—

+]~"‘”~(5"”~(t), () inQ
Dr(t) = Efe(u”(t)) + R"‘E(z/)"‘(t)) +GR(B(t), T(t)) in QF, (2.2)
BE(t) = O (e(ur (1)), a”(t), B*(), 7(1)) i O, (2:3)
T(t) — KGAT™ (1) = ‘I’“( (u(1), a®(t), B=(t), 7°(t)) + x"(t) in Q°,  (2.4)
G5 (1) — KA (1) + Dz (a(1)) 3 S*(e(u(1)), a* (1)) in O, (25)
Divo (t)Jrf('f()—p 4" (t) in Q" (2.6)
div D"(t) = ¢f(t) in Q" (2.7)
u"(t) =0 on T%, (2.8)
o ()"t = f§(t) on T}, (2.9)
(

Ui t) + Ug(t) =0, Uql—(t) = _Uz(t) = U‘r(t)’ |O"r(t)| <9,
lo-(t)] < g = al(t) —u2(t) =0 on T, (2.10)
lo-(t)] = g = I\ > 0 such that o (t) = —A(Wk(t) — u2(t)),

)

%o =0 onT*, (2.11)
K52 gyé’” +AETE(t) =0 on TF, (2.12)
YE(t) =0 onT¥, (2.13)
Dx(t) - v™ =q5(t) onTTy, (2.14)
u™(0) = uf, u*(0) =vf, a®(0) =af, 85(0) =65, 77(0) =75 in Q". (2.15)

First, equations (2.1)—(2.3) represent the electro-thermovisco-elastic constitutive law with
damage and an internal state variable. The evolution of the damage field is governed by
the inclusion given by the relation . Equation represents the conservation of
energy, where U" is a nonlinear constitutive function which represents the heat generated
by the work of internal forces and x* is a given volume heat source. Next, equations
(2.6) and are the equations of motion written for the stress field and of balance
written for the electric displacement field, respectively, in which Div and div denote the
divergence operators for tensor and vector valued functions. Conditions (2.8)) and .
are the displacement and traction boundary conditions, respectively. Boundary condi-
tions , represent, respectively, on I'*, a homogeneous Neumann boundary
condition for the damage field and a Fourier boundary condition for the temperature,

and represent the electric boundary conditions, and are the initial
conditions. Conditions represent the bilateral contact condition with Tresca’s fric-
tion, where [u,] = ul +u? and [u,] = ul — u2.
Now, to proceed with the variational formulation, we need the following function spaces:
H 1/2((2"€ {u = ul)1<1<d, U; € LQ(Q’Q)}
Wl 2<QVV {u = uz>l<z<d7 Ui € Wl Q(QR)}
Hﬁ = L") = {0 = (04j)1<ij<a; 0ij = 050 € L2(Q7)},
={o € H"; Dive € H"},
Y"‘ L2(Q%)™ = {8 = (Bi)i<i<m; Bi € L*(Q%)},
= {u € VV1 2(Q%)% w=0onT%}. These are real Hilbert spaces endowed with the
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inner products (u,v)u~ = [o, w.vdz, Vu,v € H*, (0,0)y~ = [, 0.0dz, Yo,0 € H",
(u,v)mr = fQH u.vdx + fQN Vu.Vudz, Yu,v € HYf,

(0,0)3r = fQK, 0.0dx + fQM Divo.Divldz, Vo,0 € H",

(B, k)yys = [qn Bkdx, VB, k€Y, (u,v)ps = (e(u),e(v))n~ Yu,v € V" and the associated
norms |||, [|-[|#, [[-[ee, |12, |-y~ and [|.[[v~, respectively. Here and below we use
the notation

1 K
Vu = (ui ), e(u) = (ei5(uw)), eij(u) = g(um‘ +uj), Vu € HY,
Diveo = (Gij,j); Vo € HT

Completeness of the space (V7 ||.|[yv=) follows from the assumption meas(I'¥ > 0), which
allows the use of Korn’s inequality. We denote u" as the trace of an element v € Hf on
I'*. For every element u” € V", we denote by us and u? the normal and the tangential
components of v on the boundary I'* given by uf = u".v", uf = u® — ufv". Also, for
an element 0" € HY, we denote by o"v, o)} and of the trace, the normal trace and the
tangential trace of o" to I'*, respectively. In addition to the Sobolev trace theorem, there

exists a constant c; > 0, depending only on %, I'f and I's such that
[ullz2(rg)e < cerllu”[lye,  Vu™ € V" (2.16)

Denote Eg = LQ(QH), Ef = HI(QK), <.7 >E6~ = <., .>L2(Qn), <., >Ef = <., .>H1(Qn), ||HE6" =
-l 2=y and ||.][zx = [|-][ 1 (qx)- For the electric unknowns " and D", we use the spaces

Wr ={y" € Ey; ¥"=0on T4},
W ={D" = (D} )1<i<a; Df € L*(Q%), divD" € L*(Q")}.

