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Functional Differential Inclusions with Unbounded

Right-hand Side in Banach Spaces

H. Chouial ∗ and M. F. Yarou

LMPA Laboratory, Department of Mathematics, Jijel University, Algeria.

Received: March 27, 2022; Revised: September 15, 2022

Abstract: In this work, we provide a reduction method that solve functional differ-
ential inclusion in Banach spaces, that is, when the right-hand side contains a finite
delay. We consider the case when the set-valued mapping takes nonempty closed non-
convex and unnecessarily bounded values, we use the notion of λ −H Lipschitzness
assumption instead of the standard Lipschitz condition, known as a truncation. An
application to a dynamical system governed by a delayed perturbed sweeping process
is given, such problems are well-posed for differential complementarity systems and
vector hysteresis problems.

Keywords: nonconvex differential inclusion; reduction; delay; unboundedness; λ-
Hausdorff distance.

Mathematics Subject Classification (2010): 93C10, 34A60.

1 Introduction

Let τ, T be two non-negative real numbers, E be a separable Banach space equipped
with the norm ∥·∥, C0 := CE([−τ, 0]) (resp. CT := CE([−τ, T ])) be the Banach space of all
continuous mappings from [−τ, 0] (resp. [−τ, T ]) to E equipped with the norm of uniform
convergence. Let Π : [0, T ] × C0 ⇒ E be a set-valued mapping with nonempty closed
values. In this work, we study the existence of solutions for the following differential
inclusion with delay:

(DP )

{
u̇(t) ∈ Π(t, Z(t)u) a.e. t ∈ [0, T ],
u(t) = ψ(t), t ∈ [−τ, 0],

where ψ ∈ C0 and Z(t) : CT −→ C0 is defined by (Z(t)u)(s) = u(t + s),∀s ∈ [−τ, 0 ].
In [9], Fryszkowski proved an existence result for (DP ) when Π is an integrably bounded

∗ Corresponding author: mailto:hananechouial@yahoo.com
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356 H. CHOUIAL AND M. F. YAROU

and lower semicontinuous set-valued mapping with nonconvex values, the proof is based
on the construction of a continuous selection for a class of nonconvex decomposable sets.
Many other results have been obtained using a fixed point or discretization approach,
see for instance [2, 4–6, 8] and the references therein. In [5], a discretization technique
was initiated, it consists to subdivide the interval [0, T ] in a sequence of subintervals and
to reformulate the problem with delay to a sequence of problems without delay and then
apply the results known in this case. Our goal in this work is to prove the existence of
a global solution to (DP ) for a general class of unbounded sets thanks to a recent result
for the undelayed problem due to Tolstonogov [11]. We weaken the standard Lipschitz
condition by a truncated one. Then, we use this result to present an application for func-
tional differential inclusions governed by time and state dependent nonconvex sweeping
process. This kind of problems corresponds to several important mechanical problems
and nonsmooth dynamical systems. When external forces (perturbations) are applied to
the system described by the sweeping process, the problem found many applications in
resource allocation in economics, nonregular electrical circuits, crowd motion modeling
and hysteresis. We propose here a new variant of the existence result which generalizes
the previous results. The paper is organized as follows. In Section 2, we prepare some
material which will be needed later in our proof. Section 3 is devoted to the main result.
An application is given in Section 4 for a dynamical system governed by a sweeping
process subject to external forces containing a finite delay.

2 Preliminaries

Throughout the paper, we will use the following notation and definitions. Let E be a
separable Banach space, ∥ · ∥ its norm and ⊖ its zero element. We denote by CE([0, T ])
the Banach space of all continuous mappings from [0, T ] to E, L1

E([0, T ]) is the Banach
space of all measurable mappings from [0, T ] to E. Let B(C0) be the σ-algebra of Borel
sets of C0 and L be the σ-algebra of Lebesgue measurable subsets of [0, T ], d(u,A) means
the usual distance from a point u to a set A, i.e., d(u,A) := infv∈A ∥u− v∥, u ∈ E. We
denote by λB the closed ball with radius λ in E centered at ⊖, and BC0

the closed unit
ball of C0 with center 0. A set-valued mapping Λ : [0, T ]×E ⇁ E is integrally bounded
if there exists an integrable function ξ : [0, T ] → R+ such that

∥Λ(t, u)∥ := sup{∥v∥; v ∈ Λ(t, u)} ≤ ξ(t), t ∈ [0, T ], u ∈ E.

A set-valued mapping with closed values, is measurable whenever Λ−1(U) = {t ∈ [0, T ] :
Λ(t) ∩ U ̸= ∅} belongs to L for every closed set U ⊂ E.
Following [3], for any set A ⊂ E and λ > 0, we put Aλ = A ∩ λB. For A, B ⊂ E, the
excess, the Hausdorff distance and the λ-Hausdorff distance between A and B are defined
respectively by e(A,B) := supa∈A d(a,B), haus(A,B) = max{e(A,B), e(B,A)} and

hausλ(A,B) = max{e(Aλ, B), e(Bλ, A)}.

If A is a nonempty closed subset of E, then δ∗(u,A) = sup
v∈A

⟨u, v⟩ is the support function

of A at u ∈ E, and co(A) stands for the closed convex hull of A, characterized by

co(A) = {u ∈ E : ∀v ∈ E, ⟨v, u⟩ ≤ δ∗(v,A)}.

The projection of u on A is the element of A denoted by ProjA(u) and satisfying
ProjA(u) = {v ∈ A : d(u,A) = ∥u− v∥}.
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Let g : E → R ∪ {+∞} be a proper convex continuous function on E and u ∈ E with
g(u) < +∞, the subdifferential of g is the set defined by

∂g(u) = {z ∈ E : < z, v − u >≤ g(v)− g(u), ∀v ∈ E},

if g(u) is not finite, we set ∂g(u) = ∅, ∂g(u) is a closed convex set if g is convex.
Let A ⊂ E and u ∈ A, the normal cone to A at u is defined by

NA(u) = {v ∈ E : < v, c− u >≤ 0, for all c ∈ A}.

A vector ω ∈ E is said to be in the Fréchet subdifferential of g at u, denoted by ∂F g(u),
if for every ε > 0 there exists δ > 0 such that for all u′ ∈ B(u, δ), we have

⟨ω, u′ − u⟩ ≤ g(u′)− g(u) + ε∥u′ − u∥.

The Fréchet normal cone NF
A (u) of A at u ∈ A is given by NF

A (u) = ∂FχA(u), where χA

is the indicator function of A, so we have the inclusion NF
A (u) ⊂ NA(u) for all u ∈ A.

On the other hand, the Fréchet normal cone is also related to the Fréchet subdifferential
of the distance function since for all u ∈ A,

NF
A (u) = R+∂

F d(u,A); and ∂F dA(u) = NF (A;u) ∩ B.

We now recall the definition of subsmooth sets.

Definition 2.1 Let A be a closed subset of E, we say that A is subsmooth at u0 ∈ A
if for every ϵ > 0, there exists δ > 0 such that

⟨ζ2 − ζ1;u2 − u1⟩ ≥ −ϵ∥u2 − u1∥ (1)

whenever u1, u2 ∈ B(u0; δ) ∩ A and ζi ∈ NA(ui) ∩ B. The set A is subsmooth if it is
subsmooth at each point of A.

Let A be a closed subset in E and u0 ∈ A. Then, if A is subsmooth at u0, then it is
normally Fréchet regular at u0, that is, N

F
A (u0) = NA(u0) and ∂d(u0, A) = ∂F d(u0, A).

Definition 2.2 A family (S(q))q∈Q of closed sets in E with parameter q ∈ Q, is
called equi-uniformly subsmooth if for every ϵ > 0, there exists δ > 0 such that for each
q ∈ Q, the inequality (1) holds for all u1, u2 ∈ S(q) satisfying ∥u1 − u2∥ < δ and all
ξi ∈ N(S(q);ui) ∩ B.

Proposition 2.1 [10] Let {C(t, u) : (t, u) ∈ [0;T ] × E} be a family of nonempty
closed sets of E which is equi-uniformly subsmooth and let ν ≥ 0, assume that there exist
positive real constants L1, L2 such that for any t, s ∈ [0, T ] and u, v, z ∈ E,

|d(z, C(t, u))− d(z, C(s, v))| ≤ L1|t− s|+ L2∥u− v∥.

Then the following assertions hold:

(a) For all (t, u, v) ∈ gph(C), we have ν∂d(v, C(t, u)) ⊂ νB;

(b) For any sequences (tn)n in [0, T ] converging to t, (un)n converging to u, (vn)n
converging to v ∈ C(t, u) with vn ∈ C(tn, un), and any ζ ∈ H , we have

lim sup
n→+∞

σ
(
ζ, ν∂d(vn, C(tn, un))

)
≤ σ

(
ζ, ν∂d(v, C(t, u))

)
.

Lemma 2.1 [1] Let m > 0, (ωi) and (υi) be nonnegative sequences satisfying ωi ≤

m+
∑i−1

j=0 υjωj for any i ∈ N, then ωi ≤ m exp

(∑i−1
j=0 υj

)
, ∀i ∈ N.
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3 Main Result

We begin this section by listing the hypotheses used throughout the paper.
Hypotheses H(Π): For every β > 0 and Cβ

0 = C0 ∩βBC0
, let Π : [0, T ]×C0β ⇁ E be

a set-valued mapping with nonempty closed values satisfying:

(i) for every ψ ∈ Cβ
0 , Π(·, ψ) is measurable;

(ii) for some functions η(·), ξ(·) ∈ L1
R+([0, T ]) such that for all t ∈ [0, T ] and for all

ψ ∈ Cβ
0 ,

d(⊖,Π(t, ψ)) < ξ(t) + η(t)∥ψ∥C0 ,

and d(⊖,Π(t,⊖)) = 0 for ξ(t) = 0;

(iii) ∀ ψ, ϕ ∈ Cβ
0 , with ϕ ̸= ψ, we have

hausλ
(
Π(t, ϕ),Π(t, ψ)

)
≤ η(t)∥ϕ− ψ∥C0

.

For the proof of our theorem we need the following result for the undelayed problem.

Theorem 3.1 [11] For every β > 0, let Λ : [0, T ]×βB⇁ E be a set-valued mapping
with nonempty closed values satisfying:

(1) for every u ∈ CE([0, T ]) and t ∈ [0, T ], the mapping t −→ Λ(t, u(t)) is measurable;

(2) for some functions η(·), ξ(·) ∈ L1
R+

∗
([0, T ]),

d(⊖,Λ(t, u(t))) < ξ(t) + η(t)∥u(t)∥ a.e., ∥u(t)∥ ≤ β,

d(⊖,Λ(t,⊖)) = 0 for ξ(t) = 0;

(3) for ∥u(t)∥ ≤ β, ∥v(t)∥ ≤ β, u(t) ̸= v(t), we have

hausλ(Λ(t, u(t)),Λ(t, v(t))) ≤ η(t)∥u(t)− v(t)∥ a.e.

with 0 ≤ λ ≤ ṁ(t) for t ∈ [0, T ], where m(·) : [0, T ] −→ R is the absolutely
continuous solution to the differential equation{

ṁ(t) = η(t) m(t) + ξ(t) a.e. in [0, T ],
m(0) = m0 ≥ 0.

Then, ∀ u0 ∈ CE([0, T ]) with ∥u0∥ < β, the problem{
u̇(t) ∈ Λ(t, u(t)); a.e. on [0, T ];
u(0) = u0;

(2)

admits a solution u such that ∥u(t)∥ ≤ m(t), ∥u̇(t)∥ ≤ ṁ(t) a.e. for t ∈ [0, T ] with
m(t) ≤ β.

Now, we are able to give the existence result for the delayed problem.

