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Abstract: In this work, we consider a control system governed by a dynamic equa-
tion with memory. We obtain conditions under which the system is approximately
controllable and approximately controllable on free time. In order to do this, we
use a technique developed by Bashirov et al. [4–6], where we can avoid fixed point
theorems. But first of all, we prove the existence and uniqueness of solutions of the
system and after that, we prove the prolongation of solutions under some additional
condition. Finally, we present several examples to illustrate the applicability of our
results.
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1 Introduction

Control theory addresses how a system can be modified through feedback, in particular,
how an arbitrary initial state can be directed either exactly or approximately close to
a given final state using a control in a set of admissible controls. In the last decades,
control theory of dynamic equations on time scales has attracted the attention of several
researches, because this is a powerful tool that allows to study from a unified point of
view controllability of continuous systems, discrete systems, systems in which the time
variable can vary both continuously and discretely, as well as other types of time variables.
Among the works made, we can cite Bartosiewicz [1] who explored linear positive control
systems, Bartosiewicz and Pawłuszewicz [2, 3] reviewed linear systems, Janglajew and
Pawłuszewicz [15] analyzed constrained local controllability of linear dynamic systems,
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Bohner and Wintz [8] studied controllability and observability of linear systems, Grow
and Wintz [13] proved existence and uniqueness of solutions to a bilinear state system
with locally essentially bounded coefficients on an unbounded time scale. Approximate
and exact controllability of semilinear systems on time scales was studied by Duque,
Leiva and Uzcátegui in [10,11], Malik and Kumar in [18] established exact controllability
for time-varying neutral differential equations with impulses. More works can be seen
in [9, 17,19] and references therein.

In this regard, in this paper, we will consider a control system governed by the
dynamic equation with memory

z∆(t) =−A(t)zσ(t) +B(t)u(t) + a

∫ t

t0

M(t, s)g(s, zτ (s))∆s

+ bf(t, z(t), u(t)), t ≥ t0 ≥ 0,

z(t) =ϕ(t), t ∈ [τ(t0), t0]T,

(1)

where z(t) ∈ Rn is the state function, zτ (t) = z(τ(t)), and τ : T → T is the delay
function which is increasing and unbounded on T such that τ(t) ≤ t for t ∈ T (see [12]).
A ∈ R(T,Rn×n), B ∈ R(T,Rn×m), the control u ∈ L2

∆(T,Rm), M : T × T → R is a
function that is locally essentially bounded on T×T, the functions f : T×Rn×Rm → Rn,
g : T×Rn → Rn are rd-continuous and there exist rd-continuous functions Lf , Lg : T →
R+ such that

C1) ∥f(t, z, u)− f(t, z̃, ũ)∥ ≤ Lf (t)(∥z − z̃∥+ ∥u− ũ∥), with f(t, 0, 0) = 0,

C2) ∥g(t, z)− g(t, z̃)∥ ≤ Lg(t) ∥z − z̃∥, with g(t, 0) = 0.

The function ϕ lies in the space Crd([τ(t0), t0]T,Rn), which is a Banach space endowed
with the norm

∥ϕ∥0 = sup{∥ϕ(t)∥ : t ∈ [τ(t0), t0]T}.
In this paper, we suppose that the time scale T satisfies −∞ < τ(t0) < supT = ∞.

The main goal of this work is to study controllability of system (1). Specifically, we
shall show that under certain conditions, controllability of the associated linear system
implies controllability of the semilinear dynamic equation with memory. In order to
prove this assertion, we impose some conditions on the nonlinear terms presented in the
system, and then apply a direct approach developed by A. E. Bashirov et al. (see [4–6])
to avoid fixed point theorems, and approximate controllability is achieved. But before
that, we prove existence, uniqueness and continuation of solutions of the system. Finally,
we consider some examples in which our results can be applied.

2 Preliminaries

Before studying system (1), we give a brief introduction to the calculus on time scales,
especially to clarify notations and definitions, which will help for a better understanding
of the reader. For more details about time scales theory, we recommend the excellent
monograph [7].