These are real Hilbert spaces with the inner products

(W", " ywe = V. Netdx, (D, E")ywx = D".E*dx + div D".div E"dx,
Qr Qr Qr

(2.17)

where div D" = (Df,;), and the associated norms are denoted by ||.[[w~ and |[|.[[=,

respectively. Completeness of the space (W, ||.|lw~) is a consequence of the assumption
meas(I'%) > 0 which allows the use of the Friedrichs-Poincaré inequality. When " € HY,
% € HY(2%) and D* € W* are sufficiently regular functions, the following three Green’s
formulas hold

(0", e(@™))ys + (Dive"™, v )g= = / oV v"da, Yv" € HY, (2.18)

(ATF, 6% + (V77 V6 2y = / g;é”da, Vor € HY(QF), (2.19)
FK,

(D", V¢ )ie + (div D*, ) () = / DR URGRda, YoF € HYQ).  (2.20)
FK/

In order to simplify the notations, we define the spaces
V={u=(u',u*) e V' x V% ul +u2=0o0nT3},
H=HxH? H,=H] xH], H=H'xH> Hi=H]xH] Y=Y xY?
Ey=E} xEZ, By =E] xE? W=W!'xW? W=WwW!xW2
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The spaces V, H, H, Y, Ey, E1, W and W are real Hilbert spaces endowed with the
canonical inner products denoted by (., .}y, (-, m, (- ns (v (oD Eey (b0 Es (o o)w,
and (., .)w. The associate norms will be denoted by ||.|lv, ||-lm, I-1l% II-lvs |26, Il 24
Illw, and ||.|[yv, respectively.

Finally, for any real Hilbert space X, we use the classical notation for the spaces
LP(0,T; X), WkP(0,T; X), where p € [1,4+oc], k € [1,+0c[. We denote by C(0,T; X)
and C(0,T; X) the space of continuous and continuously differentiable functions from
[0,T] to X, respectively, with the norms

I7lleo,rix) = putes Im@®)llx, lI7llerorx) = e [ ()]l x + max, 7 ()llx,
respectively. Moreover, we use the dot above to indicate the derivative with respect to
the time variable. Moreover, if X; and X5 are real Hilbert spaces, then X; x X5 denotes
the product Hilbert space endowed with the canonical inner product (.,.) x, x x,-

We now list assumptions on the data. Assume the operators A", B, F= G~ R~
Or Ur S% and £" satisfy the following conditions (LAK,, Mmar, Lgr, Lre, Lge, Mg,
Lox, Ly~ and Lg~ being positive constants) for k =1,2:

H(1): (a) A% : QF x S¢ — S4;
b) |AK($,51) — AH($,€2>| < LA»<|<€1 — 82‘7 Veq,e9 € Sd, a.e. r € QK;
c) (A%(z,e1) — A%(,62)).(61 — €2) > maxler — 2|?, Ver,e2 €S? ae x € QF;

(
(
(d) A%(.,¢) is measurable on %, for all ¢ € S%
(e) A"(.,0) belongs to H".
H(2): (a) B¥: Q" xS x R — S
(b) |BS(x,e1,7m1) — B(z,e9,72)| < L3~(|51 —&o| 4+ |r1 — 7"2|);
Ve, e9 €S9, 11,1 €R, ae. x € QF;
(c) B%(.,e,r) is measurable on QF, for all ¢ € §¢, r € R;
(d) B*(.,0,0) belongs to H"*.
H(3): (a) F*:QF xR™ xR — S,
(b) |J_'.K(I, kl,Tl) - fn(l’,kg,’r’gﬂ S L]:h (|k1 - k2| + |T1 — T2|);
Vki, ko € R™ r,m €R,  ae. x € QF;
(¢) F*(.,k,r) is measurable on Q”, for all k € R™, r € R;
(d) F7(.,0,0) belongs to H". H(4): (a) G~ : Q% x R™ x R — R%
(b) 1" (2, k1, 71) — G* (2, k2, m2)| < Lan ([ky — k| + |r1 — r2]);
Vki,ko € R™,r,71 €R, a.e. x € Q.
(c) G*(., k,r) is measurable on Q7, for all k € R™, r € R;
(d) G%(.,0,0) belongs to H".
H(5): (a) R": Q" x R? — R4,
(b) R* = (ri3), rij = rf; € L=(Q2%), 1<i,j <d;
(c) Rfv.w > mg«|v|?, Yo € R, ae. z € QF.
H(6): (a) ©%: Q% xS? xR x R™ x R — R™;
(b) |@K($,81,T17k’1,d1) — @K($7527T2,]€2,d2)| S;