Theorem 3.2 Let Π : [0, T ] × Cβ
0 ⇁ E be a set-valued mapping satisfying H(Π).

Then, ∀ ψ ∈ C0, the problem (DP ) admits at least one continuous solution u : [−τ, T ] →
E, absolutely continuous on [0, T ]. Furthermore, ∥u̇(t)∥ ≤ ṁ(t) a.e. t ∈ [0, T ].
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Proof. We will reduce our problem to a problem without delay and apply Theorem
3.1. For every n ∈ N, consider a partition of [0, T ] defined by tni = iϖn, ϖn = Tn−1, i =
0, 1, ..., n.
Step 1 (Construction of approximate solutions): for every (t, u) ∈ [−τ, tn1 ]×E, we define
pn0 : [−τ, tn1 ]× E −→ E by

pn0 (t, u) =

{
ψ(t) if t ∈ [−τ, 0];
ψ(0) + t

ϖn
(u− ψ(0)) if t ∈ ]0, tn1 ];

clearly, pn0 (t
n
1 , u) = u, ∀u ∈ E.

We define the set-valued mapping Λn
0 on [0, tn1 ]× E with closed values in E by

Λn
0 (t, u) := Π(t,Z(tn1 )p

n
0 (·, u)), ∀(t, u) ∈ [0, tn1 ]× E.

Let’s show that Λn
0 satisfies the conditions of Theorem 3.1. Remark first, that the function

u 7−→ Z(tn1 )p
n
0 (·, u) is Lipschitz. Indeed, for every u, v ∈ E, we have

∥Z(tn1 )pn0 (·, u)− Z(tn1 )p
n
0 (·, v)∥C0

= sup
s∈[−τ,0]

∥pn0 (tn1 + s, u)− pn0 (t
n
1 + s, v)∥

= sup
s∈[−ϖn,0]

∥pn0 (tn1 + s, u)− pn0 (t
n
1 + s, v)∥

= sup
s∈[−ϖn,0]

∥ tn1 +s
ϖn

(u− v)∥

= ∥u− v∥.

So the mapping t −→ Λn
0 (t, u) is measurable. On the other hand,

∥Z(tn1 )pn0 (·, u)∥C0
= sup

s∈[−τ+tn1 ,t
n
1 ]

∥pn0 (s, u)∥

≤ max{∥ψ∥C0 , sup
s∈[0,tn1 ]

∥ψ(0) + s
ϖn

(u− ψ(0))∥}

≤ max{∥ψ∥C0
, sup
s∈[0,tn1 ]

(
(1− s

ϖn
)∥ψ(0)∥+ s

ϖn
∥u∥
)
}

≤ max{∥ψ∥C0
, ∥ψ(0)∥+ ∥u∥}.

Furthermore, by the condition (ii) of H(Π), we have, for every t ∈ [0, tn1 ] and u ∈ E such
that ∥u∥ ≤ β,

d(⊖,Λn
0 (t, u)) = d(⊖,Π(t, Z(tn1 )p

n
0 (·, u))) ≤ ξ(t) + η(t) ∥Z(tn1 )pn0 (·, u)∥

≤ ξ(t) + η(t)(∥ψ∥C0
+ ∥u∥),

≤ ζ(t)(1 + ∥ψ∥C0
) + η(t)∥u∥,

where ζ(t) := max{ξ(t), η(t)}.
For ζ(t) = 0, we have d(⊖,Λn

0 (t,⊖)) = d(⊖,Π(t, Z(tn1 )p
n
0 (·,⊖))) = 0. Finally, according

to (iii), one obtain

hausλ(Λ
n
0 (t, u),Λ

n
0 (t, v)) = hausλ

(
Π(t, Z(tn1 )p

n
0 (·, u)),Π(t, Z(tn1 )p

n
0 (·, v))

)
≤ η(t) ∥Z(tn1 )pn0 (·, u)− Z(tn1 )p

n
0 (·, v)∥

= η(t) ∥u− v∥,

∥u∥ ≤ β and ∥v∥ ≤ β, u ̸= v. Hence Λn
0 verifies the conditions of Theorem 3.1, this

provides an absolutely continuous solution ϑn0 : [0, tn1 ] −→ E to the problem
ϑ̇n0 (t) ∈ Λn

0 (t, ϑ
n
0 (t)) a.e. on [0, tn1 ];

ϑn0 (t) = ψ(0) +
∫ t

0
ϑ̇n0 (s)ds ∀ t ∈ ]0, tn1 ];

ϑn0 (0) = ψ(0),
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with ∥ϑn0 (t)∥ ≤ m(t) and ∥ϑ̇n0 (t)∥ ≤ ṁ(t). That is, ϑn0 is a solution to{
ϑ̇n0 (t) ∈ Π(t, Z(tn1 )p

n
0 (·, ϑn0 )) a.e. on [0, tn1 ];

ϑn0 (0) = ψ(0).

Put

un(t) =

{
ψ(t) if t ∈ [−τ, 0];
ϑn0 (t) if t ∈ ]0, tn1 ].

As before, for every (t, u) ∈ [−τ, tn1 ]× E, we define pn1 : [−τ, tn2 ]× E −→ E by

pn1 (t, u) =

{
un(t) if t ∈ [−τ, tn1 ];
un(t

n
2 ) +

t−tn2
ϖn

(u− un(t
n
2 )) if t ∈ ]tn1 , t

n
2 ]

with pn1 (t
n
2 , u) = u, ∀u ∈ E. Hence, we can define similarly the set-valued mapping Λn

1

on [tn1 , t
n
2 ]× E with closed values of E by

Λn
1 (t, u) := Π(t, Z(tn2 )p

n
1 (·, u)), ∀(t, u) ∈ [tn1 , t

n
2 ]× E.

The function u 7−→ Z(tn2 )p
n
1 (·, u) is Lipschitz since for all u, v ∈ E, we have

∥Z(tn2 )pn1 (·, u)− Z(tn2 )p
n
1 (·, v)∥ = sup

s∈[−τ,0]

∥pn1 (tn2 + s, u)− pn1 (t
n
2 + s, v)∥

= sup
s∈[−ϖn,0]

∥pn1 (tn2 + s, u)− pn1 (t
n
2 + s, v)∥

= sup
s∈[−ϖn,0]

∥un(tn1 ) +
tn2 +s−tn1

ϖn
(u− un(t

n
1 ))

−(un(t
n
1 ) +

tn2 +s−tn1
ϖn

(v − un(t
n
1 )))∥

= sup
s∈[−ϖn,0]

∥ tn2 +s−tn1
2−n (u− v)∥

= ∥ tn2 −tn1
ϖn

(u− v)∥
= ∥u− v∥

and

∥Z(tn2 )pn1 (·, u)∥C0

= sup
s∈[−τ+tn2 ,t

n
2 ]

∥pn1 (s, u)∥

≤ max{∥ψ∥C0
, sup
s∈[0,tn1 ]

∥vn0 (s)∥}+ sup
s∈[tn1 ,t

n
2 ]

(
(1− t−s

ϖn
)∥un(tn2 )∥+ t−s

ϖn
∥u∥
)

≤ max{∥ψ∥C0
, sup
s∈[0,tn1 ]

∥vn0 (s)∥}+ ∥u∥.

For every t ∈ [tn1 , t
n
2 ] and u ∈ E, with ∥u∥ ≤ β

d(⊖,Λn
1 (t, u)) = d(⊖,Π(t, Z(tn2 )p

n
1 (·, u))) ≤ ξ(t) + η(t) ∥Z(tn2 )pn1 (·, u)∥

≤ ζ(t)(1 + max{∥ψ∥C0
, sup
s∈[0,tn1 ]

∥vn0 (s)∥}) + η(t) ∥u∥,

for ζ(t) = 0

d(⊖,Λn
1 (t,⊖)) = d(⊖,Π(t, Z(tn2 )p

n
1 (·,⊖))) = 0.
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Furthermore, by condition (iii) of H(Π), we have for every t ∈ [0, tn1 ] and u, v ∈ E such
that ∥u∥ ≤ β, and ∥v∥ ≤ β, u ̸= v,

hausλ(Λ
n
1 (t, u),Λ

n
1 (t, v)) = hausλ

(
Π(t, Z(tn2 )p

n
1 (·, u)),Π(t, Z(tn2 )p

n
1 (·, v))

)
≤ η(t) ∥Z(tn2 )pn1 (0, u)− Z(tn2 )p

n
1 (0, v)∥

= ξ(t) + η(t) ∥pn1 (tn2 , u)− pn1 (t
n
2 , v)∥

= ξ(t) + η(t) ∥u− v∥.

Hence Λn
1 verifies the conditions of Theorem 3.1, this provides an absolutely continuous

solution ϑn1 : [tn1 , t
n
2 ] −→ E to the problem
ϑ̇n1 (t) ∈ Λn

1 (t, ϑ
n
1 (t)) a. e. on [tn1 , t

n
2 ];

ϑn1 (t) = un(t
n
2 ) +

∫ t

tn1
ϑ̇n1 (s)ds ∀ t ∈ ]tn1 , t

n
2 ];

ϑn1 (t
n
2 ) = un(t

n
2 ),

∥ϑn1 (t)∥ ≤ m(t) and ∥ϑ̇n1 (t)∥ ≤ ṁ(t). So vn1 is a solution of
ϑ̇n1 (t) ∈ Π(t, Z(tn2 )p

n
1 (·, ϑn1 )) a.e. on [tn1 , t

n
2 ];

ϑn1 (t) = un(t
n
1 ) +

∫ t

tn1
ϑ̇n1 (s)ds ∀ t ∈ ]tn1 , t

n
2 ];

ϑn1 (0) = ψ(0).

By induction, suppose that un is defined on [−τ, tnk ], absolutely continuous on [0, tnk ], and
satisfies {

u̇n(t) ∈ Π(t, Z(tnk−1)p
n
k−1(·, u)) a.e. on [tnk−1, t

n
k ];

un(t) = un(t
n
k−1) +

∫ t

tnk−1
u̇n(s)ds ∀ t ∈ ]tnk−1, t

n
k ];

and build a solution on [tnk , t
n
k+1]. For every (t, u) ∈ [−τ, tn1 ] × E, we defined pnk :

[−τ, tnk+1]× E −→ E by

pnk (t, u) =

{
un(t) if t ∈ [−τ, tnk ];
un(t

n
k ) +

t−tnk
ϖn

(u− un(t
n
k )) if t ∈ ]tnk , t

n
k+1];

with pnk (t
n
k+1, u) = u and pnk ∈ CE([−τ, tnk+1]). The function u 7−→ Z(tnk+1)p

n
k (·, u) is

Lipschitz. Indeed, for all u, v ∈ E, we have

∥Z(tnk+1)p
n
k (·, u)− Z(tnk+1)p

n
k (·, v)∥ =

sup
s∈[−τ,0]

∥pnk (tnk+1 + s, u)− pnk (t
n
k+1 + s, v)∥

= sup
t∈[−τ+tnk+1,t

n
k+1]

∥pnk (t, u)− pnk (t, v)∥.

We distinguish two cases:

(1) if −τ + tnk+1 ≤ tnk , we have

sup
t∈[−τ+tnk+1,t

n
k+1]

∥pnk (t, u)− pnk (t, v)∥ = sup
t∈[tnk ,t

n
k+1]

∥pnk (t, u)− pnk (t, v)∥

= sup
t∈[tnk ,t

n
k+1]

∥ t−tnk
ϖn

(u− v)∥

= ∥u− v∥.
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(2) if tnk ≤ −τ + tnk+1 ≤ tnk+1, we have

sup
t∈[−τ+tnk+1,t

n
k+1]

∥pnk (t, u)− pnk (t, v)∥ ≤ sup
t∈[tnk ,t

n
k+1]

∥pnk (t, u)− pnk (t, v)∥

= sup
t∈[tnk ,t

n
k+1]

∥ t−tnk
ϖn

(u− v)∥

= ∥u− v∥.