Time scales theory was introduced by Stefan Hilger (see [14]). We define a time scale
as any arbitrary nonempty closed subset of R, this set is denoted by T. For every t ∈ T,
the forward and backward jump operators σ, ρ : T → T are defined, respectively, as

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.
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A point t ∈ T is said to be right-dense if σ(t) = t and t < supT, right-scattered if σ(t) > t,
left-dense if ρ(t) = t and t > inf T, left-scattered if ρ(t) < t, isolated if ρ(t) < t < σ(t).
The function µ : T → [0,∞) defined by µ(t) := σ(t) − t is known as the graininess
function. It is assumed that T has the topology inherited from standard topology on the
real numbers. The time scale interval [a, b]T is defined by [a, b]T = {t ∈ T : a ≤ t ≤ b},
with a, b ∈ T, and similarly we define open intervals and open neighborhoods.

Definition 2.1 (See [7]) A function f : T → Rn is said to be right-dense continuous,
or just rd-continuous, if f is continuous at every right-dense point t ∈ T and lim

s→t−
f(s)

exists (finite) for every left-dense point t ∈ T. The class of all rd-continuous functions
f : T → Rn is denoted by Crd(T,Rn). We define fσ : T → Rn by fσ = f ◦ σ. We define
the set Tκ by Tκ = T \ (ρ(supT), supT] if T has a left-scattered maximum, and Tκ = T
otherwise.

Definition 2.2 (See [7]) A function f : T → Rn is called delta differentiable (or
simply ∆-differentiable) at t ∈ Tκ provided there exists f∆(t) with the property that
given ε > 0, there is a neighborhood U = (t− δ, t+ δ)T for some δ > 0 such that∥∥fσ(t)− f(s)− f∆(t)(σ(t)− s)

∥∥ ≤ ε |σ(t)− s)| for all s ∈ U.

In this case, f∆(t) is called the ∆-derivative of f at t.

If f is ∆-differentiable at t ∈ Tκ, then it is easy to show that (see [7, Theorem 1.16])

f∆(t) =


fσ(t)− f(t)

σ(t)− t
if σ(t) > t,

lim
s→t

f(t)− f(s)

t− s
if σ(t) = t.

Definition 2.3 (See [7]) A function F : T → Rn is called an antiderivative of f :
T → Rn if F∆(t) = f(t) for all t ∈ Tκ. The Cauchy integral is defined by∫ t

s

f(τ)∆τ = F (t)− F (s), t, s ∈ T,

where F is an antiderivative of f .

A function p : T → R is said to be regressive if 1+ µ(t)p(t) ̸= 0, t ∈ T, and positively
regressive if 1 + µ(t)p(t) > 0, t ∈ T. We will denote by R the set of all regressive and
rd-continuous functions, and by R+ the set of all positively regressive and rd-continuous
functions.

Definition 2.4 [See [7]] If p ∈ R, then the generalized exponential function is defined
by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
,

where

ξµ(z) :=

{
Log(1+µz)

µ if µ > 0,

z if µ = 0,

where z ∈ Cµ := {z ∈ C : z ̸= 1/µ} and Logz = log |z|+ i arg z, −π < arg z ≤ π.
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Definition 2.5 (See [7]) Let A be an n × n matrix-valued function on T. We say
that A is rd-continuous on T if each entry of A is rd-continuous on T, and the class of all
such rd-continuous n×n matrix-valued functions on T is denoted by Crd(T,Rn×n). A is
called regressive (with respect to T) provided I+µ(t)A(t) is invertible for all t ∈ Tκ, and
the class of all such regressive and rd-continuous functions is denoted by R(T,Rn×n).

Let t0 ∈ T and A be an n× n regressive matrix-valued function defined on T. Then,
the unique solution of the initial value problem

X∆ = A(t)X, X(t0) = I,

is called the matrix exponential function, denoted by eA(t, t0), and satisfies the properties

a) e0(t, s) ≡ I and eA(t, t) ≡ I,

b) eA(t, s)eA(s, r) = eA(t, r),

c) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s),

d) eA(t, s) = e−1
A (s, t) = e∗⊖A∗(s, t),

e) eA(t, s)eB(t, s) = eA⊕B(t, s) if A(t) and B(t) commute,

where for A,B ∈ R(T,Rn×n),

A⊕B = A+B + µAB and ⊖A = −(I + µA)−1A.

3 Existence and Uniqueness

In this section, we show existence and uniqueness of solutions for system (1). The next
theorem is a consequence of straightforward computation.