Lox(le1 — 2| + [r1 — ra| 4 |k1 — ko| + |d1 — da]);

Ver,e9 €S k1, ky € R™, 1y, 10,d1,dy €R, a.e. x € QF;
(c) ©%(.,e,7,k,d) is measurable on Q, for all e € S, k € R™,r,d € R;
(d) ©%(.,0,0,0,0) belongs to L2(Q~).
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H(7): (a) % : 0% xS¢ x R x R™ x R — R;
(b) |\I/H(.T,€1,T17k1,d1) — \I/N(I7€2,T2,]€2,d2)| S,
L\pfc(|€1 —&a| +|r1 — ra| + k1 — ka| + |d1 — d2|)§
Vey,e9 € Sd,khk‘g eER™, rq,r9,dy,ds €ER, ae. x € QR;
(c) ¥*(.,e,7,k,d) is measurable on %, for all ¢ € S k € R™,r,d € R;
(d) ¥*(.,0,0,0,0) belongs to L?(2%).

H(8): (a) S®:0F xS x R — R;
(b) |SK($,€1,T‘1) — SK(.Z‘,FJQ,TQN < Lsn(|61 — €2| + |7"1 — 7’2|);
v€1752 € Sd,‘v’rl,rg ceRae xe€ QK’;
(c) S*(.,&,r) is measurable on Qf, for alle € S¢, r € R;
(d) $%(.,0,0) belongs to L?(2%).

H(9): (a) &% : Q8 x S — R
() €% = (e5,), €y, = ey € L®(Q%), 1<, j,k < d;
(c) EFew = e.(EF)*v, Ve € S% v e R

We suppose that the mass density, the forces, the traction densities and the foundation’s
temperatures satisfy

H(10): (a) p™ € L>®(Q%), Ipo > 0; p"(z) > po a.e. x € QF;
b) fo € L*(0,T; L*(Q")9), f5 € L*(0,T; L*(T'5));
c) q§ € C(0,T; L*(Q%)), g5 € C(0,T; L*(Ty));
d) x* € L?(0,T; L*(2%)).

P

The energy coeflicient, microcrack diffusion coefficient and the friction yield limit g satisfy
H(11): K, Kfy >0, ge L>*T3), g >0, ae. on ;.
Finally, we assume that the initial values satisfy the regularity
H(12): By € Yr, uf e V*, of e H*, of € 2%, 15 € EY.
We will use a modified inner product on H, given by

(u,v)m =D _(p"u" 0¥ )me, Vu,v € H (2.21)

k=1

and let ||.]lm be the associated norm. It follows from assumption H(8)(a) that ||.|lg and
Illz are equivalent norms on H, and the inclusion mapping of (V,|.|lyv) into (H, ||.||lm)
is continuous and dense. We denote by V' the dual of V. Identify H with its own dual.
Then

(U, V)prxy = (u,v)m, YueH,vel. (2.22)

We define five mappings F : [0,7] — V', Q : [0,T] - W, ap : E1 X E1 — R, a; :
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Fy x Fy — Rand J: V — R, respectively, by

2 2
(F(t), o)y = Z::l /Q F5(0) - o da + ; /F £5(0) - vFda Vo eV, (2.23)

2 2
@arm=> [ aocar-3 [ awcda e (224
2 2
,¢) = Ks VErRvEtd A5 ®("da, .
(&)= DK [ Ve v Sox [ ecia (2.25)
2
’ — X \V/ AV K,d7 A
Wl =DoKE [ Ve e (226)
J(u) = L — | da. 2.27
(u) /FsgiuT u2| da (2.27)