∥Z(tnk+1)p
n
k (·, u)∥C0 = sup

s∈[−τ+tnk+1,t
n
k+1]

∥pnk (s, u)∥

≤ max
{
∥ψ∥C0

, max
0≤k≤i−1

sup
s∈[tnk ,t

n
k+1]

∥vnk (s)∥
}
+ ∥u∥.

Similarly, we can define Λn
k on [tnk , t

n
k+1]× E with closed values of E by

Λn
k (t, u) := Π(t, Z(tnk+1)p

n
k (·, u)), ∀(t, u) ∈ [tnk , t

n
k+1]× E,

satisfying conditions of Theorem 3.1. Hence, there exists an absolutely continuous solu-
tion ϑnk : [tk, tk+1] −→ E to

ϑ̇nk (t) ∈ Λn
k (t, ϑ

n
k (t)) a.e. on [tnk , t

n
k+1];

ϑnk (t) = un(t
n
k ) +

∫ t

tnk
ϑ̇nk (s)ds ∀ t ∈ ]tnk , t

n
k+1];

ϑnk (t
n
k ) = un(t

n
k ),

∥ϑnk (t)∥ ≤ m(t) and ∥ϑ̇nk (t)∥ ≤ ṁ(t). So ϑnk is a solution of
ϑ̇nk (t) ∈ Π(t, Z(tnk+1)p

n
k (·, ϑnk )) a.e. on [tnk , t

n
k+1];

ϑnk (t) = un(t
n
k ) +

∫ t

tnk
ϑ̇nk (s)ds ∀ t ∈ ]tnk , t

n
k+1];

ϑnk (t
n
k ) = un(t

n
k ).

Putting un(t) = ϑnk (t) on [tnk , t
n
k+1], we obtain

un(t) =



ϑn0 (t) = ψ(0) +
∫ t

0
u̇n(s)ds if t ∈ [0, tn1 ];

ϑn1 (t) = un(t
n
1 ) +

∫ t

tn1
u̇n(s)ds if t ∈ ]tn1 , t

n
2 ];

· · ·

ϑnk (t) = un(t
n
k ) +

∫ t

tnk
u̇n(s)ds if t ∈ ]tnk , t

n
k+1];

and ∥un(t)∥ ≤ m(t). For every t ∈ [0, T ], we set θn(t) = tni , δn(t) = tni+1, ∀ t ∈]tni , tni+1]
and θn(0) = 0 and define pnϖnθn(t)

∈ CE([−τ, δn(t)]) by

pnϖnθn(t)
(t, x) =

{
un(t) if t ∈ [−τ, θn(t)];
un(θn(t)) +

t−θn(t)
ϖn

(u− un(θn(t))) if t ∈]θn(t), δn(t)].

Clearly, un is continuous on [−τ, T ], absolutely continuous on [0, T ] and satisfies
u̇n(t) ∈ Π(t, Z(δn(t))p

n
ϖnθn(t)

(·, un(t))) a. e. on [0, T ];

un(t) = ψ(0) +
∫ t

0
u̇n(s)ds ∀ t ∈ [0, T ];

un(t) = ψ(t) ∀ t ∈ [−τ, 0].
(3)
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Step 2 (Uniform convergence): by condition (2) of Theorem 3.1, for almost every t ∈
[0, T ], one has

u̇n(t) ∈ Π(t, Z(δn(t))p
n
ϖnθn(t)

(·, un(t))) (4)

with Z(δn(t))p
n
ϖnθn(t)

(0, un(t)) = un(t) and

d
(
⊖,Π(t, Z(δn(t))p

n
ϖnθn(t)

(·, un(t)))
)
≤ ξ(t) + η(t)∥un(t)∥.

Further, since ∥un(t)∥ ≤ m(t), we have

d
(
⊖,Π(t, Z(δn(t))p

n
ϖnθn(t)

(·, un(t)))
)
≤ ξ(t) + η(t)m(t).

Hence for almost every t ∈ [0, T ],

∥u̇n(t)∥ ≤ ṁ(t). (5)

This shows that u̇n(·) is uniformly bounded by ṁ(·), By extracting a subsequence, we
may assume that (u̇n)n converges σ(L1, L∞) to some v ∈ L1

E([0, T ]). So (un(·)) is a
bounded sequence of CE([0, 1]) since for every t ∈ [0, T ],

∥un(t)∥ = ∥ψ(0)∥+
∫ t

0

∥u̇n(s)∥ds ≤ ∥ψ(0)∥+
∫ t

0

ṁ(s)ds = γ(t)

and it is clear that (un(·)) is equicontinuous. By Ascoli’s theorem, we get that (un)n is
relatively compact. By extracting a subsequence (that we do not relabel), we conclude
that (un)n converges uniformly to some mapping u and

u(t) = ψ(0) +

∫ t

0

v(s)ds, ∀t ∈ [0, T ],

hence u̇(t) = v(t) almost everywhere.
Now, let’s show that

∥Z(δn(t))pnϖnθn(t)
(·, un(t))− Z(t)u∥ −→ 0, when n −→ ∞.

sup
s∈[−τ,0]

∥Z(δn(t))pnϖnθn(t)
(s, un(t))− Z(t)u(s)∥C0

=

sup
s∈[−τ,0]

∥pnϖnθn(t)
(δn(t) + s, un(t))− u(s+ t)∥

= sup
s∈[−τ,0]

∥pnϖnθn(t)
(δn(t) + s, un(t))− u(δn(t) + s) + u(δn(t) + s)− u(s+ t)∥

≤ sup
s∈[−τ,0]

∥pnϖnθn(t)
(δn(t) + s, un(t))− x(δn(t) + s)∥+

sup
s∈[−τ,0]

∥u(δn(t) + s)− u(s+ t)∥.

First,
sup

s∈[−τ,0]

∥pnϖnθn(t)
(δn(t) + s, un(t))− x(δn(t) + s)∥

≤ sup
s∈[−τ,−ϖn]

∥pnϖnθn(t)
(δn(t) + s, un(t))− u(δn(t) + s)∥
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+ sup
s∈[−ϖn,0]

∥pnϖnθn(t)
(δn(t) + s, un(t))− u(δn(t) + s)∥

= sup
s∈[−τ,−ϖn]

∥un(δn(t) + s)− u(δn(t) + s)∥+

sup
s∈[−ϖn,0]

∥un(θn(t)) +
δn(t) + s− θn(t)

µn
(un(t)− un(θn(t))− u(δn(t) + s))∥

= sup
s∈[−τ,−ϖn]

∥un(δn(t) + s)− u(δn(t) + s)∥

+ sup
s∈[−ϖn,0]

∥ s

ϖn
(un(t)− un(θn(t))) + un(t)− u(δn(t) + s)∥

= ∥un(θn(t))− u(θn(t))∥+ ∥un(t)− un(δn(t))∥.
On the other hand,

sup
s∈[−τ,0]

∥u(δn(t) + s)− u(s+ t)∥ ≤ sup
s∈[−τ,−ϖn]

∥u(δn(t) + s)− u(s+ t)∥

+ sup
s∈[−ϖn,0]

∥u(δn(t) + s)− u(s+ t)∥

= sup
s∈[−τ,−ϖn]

∥u(δn(t) + s)− u(s+ t)∥

+∥u(δn(t))− u(t)∥.

Then
sup

s∈[−τ,0]

∥Z(δn(t))pnϖnθn(t)
(s, un(t))− Z(t)u(s)∥C0

≤

∥un(θn(t))− u(θn(t))∥+ ∥un(t)− un(δn(t))∥+
sup

s∈[−τ,−ϖn]

∥u(δn(t) + s)− u(s+ t)∥+ ∥u(δn(t))− u(t)∥.

As |θn(t) − t| ≤ ϖn and |δn(t) − t| ≤ ϖn, ∀t ∈ [0, T ], then θn(t) −→ t and δn(t) −→ t
for n large enough. Furthermore, (un)n converges uniformly to u, ∥u(δn(t))− u(t)∥ −→
0, ∥un(δn(t)) − un(t)∥ −→ 0 and ∥un(θn(t)) − u(θn(t))∥ −→ 0. As u is uniformly con-
tinuous, there is λ > 0 such that |s − t| ≤ λ implies ∥u(s) − u(t)∥ ≤ ϵ. But we have
|δn(t) + s− (s+ t)| ≤ ϖn for all s ∈ [−τ,ϖn]. Hence

sup
s∈[−τ,−ϖn]

∥u(δn(t) + s)− u(s+ t)∥ ≤ ϵ for λ ≤ ϖn.

We can conclude that

Z(δn(t))p
n
ϖnθn(t)

(·, un(t)) −→ Z(t)u in C0. (6)

Finally, u̇(t) ∈ Π(t, Z(t)u). Indeed, by (4), (6) and condition (iii), we infer that

d
(
u̇n(t),Π(t, Z(t)u)

)
≤ η(t)∥Z(δn(t))pnϖnθn(t)

(·, un(t))− Z(t)u∥ a.e.

Passing to the limit in this inequality as n −→ ∞, we have

d
(
u̇(t),Π(t, Z(t)u)

)
= 0 a.e.

So, u satisfies 
u̇(t) ∈ Π(t, Z(t)u) a.e. on [0, T ];

u(t) = ψ(0) +
∫ t

0
u̇(s)ds ∀ t ∈ [0, T ];

u(t) = ψ(t) ∀ t ∈ [−τ, 0].
The proof is then complete.
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4 Application: a Delay Perturbed Sweeping Process

In this section, we present an application for functional differential inclusions governed
by time and state-dependent nonconvex sweeping process. The sweeping process is a
constrained differential inclusion involving normal cones, which appears naturally in sev-
eral applications such as elastoplasticity, electrical circuits, hysteresis, crowd motion, etc.
This kind of problems corresponds to several important mechanical problems, planning
procedures in mathematical economy and nonsmooth dynamical systems. We propose
here a new variant of the existence result which generalizes the previous results.

Theorem 4.1 Let H be a separable Hilbert space and let C : [0, T ] × H ⇒ H be a
set-valued mapping with nonempty closed values satisfying the following assumptions:

(HC
1 ) for all (t, u) ∈ [0, T ]×H,C(t, u) is uniformly subsmooth;

(HC
2 ) there are real constants L1 > 0 and 0 < L2 < 1 such that for all t, s ∈ [0, T ], and

u, v, z ∈ H,

|d(z, C(t, u))− d(z, C(s, v))| ≤ L1|t− s|+ L2∥u− v∥;

(HC
3 ) for any bounded subset A ∈ H, the set C(t, A) is ball-compact.

Assume that (HC
1 ), (HC

2 ), (HC
3 ) and hypotheses H(Π) are satisfied. Then, for any ψ ∈ C0

with ψ(0) = u0 ∈ C(0, u0), there exists a continuous solution u : [−τ, T ] → H, Lipschitz
on [0, T ] to the problem

(
R
)  u̇(t) ∈ −NC(t,u(t))(u(t)) + Π(t, Z(t)u), a.e. in [0, T ];

u(t) ∈ C(t, u(t)), ∀ t ∈ [0, T ];
ψ(s) = Z(0)u(s), ∀ s ∈ [−τ, 0].

Proof. By using the discretization approach based on Moreau’s catching-up algo-
rithm, the proof is a careful adaptation of Theorem 3.5 in [7].