Theorem 3.1 Consider a control u ∈ L2
∆(T,Rn). Then z is a solution of system (1)

if and only if z satisfies the integral equation

z(t) =



ϕ(t), t ∈ [τ(t0), t0]T,

e⊖A(t, t0)ϕ(t0) +

∫ t

t0

e⊖A(t, s)B(s)u(s)∆s

+a

∫ t

t0

e⊖A(t, s)

[∫ s

t0

M(s, ξ)g(ξ, zτ (ξ))∆ξ

]
∆s

+b

∫ t

t0

e⊖A(t, s)f(s, z(s), u(s))∆s, t ≥ t0.

(2)

For fixed η > t0, we denote

Me = sup{∥e⊖A(t, s)∥ : t, s ∈ [t0, η]T}, M = sup{∥M(t, s)∥ : t, s ∈ [t0, η]T},
L̄f = sup{Lf (t) : t ∈ [t0, η]T}, L̄g = sup{Lg(t) : t ∈ [t0, η]T}.

Theorem 3.2 Suppose there exists η > t0 such that

Me

(
|a|ML̄gη + |b| L̄f

)
η < 1. (3)

Then, for any ϕ ∈ Crd([τ(t0), t0]T,Rn) and u ∈ L2
∆(T,Rm), system (1) has a unique

solution through (t0, ϕ) defined on [τ(t0), η]T.
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Proof. Let η > t0 be such that (3) holds and consider ϕ ∈ Crd([τ(t0), t0]T,Rn) and
u ∈ L2

∆([t0, η]T,Rm). Now, finding a solution of system (1) through (t0, ϕ) is equivalent
to solving the integral equation (2). In order to do this, we consider the function space

Crdϕ
([τ(t0), η]T,Rn) = {z ∈ Crd([τ(t0), η]T,Rn) : z(t) = ϕ(t) for t ∈ [τ(t0), t0]T} ,

which is a Banach space endowed with the norm ∥z∥∗ = sup{∥z(t)∥ : t ∈ [τ(t0), η]T}, and
we show that the operator

T : Crdϕ
([τ(t0), η]T,Rn) −→ Crdϕ

([τ(t0), η]T,Rn)

defined by

(T z)(t) =



ϕ(t), t ∈ [τ(t0), t0]T,

e⊖A(t, t0)ϕ(t0) +

∫ t

t0

e⊖A(t, s)B(s)u(s)∆s

+a

∫ t

t0

e⊖A(t, s)

[∫ s

t0

M(s, ξ)g(ξ, zτ (ξ))∆ξ

]
∆s

+b

∫ t

t0

e⊖A(t, s)f(s, z(s), u(s))∆s, t ∈ [t0, η]T

(4)

has a unique fixed point. Indeed, if t ∈ [τ(t0), t0]T, then (T z)(t) = ϕ(t) = z(t). If
t ∈ [t0, η]T, then for z, z̃ ∈ Crdϕ

([τ(t0), η]T,Rn) with z ̸= z̃, we have

∥(T z)(t)− (T z̃)(t)∥

≤ |a|
∫ t

t0

∥e⊖A(t, s)∥
[∫ s

t0

∥M(s, ξ)∥ ∥g(ξ, zτ (ξ))− g(ξ, z̃τ (ξ))∥∆ξ
]
∆s

+ |b|
∫ t

t0

∥e⊖A(t, s)∥ ∥f(s, z(s), u(s))− f(s, z̃(s), u(s))∥∆s

≤ |a|
∫ t

t0

∥e⊖A(t, s)∥
[∫ s

t0

MLg(ξ) ∥z(τ(ξ))− z̃(τ(ξ))∥∆ξ
]
∆s

+ |b|
∫ t

t0

∥e⊖A(t, s)∥Lf (s) ∥z(s)− z̃(s)∥∆s

≤ |a|
∫ t

t0

Me

[∫ s

t0

ML̄g ∥z − z̃∥∗ ∆ξ
]
∆s+ |b|

∫ t

t0

MeL̄f ∥z − z̃∥∗ ∆s

≤ |a|
∫ t

t0

MeML̄gη ∥z − z̃∥∗ ∆s+ |b|MeL̄fη ∥z − z̃∥∗

≤Me

(
|a|ML̄gη + |b| L̄f

)
η ∥z − z̃∥∗ .