We note that conditions H(10)(b) and H(10)(c) imply
FeL*0,T;V), QeccC(0,T;W). (2.28)

We now turn to deriving a variational formulation of the mechanical problem P. To that
end we assume that {u”, o ¢" D" 7% o "} with £ = 1,2 are sufficiently smooth
functions satisfying (2.1)-(2.15) and let w = (w',w?) € V and ¢ € [0,T]. First, we use
Green’s formula (2.18)) and by , and 7, we find

(1), w — a(t))yrv + (0", e(w™ =i () us = (F(),w — a(t))vrxv

k=1

; (2.29)
+Z/ o (B (w — 0% (£))da.
k=171
Using now (2.9)) and definition of V, we achieve
2
S (wr — (1) = o (). (wh — w?) — (ab(t) — a2 ()
k=1
and use the frictional contact conditions (2.9 and the definition (2.27)) to obtain
2
3 / R (B (w — 05 (8)da > —J(w) + J(a(t). (2.30)
k=1"T3
Finally, we combine (2.1)), (2:29) and (2.30) to deduce that
2
((t), w = a())vrv + 30 (Ame(i) + B(e(u”), o), e(w" = a7 ()~
(2.31)

+ 22 (%) Vipr e(w™ — a5 (t)))ax + é@”(ﬂ“ﬁ“)ﬁ(wk” — 4" (t)))w

k=1

+J(w) = J(a(t)) = (F(t), w —i(t))v .
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Similarly, let ¢ = (¢',$?) € W and ¢ € [0, T}, from (2.2), (2.7), (2.14), (2.19) and (2.24)),
we deduce that

D (ROVYE(E) = E7e(u (1)) = G (BT (1), TV(1)), V" )y, = (Q(E), d)w- (2.32)
r=1

On the other hand, let £ = (¢1,¢2) € Z and t € [0, 7). Then, using (2.5), we have

i (1), — () ) — 3 (KFAQN(0,€° — 0" (D) o)

(57 (e(u™ (1)), a™ (1)), & — a™(t)) L2(ax)-

3

—_

K=

Combining this inequality with (2.11)), (2.19) and (2.26)), we obtain

S (65 (8), €% — (1)) o + ar(a(t). € — a(t))
*ﬂzlz (2.33)

(5% (e(u™(1)), a™()), £ — " (t)) L2(2%)-

—

K=

For the temperature, let 6 = (§1,0%) € Ey and t € [0,7T]. Using (2.4), (2.12) and (2.19),

we have

S (W (e (), 0 (). B(2), 7 (1) + X"(0).6%)

=1 L2(Q)
2 2
=D (F5(t),6") 2oy — Z/ K5 AT™(8)0" da:
k=1 "
2
= Z(*N( ,0") L2 () + Z/ KV () Vétde + Z/ t)o"da.

We use now (2.25) in the previous equality to obtain

= <\Il€(5(u”), aﬂ,ﬁﬂ,ﬂ)(t),mm =S TR - X (), 8 my. (2:34)

r=1 0 r=1

We now gather the constitutive law (2.3), the initial condition (2.15)), inequalities (2.31)),
(2.33)), and equalities (2.32]), (2.34)) to obtain the following weak formulation of the piezo-
electric contact problem P.

Problem PV. Find v = (u',u?) : [0,7] — V, ¥ = ('14?%) : [0,T] - W,
7= (4,7 :[0,T] = E1, a = (a*,a?) : [0,T] — E; and 8 = (8',5%) : [0,T] - Y
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such that for a.e.t € (0,7),

= O~ (e(u(t)), a"(t), B7(t), 7"(t)) in Q" Kk =1,2, (2.35)
(1), w0 = (1)) + §1< (1) B (=(u (1), 2 (1), (' = (0 e
(€ (0, — )+ 3 (R0, 0w — a0 [0
() = J(0) 2 (F), 0= i)y Fwe,
3 (REVU(1) = £ (1) = (0. 7(0), T ). = QU )
Vo e W
alt) € 2, 3 {a5(0), €%~ a"()zx(ar + ala(d), € ~ alt)
) r=1 (2.38)
> §1<S"(5 ut(t)), at(t)), & — a(t)) L2y V€€ Z,
a0(r{1),) = Yy (" (el (1)), (1) (1), (1)), 0%) g } (2.39)
- S ) — X (0),0° >E~ e B

The existence of a unique solution to Problem PV will be presented in the next section.