5 Conclusion

In this paper, we established an existence result to first order functional differential
inclusions for a general class of unbounded nonconvex sets. The approach used is an
adaptation of a reduction method which consists of replacing the problem with delay with
a problem without delay and applying the known results in this case. As an application,
we stated also a new version of the existence result for a first order perturbed nonconvex
sweeping process that finds several applications in nonsmooth dynamical systems such
as differential complementarity systems and vector hysteresis problems. This will be the
subject of forthcoming works.
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Abstract: Each panel had an operating point (current, voltage) which allowed it to
deliver its maximum power. It is therefore necessary to try to control the choppers in
order to stay as close as possible to the requested operating point. For this, we use the
search algorithms for the optimal operating point (Maximum Power Point Tracker or
MPPT). Lately, the MPPT technique has become the focus for a significant number of
researches in order to improve the dynamic performance of the PV system, so we can
distinguish several algorithms of the MPPT such as the P&O (Perturb & Observe)
and those based on intelligent techniques such the meta-heuristic approach.

We will study and discuss in this work, the use of the Cuckoo Search (CS) algorithm
to determine the maximum power point by using in the first section, the PV with a
resistance load; in the second section, the same algorithm is used also to tune the PI
controllers’ gains of rotor speed and the DC-DC controller to adjust the DC Voltage
coming from the PV/SOFC-Battery with an alternative load, in order to be able to
supply the inverter which is connected to the induction motor and controlled by the
Direct Torque Control (DTC), driving a centrifugal pump. The simulation results
show the effectiveness of the proposed technique using the pumping system supplied
by a hybrid source.
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1 Introduction

Optimization is a branch of mathematics, seeking to analyze and solve analytically or
numerically the problems which consist in determining the best element of a set. Opti-
mization methods are currently occupying a very important place in the scientific field
given the complexity of industrial problems. The researchers thought about finding the
solutions of these problems by flexible methods to integrate various specific constraints.

The algorithms of the first class are those of the conventional methods. These include
the Newton-Raphson method, Nonlinear Programming (NLP), Quadratic Programming
(QP), the Newton Method, Mixed Integer Programming and Dynamic Programming. All
these mathematical methods are fundamentally based on the convexity of the objective
function to find the minimum. According to the limits of conventional methods, the
need to introduce new optimization techniques capable of overcoming the problem posed
by classical methods is imperative. The methods which offer this possibility are the
intelligent methods called “metaheuristic”.

Metaheuristics are recently developed stochastic optimization methods. For this con-
cern, numerous mathematical programming approaches for metaheuristic optimization
have been proposed for example ’Particle Swarm Optimization’ (PSO) is proposed by
Kennedy and Eberhart [1]. They inspire the social behavior of swarming animals, such as
flocks of birds and schools of fish. An individual in the swarm has only local knowledge
of his situation in the swarm. It uses this local information, as well as its own memory,
to decide where to move. Ant Colony Optimisation (ACO) is proposed by Dorigo [2],
it results from the observation of social insects, especially ants, which naturally solve
complex problems. This ability is found to be possible due to the ability of ants to com-
municate with each other indirectly, by depositing chemicals on the ground which are
called pheromones. This type of indirect communication is called stigmergy. We have
also the artificial bee colony (ABC) proposed by Dervis Karaboga [3], genetic algorithms
(GA) proposed by Holland [4] and the Bat algorithm proposed by Xin-She Yang [5], etc.
In a difficult energy context, marked by the foreseeable exhaustion of fossil fuels and
their impacts on the environment, expectations in terms of renewable energies in general
and solar energy in particular, are increasingly important. These energies and, more
particularly, solar energy are considered to be the future energy solution. Indeed, solar
energy is one of the most environmentally friendly energy, an economical and sustainable
source. Lately, the MPPT technique has become the focus for a significant number of
researches in order to improve the dynamic performance of the PV system, mainly in
terms of the ability to rapidly pursue the global power point (GMPP) in the presence of
other local maximums power point (LMPP). Researchers have been interested in another
type of the MPPT technique which is based on the meta-heuristic approach, for example
the MPPT-ABC [6], MPPT-GA [7] and MPPT-ACO [8].

The CS algorithm was first proposed by Yang and Deb [9], the Cuckoo Search (CS) is
a recent metaheuristic which is inspired by the mode of reproduction of certain species of
cuckoos. In fact, their reproduction strategy is unique in that the females lay their eggs
in the nests of other species (whose eggs look similar). These eggs can then be incubated
by surrogate parents. On the other hand, when cuckoo eggs manage to hatch in the host
nest (they hatch faster), cuckoo chicks have the reflex to eject the host species eggs out
of the nest and even mimic the call of the host chicks, for the purpose of being fed by the
host species. However, it can happen that cuckoo eggs are discovered; in this case, the
surrogate parents remove them from the nest, or abandon the nest and start their brood
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elsewhere. This meta-heuristic is therefore based on this parasitic behavior of cuckoo
species associated with a “Levy flight” type of movement logic specific to certain birds
and certain species of flies.

This work proposes the use of the cuckoo search algorithm to track the MPP and
get the desired DC Voltage needed later by using the boost coverter, so the first part
proposes the PV as a source and resistance as a load. In the second part, we propose
the CS algorithm to tune the gains of PI controllers of speed and the DC-DC Voltage
controller connected to the battery of hybrid system (SOFC-PV with storage battery),
so we have hybrid system as source and the induction motor driving a centrifugal pump
as a load.

Figure 1: Scheme of SOFC-PV with a storage battery for the pumping system.

2 PV Module

Solar panels are intended to recover energy from solar radiation to transform it into
heat or electricity. PV modules (usually presented in the form of panels) consist of a
number of elementary cells placed in series in order to make the voltage at the output
usable. These modules are then associated in a network (series-parallel) so as to obtain
the desired voltages / currents. An equivalent circuit model for a solar cell is shown in
Figure 2. The model consists of a current source, a diode, a shunt resistor RP and a
series resistance RS .

Figure 2: PV cell model.

The topology of the boost converter is shown in Figure 3. For this converter, the
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output voltage is always higher than the input PV voltage. Power flow is controlled by
the on/off duty cycle of the switching transistor. This converter topology can be used
in conjunction with lower PV voltages. No extra blocking diode is necessary when the
boost topology is used. For sizing a photovoltaic system, we need to know in the first
the motor consumption energy (as in our case we need to get Udc=514V). Then, we
must take in account the obtained results and also the meteorological data as the input
parameters of the photovoltaic installation of the input program.

The data sheet information on the PV panel is presented in Table 1. The commer-
cialized solar modules are formed generally by a number of cells assembled in parallel Np

or /and in series Ns . The relationship between the cell terminal current and voltage is
given by

I = Iph + I0
[
exp(

V + I.Rs

α.Vth
− 1)

]
− V + I.Rs

Rp
, (1)

where Vth is the thermal voltage of the cell, Iph is the photocurrent, it depends mainly
on the radiation and cell’s temperature.

3 MPPT Based on Cuckoo Search Algorithm

Both P&O and INC algorithms may have difficulty in finding the optimum when used
in large arrays where multiple local maxima occur [9]. In this section, we propose a
cuckoo search algorithm to track the maximum power point. A boost converter, or
parallel chopper, is used when it is desired to increase the available voltage of a DC
source by controlling the duty cycle of the switching transistor. In photovoltaic systems,
this converter can be used as a source-load adapter, when the operating point in direct
coupling is on the right-hand of the MPP.

Figure 3: Boost Converter DC/DC.

3.1 Cuckoo Search principle

The Cuckoo Search (CS) algorithm is based on the following rules:

• Each cuckoo lays only one egg at a time and places it in a randomly chosen nest.

• The best nests with high quality eggs (solutions) are kept for the next generations.

• The number of host nests is fixed and the egg laid by a cuckoo can be discovered
by the host species with a probability Pa ∈ [0, 1]. In this case, the host bird either
takes the egg out of the nest or leaves the nest and builds a new one.
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To simplify, this last hypothesis can be approached by replacing a fraction Pa of nests
with new ones. In CS, each egg in a nest represents a solution and each cuckoo can
lay a single egg, the goal is to use the new and potentially better solution to replace a
poorer solution in a nest. Although the algorithm can be extended to a more complex
case where each nest contains several eggs representing a set of solutions, here we use a
simpler version where each nest contains only one egg. In this case, there is no longer
any distinction between the egg, nest or cuckoo, and each nest corresponds to an egg
which also represents a cuckoo.

3.2 Levy Flight

In the context of CS, the cuckoo movement pitch is determined by the Levy Flight (Figure
4). The Levy flight is a random walk in which the steps have a length having a certain
probability distribution (Levy distribution), the direction of the steps being isotropic
and random. Levy Flight is a class of random walk in which the jumps are distributed
according to the Levy distribution which consists of a power law with an infinite variance
and a mean of the type: Levy(β) ∼ (y) = x−β , 1 < β < 3.

In the case of CS, the use of the Levy Flight improves and optimizes the search: new
solutions are generated by a random Levy walk around the best solution obtained so far,
which speeds up the overall search. From an implementation point of view, generating

Figure 4: Levy Flight.

a random number with the Levy Flight follows two steps: choosing a random direction
and generating the step that should obey the Levy distribution. The generation of a
direction can be achieved from a uniform distribution, while the generation of steps is
more delicate. There are several methods to achieve this, but one of the simplest and
most efficient is to use Mantegna’s formulas to determine the step s:

s =
u

|v| 1β
. (2)

3.3 MPPT-CSA

In general, the Lévy flight is characterized by using the following relation

xi+1
j = xi

j + α⊕ Levy (3)
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and the operator ⊕ represents the entry-wise multiplication [10] for the multidimensional
problem. For MPPT, it can be simplified to

Di+1
j = Di

j + α.Levy = Di
j + s, (4)

where
s ≈ k.

u

|v| 1β
(Dbest −D), (5)

where u and v are the centered Gaussian distributions such that

u = N(0, δ2u), v = N(0, δ2v) (6)

with

δu = [
γ(1 + β)× sinπ × (β2 )

γ( 1+β
2 )× β × 2

β−1
2

]
1
β . (7)

Figure 5 represents the schematic diagram of the DC-DC converter of a Photovoltaic
panel using the MPPT based on the Cuckoo Search Algorithm and connected to the
resistance load.

Figure 5: MPPT based on the Cuckoo Search Algorithm.

4 Solid Oxide Fuel Cell

The electrolyte must be an electronic insulator and an ionic conductor. It can be either
liquid or solid. The bipolar plates allow the access of gases to the reaction sites by the
presence of channels.

There are six types of fuel cells which, depending on the electrolyte, operate at dif-
ferent temperatures. They are the Alkaline Fuel Cell (AFC), Proton Exchange Mem-
brane Fuel Cell, Direct Methanol Fuel Cell (DMFC), Phosphoric Acid Fuel Cell (PAFC),
Molten carbonate battery (MCFC Molten Carbonate Fuel Cell), Solid Oxid Fuel Cell
(SOFC (this type is used in our work)) as shown in Figure 6.

Fuel cells therefore allow the direct transformation of the chemical energy of the
reaction of a hydrogen fuel with an oxidant oxygen into electrical energy. The electrical
energy comes from the electronic exchange of the chemical reaction and not from the
heat given off by the latter. To do this, two compartments containing the oxidant and
the fuel, respectively, are produced on either side of the electrolyte, thus avoiding the
mixing of the gases and therefore, the direct chemical reaction.
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Figure 6: Fuel cells types; their reaction and operation temperatures [11].

On both sides of the electrolyte in each gas compartment electrodes are arranged
which at the same time ensure the transport of electrons and ionic species (Figure 6).
The fuel cell stack is composed of numerous single fuel cells in a series. Thus, the total
voltage of the stack is approximately equal to the sum of every single cell voltage [12].