Therefore, using (3), we have

∥T z − T z̃∥∗ ≤Me

(
|a|ML̄gη + |b| L̄f

)
η ∥z − z̃∥∗ < ∥z − z̃∥∗ ,

so that T satisfies all assumptions of the Banach contraction theorem, and therefore,
T has only one fixed point in the space Crdϕ

([τ(t0), η]T,Rn), which is the solution of
problem (1).

Definition 3.1 We shall say that [τ(t0), η)T is the maximal interval of existence of
the solution z of system (1) if there is no solution of (1) on [τ(t0), η

∗)T with η∗ > η.
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Theorem 3.3 If z is a solution of system (1) on [τ(t0), η)T and η is maximal, then
either η = ∞ or z(t) is not bounded on any neighborhood of η.

Proof. Suppose that η <∞ and there is a neighborhood U of η such that ∥z(t)∥ ≤ R
for t ∈ U . In this case, we can suppose that ∥z(t)∥ ≤ R for all t ∈ [τ(t0), η)T. If η is
left-dense, then there is an increasing sequence {ηk}k≥1 such that lim

k→∞
ηk = η and

lim
k→∞

z(ηk) = z∗ for some z∗ ∈ Rn. We shall see that lim
t→η−

z(t) = z∗.

Let ε > 0 be small enough. Since lim
k→∞

ηk = η, we can take η
N
∈ (η− ε, η)T such that

∥z(η
N
)− z∗∥ < ε. For t ∈ (η − ε, η)T with t > η

N
, we have

∥z(t)− z∗∥ ≤ ∥z(t)− z(η
N
)∥+ ∥z(η

N
)− z∗∥ .

Now,

∥z(t)− z(η
N
)∥ ≤ ∥e⊖A(t, t0)− e⊖A(ηN

, t0)∥ ∥ϕ(t0)∥

+

∫ η
N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ ∥B(s)∥ ∥u(s)∥∆s

+ |a|
∫ η

N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥

[∫ s

t0

∥M(s, ξ)∥ ∥g(ξ, zτ (ξ))∥∆ξ
]
∆s

+ |b|
∫ η

N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ ∥f(s, z(s), u(s))∥∆s

+

∫ t

η
N

∥e⊖A(t, s)∥ ∥B(s)∥ ∥u(s)∥∆s

+ |a|
∫ t

η
N

∥e⊖A(t, s)∥
[∫ s

t0

∥M(s, ξ)∥ ∥g(ξ, zτ (ξ))∥∆ξ
]
∆s

+ |b|
∫ t

η
N

∥e⊖A(t, s)∥ ∥f(s, z(s), u(s))∥∆s

≤∥e⊖A(t, t0)− e⊖A(ηN
, t0)∥ ∥ϕ(t0)∥

+

∫ η
N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ ∥B(s)∥ ∥u(s)∥∆s

+ |a|
∫ η

N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥

[∫ s

t0

ML̄g ∥z(τ(ξ))∥∆ξ
]
∆s

+ |b|
∫ η

N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ L̄f (∥z(s)∥+ ∥u(s)∥)∆s

+

∫ t

η
N

∥e⊖A(t, s)∥ ∥B(s)∥ ∥u(s)∥∆s

+ |a|
∫ t

η
N

∥e⊖A(t, s)∥
[∫ s

t0

ML̄g ∥z(τ(ξ))∥∆ξ
]
∆s

+ |b|
∫ t

η
N

∥e⊖A(t, s)∥ L̄f (∥z(s)∥+ ∥u(s)∥)∆s

≤∥e⊖A(t, t0)− e⊖A(ηN
, t0)∥ ∥ϕ(t0)∥

+

∫ η

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ ∥B(s)∥ ∥u(s)∥∆s
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+ |a|
∫ η

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ML̄gRs∆s

+ |b|
∫ η

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ L̄f (R+ ∥u(s)∥)∆s

+

∫ η

η
N

Me ∥B(s)∥ ∥u(s)∥∆s+ |a|
∫ η

η
N

MeML̄gRs∆s

+ |b|
∫ η

η
N

MeL̄f (R+ ∥u(s)∥)∆s.