3 Main Existence and Uniqueness Result
Now, we propose our existence and uniqueness result.

Theorem 3.1 Under the assumptions H(1)-H(12), there exists a unique solution
{u, ¥, 1, , B} to problem PV . Moreover, the solution satisfies

u € WH2(0,T; V) NCH0,T; H) N W2(0,T; V'), (3.1)
Y €C(0,T; W), (3.2)

€ WH2(0,T; Eo) N L*(0,T; EY), (3.3)

a e Wh2(0,T;Y), (3.4)

Be Wh30,T; Eo) N L*(0,T; Er). (3.5)

The functions {o, D,u, ¥, T, a, S}, which satisfy (2.1), (2.2) and (2.35)—(2.40) , are

called the weak solution of the thermo-piezoelectric contact Problem P. We conclude

by Theorem [3.1] that, under the assumptions H(1)-H(12), the mechanical problem (2.1))~

has a unique weak solution {o, D, u, %, T, a,5}. To precuse the regularity of the

weak solution, we note that the constitutive relation 7, the assumptions H(1)-

H(5), H(9) and the regularities f show that ¢ € C(0,T;H) and D € C(0,T;H).

We test h v € CS°(2%;RY) and v37% = 0. Then we take ¢" € C$°(Q2*) and
2.37

37" = 0 in (2.37) to obtain that

Divo”(t) + f&(t) = prit(t), divD"(t) = ¢§ (1),
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almost everywhere in Q" for a.e. t € (0,T) and k = 1, 2. Next, we use assumptions H(10)
to deduce that Dive® € L?(0,T;H*), div D" € C(0,T; Ef), k = 1,2, which shows that
o€ L*(0,T;H1), D e€C(0,T;W). (3.6)

We conclude that the weak solution {o, D,u,¥,7,«,3} of the thermo-piezoelectric
contact Problem P has the regularity (3.1)—(3.6]).

The proof of Theorem is carried out in several steps that we prove in what follows,
everywhere in this section we suppose that assumptions of Theorem hold, and let a
n = (n',n?) € L?(0,T;V’) be given. In the first step, we consider the following variational
problem.

Problem P,,. Find u, = (uy,u;) : [0,T] =V such that for a.e. t € (0,7),

i (1),10 = (O + 35 (AT2(05(0). (0" = 5(0).
(W) — I (it (1)) > (F(t) — 1t), w — iy (£))yr v, Y € V, (3.7)
u77<0) = (u07u0)7 i‘n(()) = (Ué’v(%)'

We define the mappings A :V — V' and F), : [0,T] — V', respectively, by

2

(Au, vivrcy = 3 (AT (W), e(v))e, Yu,v €V, (3.8)

Kk=1

<Fn(t) >V’><V = <F(t) — ’I](t),v>v/><v, Vt € [O,T], ve V.

Use velocities v = u! with x = 1,2. So, Problem P has been rewritten.

Problem P, . Find v, = (v;,v7) : [0,T] =V such that for a.e. t € (0,T),
{0 (1), w = vg(8))wrxcy + (Avy (1), w = vp(E))vrxv + J(w) = J (g (1))
> (Fy(t), w — vy (t))vrxy, Ywe V. (3.9)

vy(0) = (v, v5)-

Lemma 3.1 Assume that H(1) and H(11) hold, then the mappings A and J defined,

respectively, by (@ and satisfy

(a) A:V =V is semi-continuous and strongly monotonous,
(b) 3CY >0, 3C% >0 such that || Aully < Ch|lully +C%, VueV,
(¢) for all sequence (ur) and u in L*(0,T;V) such that u, — u weakly in L*(0,T;V),
Auy, — Au weakly in L*(0,T;V")
and limyg_, ;o inf fOT<Auk(s),uk(s))vxxvds > fOT<Au(s), u(s))yrwyds
(@) J:V = Ris a convex and lower semi-continuous functional.
There exists a sequence of C1 convex functions (Ji) : V — R
(b') 3Cy >0 suchthat |J}(u )Hy/ <C VkeN, YueV,
() limpssoo fy Ji(uls))ds =[5 T )ds Yu e L2(0,T; V),
(d") There exists a sequence (uy) and w in L?(0,T;V) such that
u — u weakly in L?(0,T;V), then limy_, . inf fOT T (ug(s))ds > fOT J(u(s))ds,

where Ji(u) is the Fréchet derivative of Jy at u.