Reactions occurring in the SOFC are as follows [13].
Reforming reactions

CH4 + 2H2O ←→ CO2 + 4H2, (8)

CH4 +H2O ←→ CO + 3H2. (9)

Water-gas shift reaction

CO +H2O ←→ CO2 +H2. (10)

Electrochemical reactions Anode

H2 +O−2 −→ H2O + 2e−, (11)

CO +O−2 −→ CO2 + 2e−. (12)

Cathode
1

2
O2 + 2e− −→ O2−. (13)

5 Direct Torque Control DTC

The direct torque control has many advantages that are already well known over con-
ventional techniques: the fast torque response; it is considered as a sensor-less control,
robust against the variation of machines parameters; relatively simple without the Park
transformation and without pulse width modulation (PWM). It also allows decoupling
between the control of the flux and the torque. Thus, several research works have been
developed for the application of this technique to synchronous and asynchronous ma-
chines.
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The first application of the DTC to the asynchronous machine appeared in the 1985s,
and was proposed by Takahachi and Bepenbrock [14]. The stator flux vector can be
estimated using the measured current and voltage vectors [15–17]

dφs

dt
= Vs −RsIs (14)

or

φs =

∫
(Vs−RsIs) dt. (15)

The DTC is based on the use of the hysteresis controllers, to control the estimated stator
flux and electromagnetic torque. These two variables are controlled by a hysteresis
controller with two-level.

The output of the comparators and the stator flux angle are used to index a switch
table of optimum voltage vectors, in order to determine the suitable voltage vectors. The
sector of the stator flux is divided into six sectors. It indicates that the appropriate
voltage vector should be chosen in a particular sector, either to increase the stator flux
or to decrease the stator flux and either to increase torque or to decrease torque.

6 Pumping System

The proposed hybrid system is shown in Figure 1. The battery is also connected to dc
link through a DC-DC converter. Figure 7 represents the controller of a DC-DC converter
used to maintain the dc voltage constant that is needed to feed our pumping system.

Figure 7: DC-DC Converter Controller.

7 Battery Storage

The battery control is an essential element for the success of autonomous systems. The
batteries used in autonomous systems are generally of the lead-acid (Pb) type. Cadmium-
nickel (NiCd) batteries are rarely used anymore because their price is much higher
and they contain cadmium (toxic). Their replacements, nickel-metal hydride batteries
(NiMH) are interesting and used in this paper.

Treating the controller output as the reference current for the battery, a hysteresis
band approach is adapted to switch either Q1 or Q2 of the DC-DC converter as shown
in Figure 8.
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Figure 8: Controller battery.

In this work, the battery acts as a source or sink, the depth of discharge is equal to
60%.

8 Tuning PI Gains by Cuckoo Search Algorithm

The input of our PI controller is used the error calculated by the difference between the
reference and instantaneous values (e1=w*-w) of the PI speed controller and (e2=Vdc*-
Vdc) of the PI-DC Voltage source. The PI controller for the above system can be
presented as the following expression

u = kpe(t) + ki

∫
e(t)dt. (16)

Cost-function is presented by calculation of the error between the reference and estimated
values; and the numbers of iterations and population used in this work are the same;
it=50, Npo=15.

9 Digital Simulation

The pumping system is built using MATLAB/SIMULINK. In this simulation, the induc-
tion machine parameters are listed in Table 2. The centrifugal pump performances used
in this work for speed of 2900 tr/min are: Q=30 m 3/h , H=80m, P=1.5 KW. SOFC
with 200 cells in a series. We observe the performance of the proposed supply system
with 11 PV solar panels to get 514V.

10 Discussion of Results

In the first part, as shown in Figure 9, the DC Voltage and Duty Cycle responses (of
the output of the DC-DC converter connected to the resistance load) are presented using
the system presented in Figure 5. In the second part, we propose to add a SOFC with
a storage battery to supply an alternative load (IM-Pump). The pumping system is
simulated with constant load torque (10N.m) applied between 0.6sec and 0.8 sec and
the variation of irradiation and temperature as shown in Figure 10, and a simulation
was run in a closed loop as shown in Figures 10 and 11, where it can be observed that
the DC Voltage, flux and rotor speed track their references (Vdc*=514V, Flux*=1.1Wb,
w*=126 rad/ sec). To get the disired value of voltage, we have used 11 panels.
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The nominal open-circuit voltage 42.1V
The nominal short-circuit current 3.87A
The voltage at the MPP 33.7V
The maximum experimental peak output power 120W
The current at the MPP 3.56A
The open-circuit voltage/T◦ coefficient (8 0± 10)mV%C◦

The short circuit current/T◦ coefficient (0065± 0.015)mV%C◦

Parallel resistance Rs 0.473Ω
Serie resistance Rp 1367Ω

Table 1: Data sheet information of PV panel “BP MSX120”.

Power 3.5Kw
Stator resistance 4.85 Ohm
Rotor resistance 3.805 Ohm
Inertia 0.031Kg.m 2

Friction 0.001136
Frequency 50 Hz
Stator inductance 0.274H
Rotor inductance 0.274 H
Mutual Inductance 0.258 H
Poles 2

Table 2: Data sheet information on the Induction Motor.

Figure 9: DC Voltage response using PV connected to the resistance load and based on the
MPPT-CS method (G=1000W/m 2, T=298K).
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Figure 10: DC Voltage response using Hybrid System (PV-SOFC-Battery-IM-Pump) based
on the CS method with irradiation, temperature and torque variation.

Figure 11: Current, Flow of water, Flux, Torque and Rotor Speed responses of a hybrid (PV-
SOFC-battery-IM-Pump) System based on the CS method with irradiation, temperautre and
torque variation.

11 Conclusion

The aim of this study is to resolve the drawback of power loss caused by oscillations
around the maximum power point (MPP) and the relatively low response time to rapid
changes in weather conditions. This paper proposes another type of the control named a
meta-heuristic algorithm (Cuckoo Search Algorithm), which is used on one hand to track
the maximum power point, and in second hand, the same metaheuristic algorithm is used
to tune the PI gains to get the desired value that we need to supply our system (514V).
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The obtained simulation results show the effectiveness of the proposed algorithms using
in the first section the load resistance supplied by PV and in the second part the indution
motor driving pump fed by a hybrid system.
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[15] S. Bentouati, A. Tlemçani, M. S. Boucherit and L. Barazane. A DTC Neurofuzzy Speed
Regulation Concept for a Permanent Magnet Synchronous Machine. Nonlinear Dynamics
and Systems Theory 13 (4) (2013) 344–358.

[16] F. Hamidia, A. Larabi, A. Tlemcani and M. S. Boucherit. AIDTC Techniques for Induction
Motors. Nonlinear Dynamics and Systems Theory 13 (2) (2013) 147–156.

[17] F. Hamidia, A. Abbadi, A. Tlemcani and M. S. Boucherit. Dual Star Induction Motor sup-
plied with double Photovoltaic Panels Based on Fuzzy Logic Type-2. Nonlinear Dynamics
and Systems Theory 18 (4) (2018) 359–371.



Nonlinear Dynamics and Systems Theory, 22 (4) (2022) 379–389

Application of Accretive Operators Theory to Linear

SIR Model

Mariam El Hassnaoui ∗, Said Melliani and Mohamed Oukessou

Laboratory of Applied Mathematics and Scientific Computing
Sultan Moulay Slimane University B.P. 523, 23000 Beni-Mellal, Morocco.

Received: September 8, 2021; Revised: July 8, 2022

Abstract: In this paper, we discuss the existence and uniqueness results for a linear
SIR (Susceptible-Infected-Recovered) model on Lp-spaces, for 1 ≤ p < +∞. This
work represents two extensions of the basic static linear model presented in [4]. Our
analysis is fundamentally based on the accretive operators theory.

Keywords: SIR; epidemic models; accretive operators; existence result; mild solu-
tion.

Mathematics Subject Classification (2010): 92D30, 47H06, 35F10.

1 Introduction

In epidemiology, mathematical models have become important tools in analyzing the
spread and control of infectious diseases caused by bacteria, viruses and fungi through
a direct transmission from individual-to-individual: through a sneeze, cough, skin-skin
contact and exchange of body fluids. Some examples of the diseases are Coronavirus de-
sease (Covid-19), Acquired Immune Deficiency Syndrome (AIDS), Ebola, Dengue fever,
etc. The first mathematician who proposed a mathematical model describing an infec-
tious disease is Daniel Bernoulli. In 1760, he modelled the spread of smallpox [8]. In
our case, we are interested in the SIR model which can model Coronavirus desease. This
model was first used by Kermack and McKendrick in 1927, and has subsequently been
applied to a variety of diseases [13]. They have considered a constant total population
and assumed that the interaction between the groups was determined by the disease
transmission and removal rates. They have classified the population into three groups:
susceptible (S), infected (I) and recovered (R). There have been many variations such as

∗ Corresponding author: mailto:mariam.hassnaoui@gmail.com

© 2022 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua379

mailto:mariam.hassnaoui@gmail.com
http://e-ndst.kiev.ua


380 M. EL HASSNAOUI, S. MELLIANI AND M. OUKESSOU

classical epidemiological models. These models are based on the standard Susceptible-
Infectious-Recovered (SIR) compartments segmented in the model. Susceptible is a group
of people who are vulnerable to infection when contacting with infectious people, see [11]
and the references therein.

The SIR model was discussed by many authors. Diekmann et al. [10] studied epidemic
models with one strain. However, Ackleh and Allen [1] studied SIR-type models of disease
with n strains and vertical transmission. In 2009, Hina Khan et al. [14] solved the
SIR model by means of an analytic technique for nonlinear problems and the homotopy
analysis method. After two years, Bain et al. studied the existence of at least two positive
periodic solutions of the SIR model in [5]. They based on the continuation theorem of
coincidence degree theory. Moreover, in 2016, I. Al-Darabsah and Y. Yuan proposed
the mathematical model for the transmission by SIR for Ebola [2]. In the same year,
I. Ameen and P. Novati studied the fractional SIR model with constant population [3],
they obtained a numerical solution using discrete methods.

The aim of this paper is to study the problem (1) on Lp spaces, for 1 ≤ p < ∞.
We note that our SIR model is linear because we have ignored the transmission of the
epidemic disease from one person to another person. We note that this model was
investigated theoretically in a number of papers. For example, in [16], the authors
studied a stochastic epidemic-type model with enhanced connectivity, and they obtained
an exact solution of the model. Our objective in this work is to discuss the existence
and uniqueness result for the problem (1). In fact, although this model is standard, in
our situation, we have encountered some difficulties lying in the fact that the problem is
composed of three equations that are strongly coupled. To overcome these difficulties,
we first rewrite our system as a Cauchy problem involving two matrix operators, and we
show that the latter one has a unique solution using the accretive theory. We note that
the solution of this system gives more information on the propagation of the epidemic.
In general, it is difficult to compute the analytical solution of the problem. On the
other hand, it is usually impossible to obtain the exact solution for the general case.
Therefore, our approach guarantees the existence and uniqueness of the solution, we can
approximate the solution using numerical methods.

The rest of this paper is organized as follows. In the next section we present the
mathematical formulation of the SIR model. In Section 3, we introduce the functional
setting and gather some preliminary facts in connection with the problem. The existence
and uniqueness for the problem (Theorem 4.1) is stated in Section 4 by the accretive
theory.

2 Model Formulation

In this section, we give the mathematical formulation describing the mechanism of the
SIR model. The following diagram represents the SIR model. In this diagram:

- b : Immigration rate of susceptible.

- c : Specific rate of contact with pathogen.

- β : Probability of infection when there is direct contact.

- µ : Probability of illness in case of infection.

- ξ : 1/shedding period.
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Figure 1: The mechanism of SIR model.

- α : Specific death rate in population.

- ρ : Specific immunity loss rate.