Hence, we get that, if η
N
→ η, then ∥z(t)− z(ηN )∥ → 0, so lim

t→η−
z(t) = z∗, and therefore,

z(t) can be continued beyond of η, contradicting our assumption.
If η is left-scattered, then ρ(η) ∈ (t0, η)T so that the solution z exists also at η, namely,

by putting

z(η) =[I + µ(ρ(η))A(ρ(η))]−1

{
z(ρ(η)) + µ(ρ(η))B(ρ(η))u(ρ(η))

+ aµ(ρ(η))

∫ ρ(η)

t0

M(ρ(η), s)g(s, zτ (s))∆s+ bµ(ρ(η))f(ρ(η), z(ρ(η)), u(ρ(η))

}
,

which is a contradiction.

Theorem 3.4 If there exists ∆-differentiable φ : [t0,∞)T → R+ such that

∥g(t, z)∥ ≤ φ∆(t), (5)

then the solution of system (1) is defined on [τ(t0),∞)T.

Proof. Suppose that z(t) is defined on [τ(t0), η)T with η <∞. Then, for t ∈ (t0, η)T,
we have

∥z(t)∥ ≤∥e⊖A(t, t0)∥ ∥ϕ(t0)∥+
∫ t

t0

∥e⊖A(t, s)∥ ∥B(s)∥ ∥u(s)∥∆s

+ |a|
∫ t

t0

∥e⊖A(t, s)∥
[∫ s

t0

∥M(s, ξ)∥ ∥g(ξ, zτ (ξ))∥∆ξ
]
∆s

+ |b|
∫ t

t0

∥e⊖A(t, s)∥ ∥f(s, z(s), u(s))∥∆s

≤Me ∥ϕ(t0)∥+
∫ t

t0

Me ∥B(s)∥ ∥u(s)∥∆s+ |a|
∫ t

t0

Me

[∫ s

t0

Mφ∆(ξ)∆ξ

]
∆s

+ |b|
∫ t

t0

MLf (s)(∥z(s)∥+ ∥u(s)∥)∆s

≤Me ∥ϕ(t0)∥+
∫ η

t0

(
Me ∥B(s)∥+ |b|ML̄f

)
∥u(s)∥∆s+ |a|

∫ η

t0

MeMφ(s)∆s

+ |b|
∫ t

t0

ML̄f ∥z(s)∥∆s.
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By using Gronwall’s inequality (see [7, Corollary 6.8]), we obtain

∥z(t)∥ ≤
[
Me ∥ϕ(t0)∥+

∫ η

t0

(
Me ∥B(s)∥+ |b| L̄fM

)
∥u(s)∥∆s

+ |a|
∫ η

t0

MeMφ(s)∆s

]
e|b|L̄fM (t, t0)

≤
[
Me ∥ϕ(t0)∥+

∫ η

t0

(
Me ∥B(s)∥+ |b| L̄fM

)
∥u(s)∥∆s

+ |a|
∫ η

t0

MeMφ(s)∆s

]
e|b|L̄fM (η, t0).

This implies that ∥z(t)∥ stays bounded in any neighborhood of η. So, from Theorem 3.3,
we get η = ∞. This completes the proof.

4 Controllability of the Linear Equation

In order to study controllability of system (1), in this section, we shall present some
characterization of controllability of a linear system associated to (1), namely,{

z∆(t) = −A(t)zσ(t) +B(t)u(t), t ∈ [δ, η]T,

z(δ) = z0.
(6)

The results presented in this section can be seen in [11], of course, with obvious modifi-
cations.

Note that, for all z0 ∈ Rn and u ∈ L2
∆([δ, η]T,Rm), the initial value problem (6)

admits only one solution, which is given by

z(t) = e⊖A(t, δ)z
0 +

∫ t

δ

e⊖A(t, s)B(s)u(s)∆s. (7)

Definition 4.1 We say that (6) is controllable on [δ, η]T if for every z0, z1 ∈ Rn,
there exists u ∈ L2

∆([δ, η]T,Rm) such that the solution z of (6) corresponding to u satisfies
z(η) = z1.

Definition 4.2 For the linear system (6), we define the following concepts:

1) The controllability operator Bη : L2
∆([δ, η]T,Rm) → Rn is defined by

Bηu =

∫ η

δ

e⊖A(η, s)B(s)u(s)∆s. (8)

2) The Gramian map is defined by LBη = BηBη∗.