532 M. L. GOSSA, T. HADJ AMMAR AND K. SAOUDI

Proof. From the definition and assumption H(1), we can verify that A4 satisfies
the conditions (a)-(b), and applying the Lebesgue theorem, we deduce the condition (c).
On the other hand, by using the continuous embedding V < L?(I'3)%, we find that J is
convex and continuous. To approximate the function J, we use the following functional
Jr : V = R defined by

Ji(u) :/F g\/’ul - u3|2 + k=1 da, Yu=(u',u?) €V, Vk € N*.
3

We verify that the Fréchet derivative of Jj, at u = (u!,u?) is given by

1 _ .2 hl h2
ita vy = [ U gy a2 ey, (30)
rs \/|u1 u2| 4kl

Then J, is of class C'. Direct algebraic computations show that for all @ > 0, b > 0 such
that a + b =1, and for all reals x and y, k > 1,

Vier +by)2 + k=1 <ava?+ k=1 +by/y2 + kL.
Then Jj is convex for all k € N*. From (3.10)), it follows that
3o > 0, vu eV, |l < lgllimy.

therefore (b’) is satisfied. From the definition of J, we have limy_, 1 oo Ji(u) = J(u) and
as Ji is continuous on V, applying the Lebesgue theorem, we deduce the property (¢’).
Finally, (d’) is a consequence of the fact that

Yu eV, Vk e N*, Jp(u) > J(u),
which finishes the proof.
Lemma 3.2 Problem P, has a unique solution v, which satisfies
v, € C(0,T;H) N L*(0,T; V) nWh2(0,T; V).

The proof of Lemma is found in [9} p.48].
Let now u, = (u,), ,,) [0,T7] — V be the function defined by

t
uy (1) :/ vp(s)ds +ug, Vtel[0,T], k=1,2. (3.11)
0

In the study of Problem P,, , we have the following result.
Lemma 3.3 P, has a unique solution satisfying the reqularity expressed in .

Proof. The proof of Lemma [3.3] is a consequence of Lemma [3.2] and the relation
(3.11). In the second step, let 7 = (7!, 72?) € L?(0,T; Ep) and consider the auxiliary
problem.

Problem P,_. Find 7, = (7},72) : [0,T] — Ejy such that for a.e. t € (0;7),

T T

Yoa o (FE() = 7 () = X5 (1), 0%) gy + ao(7<(t),8) = 0, V0 € Ey, (3.12)
7:(0) = (¢, 78). (3.13)
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Lemma 3.4 There exists a unique solution 7. to the auxiliary problem P, _ satisfying

B3).

Proof. The proof of Lemma[3.4]is a consequence of the Poincaré-Friedrichs inequality
and the definitions of the operator ag(.,.).

In the third step, let p = (u', u?) € L?(0,T,Y) be given, and define 8, = ( ,IL,BZ) €
W2(0,T,Y) by

t
Bu(t) = B —l—/o u(s)ds, k=1,2. (3.14)

We use u,, = (u},u?) obtained in Lemma and 7, = (7},72) obtained in Lemma

nrwn T i
to construct the following variational problem.

Problem Py, .. Find ¥yry = (U}, Vor,) 1 [0,T] = W such that for ae. ¢ € (0,T),

N

) (REVG (1. V") = ey (E7eu5(0) + GX (B30, 72(0). V6 ) (150

We have the following result.

2

) Which satis-

Lemma 3.5 Problem Py, . has a unique solution vym, = ( 717,“.“,’(/}

fies the regularity (3.2)).
Proof. We define a bilinear form b(.,.) : W x W — R by

2

b(,8) = D (REVY™, VoS, Wip,¢ € W. (3.16)

k=1

We use H(5) and (3.16]) to show that the bilinear form b(.,.) is continuous, symmetric
and coercive on W, moreover, using ([2.24)) and the Riesz representation theorem, we may
define an element @, : [0,7] — W such that

(Quru (1), Ohw = (Q(1), dhw + Yooy (EFe(ui(t)) + GF(BE(1), TE(1)), VE© ).
Vo e W, t € (0,T).