We denote the total population size by N , i.e., N(t, a) = I(t, a) + S(t, a) + R(t, a).
Now, in order to formulate the dynamics of the above diagram mathematically, the
following assumptions have been adopted:

1. There is a constant number of the host populations entering into the system with
the immigration rate b > 0.

2. Person-to-person transmission can be ignored.

3. α is the same for all S − I −R classes.

4. The parameters ξ and ρ are constants.

5. Individuals can become infected and ill and then recover to become immune, or,
on exposure, they may pass directly into the immune class.

Remark 2.1 a) Assumption (3) dictates a linear system, whereas much of the SIR
model literature is concerned with nonlinear models, including an SI interaction
term [15].

b) Assumption (4) is permissible because many zoonotic pathogens, and campylobac-
ter in particular, cause much more mild illness rather than death.

c) Under these assumptions, our system represents an extension of the basic linear
model presented in [4].



382 M. EL HASSNAOUI, S. MELLIANI AND M. OUKESSOU

According to these assumptions, the SIR model can be represented mathematically by
the following coupled system of partial differential equations:

∂S

∂t
(t, a) = t.

∂S

∂a
(t, a) + b(t, a)− (α+ cβ)S(t, a) + ρR(t, a),

∂I

∂t
(t, a) = cβµS(t, a)− (α+ ξ)I(t, a),

∂R

∂t
(t, a) = ξI(t, a) + cβ(1− µ)S(t, a)− (α+ ρ)R(t, a),

S(0, a) = S0(a), I(0, a) = I0(a) and R(0, a) = R0(a),

(1)

where t ∈ [0, T ], a ∈ [0, L], L > 0 and b(t, a) = αN(t, a) = α (S(t, a) + I(t, a) +R(t, a)).
The functions S, I and R are dependent on time t and age ”a”, and all others parameters
are independent of time and age.

3 Notations and Preliminaries

In this section, we shall fix on the notations and introduce the functional framework,
which will be used throughout this paper. Let X be a real Banach space with norm ∥ · ∥
and dual X∗.

We are going to introduce now the class of operators for which we could obtain
existence and uniqueness results for solutions. Accretive operators were introduced by
Browder [9] and Kato [12] independently.

Definition 3.1 • An operator A : D(A) ⊂ X −→ 2X is said to be accretive if
the inequality ∥u − v + λ(û − v̂)∥ ≥ ∥u − v∥ holds for all λ ≥ 0, u , v ∈ D(A) and
û ∈ Au, v̂ ∈ Av. If, in addition, R(I +λA) (i.e., the range of the operator I +λA),
is for some, hence for all, λ > 0, precisely X, then A is called m-accretive.

• An operator A is said to be quasi-accretive (quasi-m-accretive) if there exists ω ∈ R
such that A + ωI is accretive (respectively, m-accretive), in this case, we say also
that A is ω-accretive (ω-m-accretive, respectively).

Remark 3.1 An operator A is accretive if and only if A is quasi-accretive with ω = 0.

In order to verify accretivity of a given operator, it is useful to take into account
alternative characterizations of this property. To do that, we need to introduce the
bracket and the duality map.

Let u ∈ X. We denote by [v, u]s the function defined from X ×X into R by

[v, u]s = sup{u∗(v) : u∗ ∈ Γ1(u)},

where Γ1(·) denotes the duality map from X into 2X
∗
given by

Γ1(u) = {u∗ ∈ X∗ : ⟨u∗ , u⟩ = ∥u∥ and |u∗∥ = 1}.

We also define the duality map Γ from X into 2X
∗
by

Γ(u) = {u∗ ∈ X∗ : ⟨u∗ , u⟩ = ∥u∥2 and |u∗∥ = ∥u∥}.
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We recall that the function sgn0(·) is defined by

sgn0(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

Now, we recall some important facts regarding accretive operators which will be used in
our paper, we have the following proposition [6].

Proposition 3.1 Let A : D(A) ⊂ X −→ 2X be an operator on X. The following
conditions are equivalent:

1. A is an ω-accretive operator.

2. the inequality [û− v̂, u−v]s ≥ −ω∥u−v∥ holds for every u, v ∈ D(A) and û ∈ Au,
v̂ ∈ Av.

3. for each λ > 0 with λω < 1, the resolvent (I + λA)−1 : R(I + λA) −→ D(A) is a
single-valued 1

1−λω -Lipschitzian mapping.

The quasi-m-accretive operators play an important role in the study of the Cauchy prob-
lem.

Consider the following Cauchy problem:{
u′(t) +A(u(t)) ∋ f(t), t ∈ (0, T ),

u(0) = u0 ∈ D(A),
(2)

where A is quasi-m-accretive on X and f ∈ L1(0, T,X).
Let ϵ > 0. An ϵ-discretization on [0, T ] of the equation u′(t)+A(u(t)) ∋ f(t) consists of

a partition 0 = t0 ≤ t1 ≤ · · · ≤ tN of the interval [0, tN ] and a finite sequence(f)Ni=1 ⊆ X
such that 

ti − ti−1 < ϵ for i = 1, · · · , N, T − ϵ < tN ≤ T,
N∑
i=1

∫ ti

ti−1

∥f(s)− fi∥ds < ϵ.

ADA;ϵ = (t0 ≤ t1 ≤ · · · ≤ tN ; f1, · · · , fN ) solution of (2) is a piecewise constant function
x : [0, tN ] −→ X whose values xi on (ti−1, ti] satisfy the finite difference equation

xi − xi−1

ti − ti−1
+A(xi) ∋ fi, i = 1, · · · , N.

Such a function x = (x)Ni=1 is called an ϵ-approximate solution to the Cauchy problem
(2) if it further satisfies

∥x(0)− u0∥ ≤ ϵ.

The following theorem is known (see [4, Theorem 4.5] or [7, p.108]) and deals with
the existence of strong solutions.

Theorem 3.1 If X is a Banach space with the Radon-Nikodym property, A :
D(A) ⊆ X −→ 2X is a quasi-m-accretive operator, and f ∈ BV (0, T ;X), i.e., f is
a function of bounded variation on [0, T ], then problem (2) has a unique strong solution
whenever u0 ∈ D(A).
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Let f, g ∈ L1(0, T ;X) and A be a ω-accretive operator; if u and v are integral
solutions of u′(t) +Au(t) ∋ f(t) and u′(t) +Au(t) ∋ g(t), respectively, then

∥u(t)− v(t)∥ ≤ eωt∥u(0)− v(0)∥+
∫ t

0

eω(t−s)∥f(s)− g(s)∥ds. (3)

The following theorem plays an important role in our results.

Theorem 3.2 Let X be a reflexive Banach space and let A be a quasi-m-accretive
operator in X. Let F : X −→ X be locally Lipschitz. Then, for each u0 ∈ D(A), there
is a local strong solution to the problem{

u′(t) +A(u(t)) ∋ F (u(t)),

u(0) = u0 ∈ D(A).

Assume further that

⟨−Fu, w⟩ ≥ −k1∥u∥2 + k2, (u, w) ∈ Γ,

then the solution is global.

We have the following definition.

Definition 3.2 We say that u ∈ C(0, T ;X) is a weak solution of problem (2) if there
are sequences (un) ⊆ W 1,∞(0, T ;X) and (fn) ⊆ L1(0, T ;X) satisfying the following
conditions:

1. u′n(t) +A(un(t)) ∋ fn(t) for almost all t ∈ [0, T ], n = 1, 2, · · · ;

2. lim
n→∞

∥un − u∥∞ = 0;

3. u(0) = u0;

4. lim
n→∞

∥fn − f∥1 = 0.

The following result, which is an easy consequence of Theorem 3.1, is important.

Theorem 3.3 Let X be a Banach space with the Radon-Nikodym property. Then
problem (2) admits a unique weak solution which is the unique integral solution of this
problem.

Remark 3.2 The results stated above for quasi-m-accretive operators with ω ̸= 0
are also valid for m-accretive operators.

Let p ∈ [1 ,+∞), we denote by Xp the following space:

Xp := Lp([0, T ]× [0, L] , dtda).

We also consider the following product space:

Hp := Xp ×Xp ×Xp

equipped with the norm

∥v∥Hp
= ∥(v0, v1, v2)T ∥Hp

= ∥v0∥Xp
+ ∥v1∥Xp

+ ∥v2∥Xp
.
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4 Existence Result

In this section, we are concerned with the existence and uniqueness result for problem
(1). For our subsequent analysis, we need the following hypothesis:

A : The parameters c, α, β, µ, ξ and ρ are positive.

For i = 1, 2, · · · , 5, let Fi denote the bounded multiplication operators from Xp into
itself. We define the matrix operator

F =

 0 F1 F2

F3 0 0
F4 F5 0

 ,

where
F1(u1) = αu1, F2(u2) = (α+ ρ)u2, F3(u3) = cβµ3,

F4(u4) = cβ(1− µ)u4 and F5(u5) = ξu5.

The operators Fi, i = 1, · · · , 5, are bounded on the space Xp, therefore F is also bounded
on the product space Hp.

Remark 4.1 The boundedness of the operator F implies that it is a Lipschitz oper-
ator with a Lipschitz constant ∥F∥L(Hp).

Define the following linear operator T by

T : D(T ) ⊆ Lp(D) −→ Lp(D)

ψ −→ Tψ(t, a) = −t∂ψ
∂a

(t, a).

Remark 4.2 The operator T is usually called the free streaming operator. It is a
closed densely defined linear operator. Its resolvent set ρ(T ) contains the half plane

{λ ∈ C : Reλ > 0}.

We also define the matrix operator

A =

T + cβµ 0 0
0 α+ ξ 0
0 0 α+ ρ


with the domain D(A) given by D(A) = D(T )×Xp ×Xp.

Now, we establish some auxiliary results required in the proof of our existence and
uniqueness result. In the following lemma, we prove that A is an m-accretive operator.

Lemma 4.1 If the hypothesis A is true, then the operator A is m-accretive on Hp.

Proof. In the first step, we prove that A is accretive onHp. Indeed, let g1, g2 ∈ D(A)
and let u = (u0, u1, u2) ∈ Γ1(g1 − g2). If we note g1 − g2 = (g01 − g02 , g

1
1 − g12 , g

2
1 − g22),

then, for i = 0, 1, 2, we have

ui = ∥gi1 − gi2∥1−p|gi1 − gi2|sgn0(gi1 − gi2).
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So, we have

[A(g1)−A(g2), u]s

≥ ∥g01 − g02∥1−p

∫ T

0

∫ L

0

|g01 − g02 |p−1t.
∂

∂a
(g01 − g02)(t, a))sgn0(g

0
1 − g02)dadt

+cβµ∥g01 − g02∥1−p

∫ T

0

∫ L

0

|g01 − g02 |p−1((g01 − g02)(t, a))sgn0(g
0
1 − g02)dadt

+(α+ ξ)∥g11 − g12∥1−p

∫ T

0

∫ L

0

|g11 − g12 |p−1((g11 − g12)(t, a))sgn0(g
1
1 − g12)dadt

+(α+ ρ)∥g21 − g22∥1−p

∫ T

0

∫ L

0

|g21 − g22 |p−1((g21 − g22)(t, a))sgn0(g
2
1 − g22)dadt

= ∥g01 − g02∥1−p 1

p

∫ T

0

∫ L

0

t.
∂

∂a
(|(g01 − g02)(t, a)|p)dadt

+cβµ

∫ l

0

|(g01 − g02)(t, a)|pdadt+ (α+ ξ)

∫ T

0

∫ L

0

|(g11 − g22)(t, a)|pdadt

+(α+ ρ)

∫ T

0

∫ L

0

|(g21 − g22)(t, a)|pdadt

= cβµ∥g01 − g02∥Xp
+ (α+ ξ)∥g11 − g12∥Xp

+ (α+ ρ)∥g21 − g32∥Xp
≥ 0.