Proposition 4.1 The adjoint Bη∗ : Rn → L2
∆([δ, η]T,Rm) of the operator Bη is given

by
(Bη∗z)(t) = B∗(t)e∗⊖A(η, t)z

and
LBηz =

∫ η

δ

e⊖A(η, s)B(s)B∗(s)e∗⊖A(η, s)z∆s.
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Theorem 4.1 System (6) is controllable on [δ, η]T if and only if one of the following
statements holds:

1) Range(Bη) = Rn,

2) ⟨LBηz, z⟩ > 0 for every z ∈ Rn \ {0},

3) there exists γ > 0 such that ∥Bη∗z∥L2
∆
≥ γ ∥z∥ for every z ∈ Rn,

4) LBη is invertible. Moreover, Gη = Bη∗L−1
Bη is a right inverse of Bη, and the control

u ∈ L2
∆([δ, η]T,Rm) steering the system from the initial state zδ to a final state z1 is

given by
u = Bη∗L−1

Bη

(
z1 − e⊖A(η, δ)z

0
)
. (9)

5 Approximate Controllability of the Nonlinear System

Definition 5.1 (Approximate Controllability) System (1) is said to be approxi-
mately controllable on [t0, η]T if for every ϕ ∈ Crd([τ(t0), t0]T,Rm), z1 ∈ Rn and ε > 0,
there exists a control u ∈ L2

∆([t0, η]T,Rm) such that the solution z of (1) corresponding
to u satisfies

z(t0) = ϕ(t0) and
∥∥z(t)− z1

∥∥ < ε.

Theorem 5.1 Suppose the system (1) is defined on [t0, η]T, where η is such that (3)
is satisfied. Assume that

i) η is left-dense,

ii) there exists ∆-differentiable φ : [t0, η]T → R+ such that ∥g(t, z)∥ ≤ φ∆(t) for all
t ∈ [t0, η]T,

iii) there exists rd-continuous ψ : [t0, η]T → R+ such that ∥f(t, z, u)∥ ≤ ψ(t) for all
t ∈ [t0, η]T.

If the linear system (6) is controllable on [δ, η]T, with t0 ≤ δ < η, then system (1) is
approximately controllable on [t0, η]T.

Proof. Given ϕ ∈ Crd([τ(t0), t0]T,Rn), a final state z1 and ε > 0, we want to find
a control uε ∈ L2

∆([t0, η]T,Rm) steering the solution of system (1) to an ε-neighborhood
of z1 at time η. Indeed, let ε > 0 and consider a control u ∈ L2

∆([t0, η]T,Rm), arbitrary
but fixed, and the corresponding solution z(t) = z(t, t0, ϕ, u) of system (1). Since η is
left-dense, there exists δε ∈ (t0, η)T such that

η − δε <
ε

Me(|a|Mφ̄+ |b| ψ̄)
,

where φ̄ = sup{φ(t) : t ∈ [t0, η]T} and ψ̄ = sup{ψ(t) : t ∈ [t0, η]T}. We define the control
uε ∈ L2

∆([τ(t0), η]T,Rm) by

uε(t) =

{
u(t) if t ∈ [t0, δε]T,

ũ(t) if t ∈ (δε, η]T,
(10)

where
ũ(t) = B∗(t)e∗⊖A(η, t)L−1

Bη

(
z1 − e⊖A(η, δε)z(δε)

)
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is the control steering the solution of system (6) from the initial state z(δε) to the final
state z1 on [δε, η]T. The corresponding solution zδε(·) = zδε(·, t0, ϕ, uε) of problem (1) at
time η can be expressed by

zδε(η) =e⊖A(η, t0)ϕ(t0) +

∫ η

t0

e⊖A(η, s)B(s)uε(s)∆s

+ a

∫ η

t0

e⊖A(η, s)

[∫ s

t0

M(s, ξ)g(ξ, zδετ (ξ))∆ξ

]
∆s

+ b

∫ η

t0

e⊖A(η, s)f(s, z
δε(s)uεα(s))∆s

=e⊖A(η, δε)