We apply the Lax-Milgram theorem to deduce that there exists a unique element

Vnru(t) = ( mru(t)v ,2777”(15)) € W such that

b(wnﬂ',u(t)a ¢) = <Q7I‘ff,u(t)v ¢>W V¢ cw. (317)

We conclude that 9, is a solution of Problem Py, _ . Let t1,ty € [0,T], it follows from
(3.15) that
[t (t1) = U (t2)llw < C (llun(tr) — ug(t2)llv + 1Bu(t1) = Bulta) v
Hia(t1) = 72 (t2) 15, + Q1) — Q(t2)llw)-

Due to (2:28), (3:2), (3-3) and 8, € W2(0,T;Y), inequality (3.18) implies that ., €
C(0,T;W). In the fourth step, let § = (61,0%) € L?(0.T; Ey) be given and consider the
following initial-value problem.

(3.18)
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Problem P,,. Find ap = (a},a?):[0,T] — E; such that for a.e. ¢t € (0,7),

2
ag(t) € Z, Y (aF(t) — 0%(t), n" — af(t) L2(ax) + ar (g (t), p — ap(t) >0, VYue Z.

k=1

(3.19)
In the study of Problem P,,, we have the following result.

Lemma 3.6 The problem P,, has a unique solution ag = (o, o) which satisfies

the regqularity .

Proof. We use a standard result for parabolic variational inequalities |9} p.47]. Fi-
nally, we now pass to the final step of the proof of Theorem in which we use a fixed
point argument. To this end, we consider the mapping

¥ L20,T;V' x Y x Ey x Ey) — L*(0,T;V' x Y x Ey x Ep)

defined by
2(777 W, T, 9) = (Zl (na M, T 9)7 Z2 (77, w7, '9)7 Z3 (777 oy T 9)7 Z4(777 22 9)) (320)
with
2
(2101, 1,7, 0)(8), vy = D (BH(E(ws(6), @ (1)) + (€7) Vi (), £(v"))
+ D (FHBE®), 5 (1), (W), V0EV, (3.21)
Sa(n, 1,7,0)(8) = (O (e(uh (1)), ah (1), BL(1), 72 (1), O (e(ud(1)), ad (1), B2(1), 72(1)) )
(3.22)
Sa(n, 1,m,0)(1) = (9" (=(uh (1)), ah(0), B0, 72 (1)), W (e(ud (), ad (1), B2(1), 72(1)) ),
(3.23)
Saln 1, 0)(1) = (S (e(uh(0), aj(1) , SAe2®),af(®)).  (3:24)

We have the following result.

Lemma 3.7 The operator ¥ has a unique fived point (0., pix, T, 0) € L?(0,T; V" x
Y x E() X Eo)

Proof. Let (01, u1,m1,61), (N2, g2, m,02) in L2(0,T; V' x Y x Eg x Ep) and let t €
[0,T]. For simplicity, we use the notation u; = uy,, v; = Uy,, Vi = Upripsr Bi = Buss
Ti = T, and a; = ag, for i = 1,2. From the definition 1) combined with the
assumptions H(2), H(3) and H(6)-H(9), we conclude that there is C' > 0 such that

12 (01, a1, 71, 61) (8) = 2 (2, p2, w2, 02) (1) i/xYxonEo <O (|| (t) - Uz(t)Hi

Hwa () — a5, + [181() = Ba(D[5 + |72 (8) = ()|, + [Jaa(t) — a2 ()| 7.)-
(3.25)
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Moreover, from (3.11]), we have

s (8) — us(8) [y < / lon(s) — vals)lvds, ¥t € [0,7]. (3.26)

Substituting n = 11, w = v2 and n = 12, w = vy in (3.7)), we find

2
{01 =02, 01 _”2>V’XV+Z<AKE(UT)—Aﬁg(vg)af(v?—vg)>ﬂﬁ +{m —n2,v1 —v2)y 5y < 0.

k=1

We integrate this inequality with respect to time, use the initial conditions
v1(0) = v2(0) = (v, ), the assumption H(1)(c) and the inequality
<’[J1 — U9,V — 'U2>V’><V >0 to find that

min(mAl,m_A2)/0 lv1(s) — Ug(S)”%ds < —/0 (m (8) — m2(s), v1(8) — va(8) )y xvds.

Then, using the inequality 2ab < % + eb?, we obtain

/ lvi(s) = va(s)[[Hds < C/ lm1.(s) = m2(5) [ ds, (3.27)
0 0

where C is a positive constant that may change from line to line.