This proves that the operateur A is accretive on Hp.
To complete the proof, it suffices to establish that R(I + A) = Hp, where R(I + A)

denotes the range of the operator I +A. Indeed, let (v0, v1, v2) be an element of Hp, we
seek for an element (u0, u1, u3) ∈ D(A) such thatT + cβµ 0 0

0 1 + (α+ ξ) 0
0 0 1 + (α+ ρ)

u0u1
u2

 =

v0v1
v2


or equivalently, we look for a solution of the following system:

Tu0 + cβµu0 = v0,

u1 + (α+ ξ)u1 = v1,

u2 + (α+ ρ)u2 = v2.

It is clear that 
u1 =

v1
1 + α+ ξ

,

u2 =
v2

1 + α+ ρ
.

Hence, it remains to solve the equation

Tu0 + cβµu0 = v0. (4)

According to Remark 4.2, equation (4) has a unique solution because 1 ∈ ρ(T ). This
yields that R(I +A) = Hp and completes the proof.

We introduce the following lemma which shows that the operator F is Lipschitzian.
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Lemma 4.2 If F maps Hp into itself, then there exists a constant λ > 0 such that,
for all u, v ∈ Hp, we have

∥F (u)− F (v)∥Hp ≤ λ∥u− v∥Hp .

Proof. Let u, v ∈ Hp, we have

∥F (u)− F (v)∥Hp

= ∥(F1u1 − F1v1 + F2u2 − F2v2, F3u0 − F3v0, F4u0 − F4v0 + F5u1 − F5v1∥Hp

= ∥F1u1 − F1v1 + F2u2 − F2v2∥Xp + ∥F3u0 − F3v0∥Xp

+∥F4u0 − F4v0 + F5u1 − F5v1∥Xp

≤ α∥u1 − v1∥Xp + (α+ ρ)∥u2 − v2∥Xp + cβµ∥u0 − v0∥Xp

+cβ(1− µ)∥u0 − v0∥Xp + ξ∥u1 − v1∥Xp

= cβ∥u0 − v0∥Xp + (α+ ξ)∥u1 − v1∥Xp + (α+ ρ)∥u2 − v2∥Xp

λ ≤ ∥u− v∥Hp ,

where λ = max(cβ, α+ ξ, α+ ρ). This completes the proof.
Now, using the operators A and F , problem (1) may be written in the formU

′(t) +AU(t) = FU(t), t ∈ [0, T ],

U(0) = U0,
(5)

where

U(t) =

S(t)I(t)
R(t)

 and U0 =

S0

I0
R0

 .

In the following result, we try to show that if assumption A holds, then equation (5) has
a unique solution. Hence the main result of this section reads as follows.

Theorem 4.1 Let 1 ≤ p < +∞. We assume that the condition A holds true and F
maps Hp into itself, then the problem (5) has a unique mild solution for all initial data
(S0, I0, R0) belonging to Hp.

If 1 < p < +∞, it is a weak solution. Moreover, if (S0, I0, R0) ∈ Hp, then it is a
strong solution.

Proof. It follows from Lemma 4.1 that the operator A is m-accretive on Hp. Further,
Remark 4.1 together with Lemma 4.2 show that F is λ-Lipschitz on Hp and therefore the
operator A−F is λ-m-accretive on Hp. Applying Corollary 4.1 from [6], we conclude that
problem (5) has a unique mild solution. Moreover, since the spaces Xp, for 1 < p < +∞,
are Banach spaces with the Radon-Nikodym property, applying Theorem 3.3, we infer
that it is a weak solution on Hp. Next, if U0 ∈ Hp, then applying Theorem 3.1, we infer
that this solution is a strong solution.

The next result shows that the solution depends continuously on the initial data. To
this end, let us introduce the Banach space Cp := C([0, T ]3; Hp) endowed with the norm

∥u∥∞ := {max ∥ui∥Xp
: i = 0, 1, 2}.
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Proposition 4.1 Let 1 ≤ p < ∞ and U1, U2 ∈ Cp be two mild solutions of problem
(5). Given ϵ > 0, there exists δ > 0 such that if |U1(0)−U2(0)| ≤ δ, then ∥U1−U2∥∞ ≤ ϵ.

Proof. Since A is an m-accretive operator on Hp (see Lemma 4.1) and F : Hp −→
Hp is λ-Lipschitzian, where λ = max(cβ, α+ξ, α+ρ) (see Lemma 4.2), we have A − F is
a λ-m-accretive operator on Hp. So, for i ∈ 1, 2, Ui is the unique solution of the problemU

′(t) +AU(t)− FU(t) = 0,

U(0) = Ui(0) ∈ Hp.
(6)

Hence, using (3), we have

|U1(t)− U2(t)| ≤ eλt|U1(0)− U2(0)|.

The above inequality implies that, for every t ∈ [0, T ],

|U1(t)− U2(t)| ≤ eλt|U1(0)− U2(0)|,

therefore,
∥U1 − U2∥∞ ≤ eλT |U1(0)− U2(0)|.

It suffices to take δ = ϵ
eλT , this completes the proof.

Remark 4.3 We note that we can extend the result obtained above to prove the
existence and uniqueness of the solution of the SEIR (Susceptible, Exposed, Infectious
and Recovered) model presented in [17].

5 Conclusion

In the present work, we have considered a linear SIR model, describing the propagation
of an epidemic in given population. The existence and uniqueness results for this problem
were obtained in Lp spaces, for 1 ≤ p <∞, by using the accretive theory. The solution of
this model is important because biologists could use it to observe the spread of infectious
diseases by introducing natural initial conditions. Therefore they can learn the ways of
how to control the propagation of epidemics. In the future works, we will consider the
nonlinear SIR model to explain how epidemic diseases can be eradicated by vaccination.
Our approach may be extended to the following model:

∂S

∂t
(t, a) = t.

∂S

∂a
(t, a) + (α− σ)N(t, a)− βF (I, S),

∂I

∂t
(t, a) = βf(I, S)− (α+ ξ)I(t, a),

∂R

∂t
(t, a) = ξG(I,R) + cβ(1− µ)S(t, a),

where F and G are nolinear operators. A new parameter σ is introduced in the model
and represents the specific vaccination rate of the new infected.
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Abstract: A mobile robot is one of the unmanned land vehicles which can be con-
trolled and whose position can be detected when it is equipped with a Global Posi-
tioning System (GPS). A mobile robot aims to automate some tasks that were usually
done manually by human. To gain an accurate detection of the mobile robot position,
the mobile robot must follow the existing trajectory with the right position. There-
fore, we need a method to estimate the mobile robot trajectory in order to easily
detect its position. In this paper, we propose two trajectory estimation methods, i.e.,
the Ensemble Kalman Filter (EnKF) and the Square Root Ensemble Kalman Filter
(SR-EnKF). Furthermore, we also compare the performance of the two methods on
the mobile robot equation. The simulation results showed that the EnKF method
has a higher accuracy compared with the SR-EnKF method. The mobile position
error of the two methods was less than 2% in the case of 100 and 200 ensembles. The
smallest error was obtained when generating 100 ensembles, where the position error
w.r.t. the X-axis was 0.02 m, the position error w.r.t. the Y-axis was 0.02 m, and the
angle position error was 0.003 rad.
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1 Introduction

Estimation is made to solve a problem which requires prior information such that the
next step of the problem solving can be determined. Estimation is conducted since
some problems can be addressed using preceding information or data associated with
the problem [1]. In the literature, there are numerous methods that can be used for
estimation. The Kalman filter is one of the methods for estimating state variables in a
discrete linear dynamic system such that the estimation error covariance is minimized [2].
The Kalman filter was originally proposed by Rudolph E. Kalman in 1960 for the solution
of the linear data-discrete filtering problem. However, in many real-world problems, the
models are continuous nonlinear dynamic systems. Such systems cannot be estimated
accurately by using the Kalman filter. In this case, we can employ some alternative
approaches for nonlinear systems, for example the Ensemble Kalman Filter (EnKF) and
the Square Root Ensemble Kalman Filter (SR-EnKF). In the literature, there are many
approaches for modeling, analysis, estimation and control design of linear and nonlinear
systems, see [3–12].

The EnKF method uses a certain number of ensembles to represent the underlying
probability distribution of state variables. The mean and covariance of the probability
distribution are approximated by the mean and covariance of the generated ensembles [1].
The Square Root Ensemble Kalman Filter method (SR-EnKF) is the development of the
EnKF method where there are some decomposition matrix operations in the correction
stage. This method was developed to reduce the computational time and to improve
the accuracy of the estimation results so that the need for fast and accurate navigation
and guidance can be satisfied [13]. The development of the application of trajectory
estimation techniques in the the field of robotics will be very beneficial to Indonesia
because unmanned vehicles have been widely used for civil and military purposes such
as missions of spying, surveillance and exploration of places considered dangerous to
humans.

A mobile robot is one of the unmanned vehicles that can be driven and whose position
can be tracked or detected when it has a Global Positioning System (GPS). Mobile robots
are used to replace human functions in doing dangerous work because they have the
advantage of being able to move freely. For that purpose, the mobile robot must follow
the existing path with the right position. To do so, a method is required to estimate the
mobile robot trajectory.

This paper is a study on the implementation of the EnKF and SR-EnKF methods
in mobile robot motion equations applied to estimate the mobile robot path, then both
methods are simulated by using Matlab software so that the error between estimated and
actual trajectories could be obtained. The focus of this paper is the comparison of two
position estimation methods: the EnKF and SR-EnKF for mobile robot motion. The
paper provides an analysis of numerical study on the performance of both methods.

2 Mathematical Model of Mobile Robot

A mobile robot or car robot is a robot construction that has a wheel actuator to move
the whole body of the robot so that the robot can change the position from one point to
another. The mobile robot used in the study was a mobile robot operating on land and
using the rear wheels to move and transfer position. In other words, the mobile robot
system was driven by the rear wheels. Figure 1 shows the position and dimensions of the
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mobile robot.

Figure 1: Dynamic model of the mobile robot.

The GPS is mounted right at the midpoint of the car. The steering and front corner
systems are shown in Figure 1. In this case, the data are discrete, and the system is
nonlinear. The dynamic system equation of a car robot is defined as follows:ẋẏ

ϕ̇

 =

vccos(ϕ)− vc
L (asin(ϕ) + bcos(ϕ))tan(α)

vcsin(ϕ) +
vc
L (acos(ϕ)− bsin(ϕ))tan(α)

vc
L tan(α)

 , (1)

where
x, y : position of the mobile robot in GPS coordinates;
ϕ : position angle of the mobile robot;
vc : speed of the mobile robot;
α : steering angle of the mobile robot;
L : distance between the front wheel and the rear wheels;
a : distance between the midpoint of the rear car and the GPS position;
b : distance between the center of the car and the GPS position.