{
e⊖A(δε, t0)ϕ(t0) +

∫ δε

t0

e⊖A(δε, s)B(s)u(s)∆s

+ a

∫ δε

t0

e⊖A(δε, s)

[∫ s

t0

M(s, ξ)g(ξ, zτ (ξ))∆ξ

]
∆s

+ b

∫ δε

t0

e⊖A(δε, s)f(s, z(s), u(s))∆s

}

+

∫ η

δε

e⊖A(η, s)B(s)ũ(s)∆s+ a

∫ η

δε

e⊖A(η, s)

[∫ s

t0

M(s, ξ)g(ξ, zδετ (ξ))∆ξ

]
∆s

+ b

∫ η

δε

e⊖A(η, s)f(s, z
δε(s), ũ(s))∆s

=e⊖A(η, δε)z(δε) +

∫ η

δε

e⊖A(η, s)B(s)ũ(s)∆s

+ a

∫ η

δε

e⊖A(η, s)

[∫ s

t0

M(s, ξ)g(ξ, zδετ (ξ))∆ξ

]
∆s

+ b

∫ η

δε

e⊖A(η, s)f(s, z
δε(s), ũ(s))∆s.

On the other hand, the corresponding solution y(·) = y(·, δε, y(δε), ũ) of initial value
problem (6) at time t = η is given by

y(η) = e⊖A(η, δε)y(δε) +

∫ η

δε

e⊖A(η, s)B(s)ũ(s)∆s.

Since the linear system (6) is controllable on [δε, η]T, we have that y(η) = z1. Taking
y(δε) = z(δε), we get

∥∥zδε(η)− z1
∥∥ ≤ |a|

∫ η

δε

∥e⊖A(η, s)∥
[∫ s

t0

∥M(s, ξ)∥
∥∥g(ξ, zδετ (ξ))

∥∥∆ξ]∆s
+ |b|

∫ η

δε

∥e⊖A(η, s)∥
∥∥f(s, zδε(s), ũ(s))∥∥∆s

≤ |a|
∫ η

δ

Me

[
M

∫ s

t0

φ∆(ξ)∆ξ

]
∆s+ |b|

∫ η

δe

Meψ(s)∆s

≤ |a|
∫ η

δε

MeMφ(s)∆s+ |b|
∫ η

δε

Meψ(s)∆s
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≤Me

(
|a|Mφ̄+ |b| ψ̄

)
(η − δε) < ε.

So we get that system (1) is approximately controllable.

6 Approximate Controllability on Free Time

In this section, we prove the approximate controllability on free time of the system{
z∆(t) = −A(t)zσ(t) +B(t)u(t) + bf(t, z(t), u(t)), t ≥ t0 ≥ 0,

z(t0) = z0,
(11)

which is the system (1) without memory (i.e., taking a ≡ 0).

Definition 6.1 (Approximate Controllability on Free Time) System (11) is said to
be approximately controllable on free time if for every z0, z1 ∈ Rn, and ε > 0, there exist
η ∈ T and u ∈ L2

∆([t0, η]T,Rm) such that the corresponding solution of (1) satisfies∥∥z(η)− z1
∥∥ < ε.

Theorem 6.1 Suppose that

i) There exists Me > 0 such that ∥e⊖A(t, s)∥ ≤Me for all t, s ∈ T,

ii) there exists rd-continuous ψ : [t0,∞)T → R+ such that

∥f(t, z, u)∥ ≤ ψ(t) with
∫ ∞

t0

ψ(s)∆s <∞.

If the linear system (6) is controllable on each interval [δ, η]T, then the system (11) is
approximately controllable on free time.

Proof. For ε > 0, z0 ∈ Rn and a final state z1, we want to find η > t0 and a control
uε ∈ L2

∆([t0, η]T,Rm) steering the solution of system (11) to an ε-neighborhood of z1 at

time η. Since
∫ ∞

t0

ψ(s)∆s < ∞, we can choose δε, η ∈ T big enough with t0 < δε < η

such that ∫ η

δε

ψ(s)∆s <
ε

|b|Me
.

Now, defining uε ∈ L2
∆([t0, η]T,Rm) as in (10) and proceeding similarly as in the proof

of Theorem 5.1, we have

∥∥zδε(η)− z1
∥∥ ≤ |b|

∫ η

δε

∥e⊖A(η, s)∥
∥∥f(s, zδε(s), ũ(s))∥∥∆s < ε.