From and , we deduce
lur (t) — w2 (t)|f3 < C/Ot lm(s) = n2(s) [ ds. (3.28)
The definition yields
150~ 0018 < [ in(s) - ). (3.2)

On the other hand, from (3.12), we can write

(F1(t) = 72(t), 71 (t) = T2(t)) 5, + ao(T1(t) = 7a2(t), T1(t) — 72(t))
= (m(t) = ma(t), 11(t) = 12()) p, a-et € (0,T).

We integrate this equality with respect to time, and use the initial conditions
71(0) = 12(0) = (74, 78) and inequality ag(my — 72,71 — T2) > 0 to find

1 t
sl = Oz, < /O I71(s) — m2(8) | o -[I71(s) — 72(s) | o ds.
Then, using the inequality 2ab < a? + b%, we obtain

I () — 7a(0)]13, < / lm1(s) — ma(s) |13, ds + / 71 (s) — ma(8)][3 ds

and, by using Gronwall’s inequality, we obtain

|7 (¢) — 7'2(t)||%E0 < C/O l7r1(s) — 7T2($)H2E0d8 a.e. t € (0,T). (3.30)
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Also, (3.15) and the arguments similar to those used in the proof of ([3.18) yield

[1(8) =2 (8) [w < C (lua () —uz () [v+181 ()= B2 () v+ 71 (1) —72(t) | 5,) a-e.t € (0,T).

(3.31)
Furthermore, by substituting 8 = 6;, © = a3 and 0 = 65, p = as in (3.19) and subtract-
ing the two inequalities obtained, we find

(@1 (t) — da(t), a1(t) — az(t)) B, + ar(aa(t) — aa(t), a1 (t) — az(t))
< (01(t) = 02(t), 1 (t) — a2(t)) B, ae. t € (0, 7).

We integrate the previous inequality and applying the inequality of Holder and Young
with Gronwall’s lemma, we deduce that

o (t) — aa(t)|E, < C/o 161(s) — 02(s) ||, ds ae. t € (0,T). (3.32)

We substitute (3.28)—(3.32) in (3.25]), we obtain

Hz(m,ﬂlﬂflaal)(t) - 2(7727N277T2702)(t)|ﬁ}’><Y><E0><E0 <
Cfg H(nl,ul,m,@l)(s) - (772,/12,71’2,92)(8)‘ N ds a.e.te(0,T).

Reiterating this inequality n times leads to

V' xY X Eqgx Eq

||En(7717’u17ﬂ.1791) - En(U27H277T2792) ||12(0,T;V’><Y><E0XE0) <

SN, o, 1, 61) — (772’/‘277r2’92)H2L2(0,T;v'wa0xEo)'

Thus, for n sufficiently large, X" is a contraction on the Banach space L%(0,7;)V’ x Y x
Ey X Ey), and so ¥ has a unique fixed point.
Now, we have all the ingredients to prove Theorem
Proof. Let (n*,u*ﬂr*,@*) € L?(0,T;V' x Y x Ey x Eg) be the fixed point

defined by (3.20)—(3.24)) and denote
U = Up,, T =Tr,, (W), e(W" —Y=Vprpu, w=ap, Bc=PBu. (3.33)

We prove {u., ¥y, 7w, ax, By} satisfies (2.35)—(2.40) and the regularities (3.1)—(3.5). In-
deed, we write (3.7)) for n = . and use (3.33) to find

(i (0), 0 = ()1 + 3 (A0 + () = T (i (1) 530

+(M(t), w — (D)) xy = (F (), w — ws(t))vrxy, Yw €V, ae. t €(0,T).

Equation Xy (., ps, s, 6,) = 1, combined with (3.21) shows that for a.e.t € (0,T),

2

(120, 0y = D (BE (i (0), () + FE(BE(1), 75(1) + (67) V1), <))

k=1

HN 9
(3.35)

We substitute (3.35) in (3.34) and use (3.33) to see that (2.36) is satisfied. From
PPN (77*, T 9*) = p and (3.14]), we see that (2.35) is satisfied. We write now (3.15|) for
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(n,m, 1) = (N, Ts, pix ) and use to find . The equalities X3 (n*, [T 9*) =,
and Xy (7, ps, 74, 0+) = 0., combined with (3.12)), show that (2.38)-(2.39) are sat-
isfied. Next, and the regularity 1i follow from Lemmas (3.1} |3.4} |3.5| and
and the relation , which concludes the existence part of Theorem [3.1} The
uniqueness of the solution follows from the uniqueness of the fixed point of the operator
> defined by f combined with the unique solvability of Problems P, , P,

P,

Pnmp

and P,,.
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