So we get that system (11) is approximately controllable on free time.
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7 Examples

Example 7.1 Let us consider the time scale T = P1,1 =
⋃∞

k=0[2k, 2k + 1] and the
control system

z∆(t) = −zσ(t) + 2u(t) + 1
100

∫ t

1

e⊖1(t, s) sin(s) sin(z(s/5))∆s

+ 1
20 cos(t) sin(z(t) + u(t)), t ∈ [1, 5]T,

z(t) = ϕ(t), t ∈ [ 15 , 1]T,

(12)

where t0 = 1, τ(t) = t
5 , M(t, s) = e⊖1(t, s), g(t, z) = sin(t) sin(z), f(t, z, u) =

cos(t) sin(z(t) + u(t)), A(t) = 1, B(t) = 2 and e⊖A(t, s) = e⊖1(t, s). Since

∥g(t, z)− g(t, z̃)∥ ≤ |sin(t)| ∥z − z̃∥ , g(t, 0) = 0,

∥f(t, z, u)− f(t, z̃, ũ)∥ ≤ |cos(t)| (∥z − z̃∥+ ∥u− ũ∥), f(t, 0, 0) = 0,

and Me

(
|a|ML̄gη + |b| L̄f

)
η < 1

2 , Theorem 3.2 ensures existence and uniqueness of
solutions for problem (12) on [ 15 , 5]T. On the other hand,

∥g(t, z)∥ ≤ φ∆(t) for all t ∈ [1, 5]T with φ(t) = t,

∥f(t, z, u)∥ ≤ ψ(t) for all t ∈ [1, 5]T with ψ(t) = 1.

Furthermore, LB5 = 4

∫ 5

δε

e⊖(1⊕1)(5, s)∆s > 0, so this operator is invertible, and hence

the linear system {
z∆(t) = −zσ(t) + 2u(t), t ∈ [δε, 5]T,

z(δε) = z0,

is controllable and, since η = 5 is left-dense, by Theorem 5.1, system (12) is approximately
controllable on [1, 5]T.

Example 7.2 Let us consider the time scale T = {3n : n ∈ N0} and the control
system 

z∆(t) = −2zσ(t) + u(t) +
1

3t2

(
tanh(z(t)) +

u(t)

1 + u2(t)

)
, t > 1,

z(1) = z0,

(13)

where f(t, z, u) = 1
3t2

(
tanh(z) + u

1+u2

)
, A(t) = 2, B(t) = 1 and e⊖A(t, s) = e⊖2(t, s). It

is easy to see that the solution of (13) is defined on [1,∞)T. On the other hand, we have

∥f(t, z, u)∥ ≤ 1

3t2

∥∥∥∥tanh(z) + u

1 + u2

∥∥∥∥ ≤ ψ(t) with ψ(t) =
2

3t2
and

∫ ∞

1

∆t

t2
<∞.

For η > δε, the linear system{
z∆(t) = −2zσ(t) + u(t), t ∈ [δε, η]T,

z(δε) = z0,

is controllable since the operator LBη =

∫ η

δε

e⊖(2⊕2)(η, s)∆s is invertible. Hence, by

Theorem 6.1, we have that system (13) is approximately controllable on free time.
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8 Conclusion and Final Remark

In this paper, we study a control system governed by a dynamic equation with memory on
time scales. Specifically, first of all, we prove existence and uniqueness of solutions, then
under an additional condition, and by applying Gronwall’s inequality on time scales, we
prove the prolongation of solutions. After that, we prove approximate controllability of
the system assuming that the associated linear control problem on time scales is exactly
controllable on [δ, η]T, for any δ ∈ (t0, η)T with η being a left-dense point. In the case
where the time scale does not have left-dense points, we consider the system without
memory and we prove, under additional conditions, controllability on free time, i.e., we
prove the existence of a time η such that the system (1) is approximately controllable.
For difference equations, approximate controllability on free time was introduced by
Uzcategui and Leiva in [16]. Finally, two examples show that our results are feasible. Of
course, this work can be extended to evolution equations with memory on time scales in
infinite-dimensional Banach spaces using strongly continuous semigroups on time scales
approach.
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