3 Square Root Ensemble Kalman Filter (SR-EnKF)

The Square Root Ensemble Kalman Filter algorithm (SR-EnKF) is the development of
the EnKF algorithm. The correction stage of the SR-EnKF consists of a Singular Value
Decomposition (SVD) and a square root matrix. The SVD is a matrix decomposition
method which produces a diagonal matrix containing its singular values and another
matrix that contains corresponding singular vectors [14]. The singular value decomposi-
tion has been widely used in many theoretical and practical applications. The Ensemble
Kalman Filter and the Square Root Ensemble Kalman Filter (SR-EnKF) algorithms are
summarized in Table 1.
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EnKF EnKF-SR
System Model and Measurement Model

xk+1 = f(uk, xk) + wk, wk ∼ N(0, Qk) xk+1 = f(uk, xk) + wk, wk ∼ N(0, Qk)
zk = Hxk + vk, vk ∼ N(0, Rk) zk = Hxk + vk, vk ∼ N(0, Rk)

Initialization
Generate N ensemble in accordance with
initial estimate x0

Generate N ensemble in accordance with
initial estimate x0

x0,i = [x0,1 x0,2 x0,3 ... x0,Ne] x0,i = [x0,1 x0,2 x0,3 ... x0,Ne]

Determine initial value : x̂0 = 1
Ne

N∑
i=1

X0,i Initial Mean Ensemble : x0,i = x0,i1N

Ensemble initial error :
x̃0,i = x0,i − x0,i = x0,i(I − 1N )

Prediction Stage

x̂−
k,i = f(x̂k−1,i, uk−1,i)+wk,i with wk,i ∼

N(0, Qk)
x̂−
k,i = f(x̂k−1,i, uk−1,i) + wk,i of which

wk,i ∼ N(0, Qk)

Estimate : x̂−
k = 1

Ne

N∑
i=1

x̂−
k,i Ensemble Mean : x−

k,i = x̂−
k,i1N

Covariance error : Ensemble Error :

P−
k = 1

Ne−1

N∑
i=1

(x̂−
k,i − x̂−

k )(x̂
−
k,i − x̂−

k )
T x̃−

k,i = x̂−
k,i − x−

k,i = x̂−
k,i(I − 1N )

Correction Stage
zk,i = zk + vk,i with vk,i ∼ N(0, Rk) zk,i = zk + vk,i of which vk,i ∼ N(0, Rk)
Kalman gain : Sk = Hx̃−

k,i, Ek = (v1, v2, ..., vN ), and

Kk = P−
k HT (HP−

k HT +Rk)
−1 Ck = SkS

T
k + EkE

T
k

Estimate : Ensemble Mean :
x̂k,i = x̂−

k,i +Kk(zk,i −Hx̂−
k,i) x̄k,i = x̄−

k,i + x̃−
k,iS

T
k C

−1
k (z̄k,i −Hx̄−

k,i)

x̂k = 1
Ne

N∑
i=1

x̂k,i Square root schema:

- decompose eigenvalue of Ck = UkΛkU
T
k

- compute matrices Mk = Λ
−1/2
k UT

k S−
k

- determine SVD from Mk = YkLkV
T
k

Ensemble Error :
x̃k,i = x̃−

k,iVk(I − LT
k Lk)

1/2

Ensemble Estimate : x̂k,i = x̃k,i + x̄k,i

Table 1: EnKF and EnKF-SR algorithms [13].

4 Simulation and Analysis Results

In this study, the navigation system and mobile robot guidance used the EnKF and
SR-EnKF methods by generating 100 and 200 ensembles on two paths. The comparison
of the two methods is either by generating 100 or 200 ensembles. The starting point is
given on each path x(0) = 0, y(0) = 0, and z(0) = 0. In the first trajectory, we obtained
the result of path estimation in the XY field by using the EnKF and SR-EnKF and
generating 200 ensembles as in Figure 4. In addition, Table 2 shows the average RMSE
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value by generating 100 and 200 ensembles.

Figure 2: Estimation of position in the first trajectory on the X plane.

In Figure 2, it appears that the EnKF method is more accurate than the EnKF-SR
method, where the EnKF method (red line) is smoother following the specified trajectory.
Judging from the first iteration to the 60th iteration, it can be seen that the EnKF method
is more accurate than the EnKF-SR method with a difference of 2-5% in accuracy.

Figure 3: Estimation of position in the first trajectory on the Y plane.
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In Figure 3, it appears that the EnKF method is more accurate than the EnKF-SR
method, where the EnKF method (red line) is smoother following the specified trajectory.
Judging from the first iteration to the 40th iteration, it can be seen that the EnKF
method is more accurate than the EnKF-SR method with a difference of 2-3% in accuracy.
However, after the 40th iteration, the EnKF and EnKF-SR methods have almost the same
level of accuracy.

Figure 4: Estimation of the trajectory on the first trajectory in the XY plane.

Figure 4 shows that the system is able to follow the desired path in the XY plane, with
the trajectory estimation results obtained by using the EnKF and SR-EnKF methods
resulted in an accurate estimation with a position error of less than 2%. The error is
obtained when the X position is 1.8 m and the Y position is 2 m. The errors obtained
in the simulation when generating 100 and 200 ensembles are shown in Table 2.

In Table 2, notice that the EnKF method was more accurate than the SR-EnKF
method in the case of 100 and 200 ensembles. The error of the X and Y positions indicated
the deviation of the position as it moved along the path, while the angular position error
was the error occurring during the turning movement, and this also affected the error of
the X and Y position.

N = 100 N = 200
EnKF SR-EnKF EnKF SR-EnKF

X position 0.085328 m 0.45222 m 0.15692 m 0.70455 m
Y position 0.084488 m 0.51156 m 0.096092 m 0.72752 m

Angular position 0.029393 m 0.031061 m 0.072941 m 0.072514 m
Simulation time 1.7031 s 1.8281 s 3.6250 s 3.7813 s

Table 2: The comparison of RMSE values with the EnKF and SR-EnKF methods on the first
trajectory in the case of 100 and 200 ensembles.
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This simulation used ∆t = 0.1 by generating 100 and 200 ensembles. The third
trajectory was the result of the path estimation in the XY plane which was obtained
by using the EnKF and SR-EnKF with the starting point given on each path x(0) = 0,
y(0) = 0 and z(0) = 0 and generating 200 ensembles as shown in Figure 7. In addition,
Table 3 shows the average value of RMSE by generating 100 and 200 ensembles.

Figure 5: Estimation of position in the second trajectory on the X plane.

In Figure 5, it appears that the EnKF method is more accurate than the EnKF-
SR method, where the EnKF method (red line) is smoother following what has been
determined. Judging from the first iteration to the 40th iteration and the 40th to the
70th iteration, it can be seen that the EnKF method is more accurate than the EnKF-SR
method with a difference of about 3-5% in accuracy.

In Figure 6, it appears that the EnKF method is more accurate than the EnKF-SR
method, where the EnKF method (red line) is smoother following the specified trajectory.
Judging from the first iteration to the 50th iteration, both methods have the same good
accuracy, but from the 51st to the 100th iteration, it can be seen that the EnKF method
is more accurate than the EnKF-SR method with a difference of about 2-4% accuracy
rate.

Based on Figure 7, the mobile robot followed the desired path in the XY plane, where
the trajectory estimations using the EnKF and SR-EnKF methods are very accurate with
a position error of less than 2%. The error of 2% is obtained when the X position is 0.7
m and the Y position is 0.8 m.

From the analysis of results of the first, second and third trajectory simulation, it
was found that the EnKF method has a higher accuracy compared with the SR-EnKF
method either by generating 100 or 200 ensembles. However, the EnKF and SR-EnKF
methods both had position errors of less than 2%, so the SR-EnKF method could be
used as a method of navigation system and mobile robot guidance.
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Figure 6: Estimation of position in the second trajectory on the Y plane.

Figure 7: Estimation of trajectory on the third trajectory on the XY field.

5 Conclusions

According to the results of the study on mobile robot mathematical models as well as
navigation systems, both the Ensemble Kalman Filter (EnKF) and the Square Root
Ensemble Kalman Filter (SR-EnKF) methods could be effectively used as navigation
systems and guidance with trajectory estimates with a position error of less than 2%.
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N = 100 N = 200
EnKF SR-EnKF EnKF SR-EnKF

X position 0.071713 m 0.2168 m 0.10462 m 0.31981 m
Y position 0.088223 m 0.22584 m 0.18555 m 0.32489 m

Angular position 0.0082395 m 0.010071 m 0.012895 m 0.014751 m
Simulation time 1.6875 s 1.8281 s 3.0156 s 3.3281 s

Table 3: The comparison between the RMSE value of the EnKF method and that of the SR-
EnKF method on the third trajectory in the case of 100 and 200 ensembles

Viewed from the generation of ensembles, the generation of 100 ensembles resulted in a
more accurate result than that of 200 ensembles.
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1 Introduction

By definition, a two-dimensional real planar Kolmogorov system will be a differential
system of the form {

ẋ = xf1(x, y),
ẏ = yf2(x, y),

(1)

where f1, f2 are real functions in the two variables x and y and the dot denotes derivative
with respect to the time (t) variable. There are many natural phenomena which can be
modelled by the Kolmogorov systems in mathematical ecology and population dynamics,
see for example [5, 10].

Kolmogorov models are widely used in ecology to describe the interaction between
two populations, and a limit cycle corresponds to an equilibrium state of the system. In
the qualitative theory of dynamical systems, see [2, 4, 5, 11], one of the most important
problems is the study of the limit cycles of planar dynamical systems (1). The definition
of limit cycles appeared in the works of Poincaré [9], the statement of the 16-th Hilbert’s
problem, and the discovery by Liénard [8]. A limit cycle of a planar vector field given
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by (1) is an isolated periodic trajectory (isolated compact leaf of the corresponding
foliation), in other words, a periodic trajectory of a vector field is a limit cycles, see for
instance [1, 6, 7].

Let D be a non–empty open and dense subset of R2. We say that a non–locally
constant C1 function φ : D → R is a first integral of the polynomial differential (1) in D
if φ is constant on the trajectories of the polynomial differential system (1) contained in
D, i.e., if

∂φ(x, y)

∂x
f1(x, y) +

∂φ(x, y)

∂y
f2(x, y) =

dφ(x, y)

dt
≡ 0, at the points of D.

For a planar vector field, the existence of a first integral totally determines its phase
portrait. The simplest planar vector fields having a first integral are the Hamiltonian
ones. The integrable planar vector fields which are not Hamiltonian are, in general, very
difficult to detect, see [3].

In this paper, we study the existence of first integrals and the non existence of limit
cycle of Kolmogorov differential systems of the form

ẋ = x

F (x, y)p + k(x, y)

m1∑
i=1

expPi(x,y)

m2∑
j=1

expQj(x,y)

 ,

ẏ = y

G(x, y)p + k(x, y)

m1∑
i=1

expPi(x,y)

m2∑
j=1

expQj(x,y)

 ,

(2)

wherem1,m2 are positive integers and p ∈ Q∗, F (x, y), G (x, y) , k(x, y), Pi(x, y), Qj(x, y)
are homogeneous polynomials of degree n, n, δ,m,m, respectively.

We define the trigonometric functions

f(θ) = cos2 θF (cos θ, sin θ)p + sin2 θG(cos θ, sin θ)p.

g(θ) = k(cos θ, sin θ)


m1∑
i=1

expPi(cos θ, sin θ)

m2∑
j=1

expQj(cos θ, sin θ)

 .

h(θ) = sin θ cos θ (G(cos θ, sin θ)p − F (cos θ, sin θ)p) .

2 Main Result

Our main result on the integrability and the periodic orbits of the Kolmogorov system
(2) is the following.

Theorem 2.1 Consider a planar Kolmogorov system (2), then the following state-
ments hold:

(i) If h(θ) ̸= 0, F (cos θ, sin θ)p > 0, G(cos θ, sin θ)p > 0, for θ ∈
[
0, π

2

]
and δ−np ̸= 0,

then system (2) has the first integral

I(x, y) = (x2 + y2)
np+δ

2 exp

(
−(np+ δ)

∫ arctan y
x

θ∗

f(s)

h(s)
ds

)
−

(np+ δ)

∫ arctan y
x

θ∗

exp

(
−(np+ δ)

∫ v

v0

f(s)

h(s)
ds

)
g(v)

h(v)
dv,
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where θ∗ ∈
[
0, π

2

]
. Additionally, the system (2) has no limit cycle at the interior of the

first quadrant on the plane.
(ii) If h(θ) ̸= 0, F (cos θ, sin θ)p > 0, G(cos θ, sin θ)p > 0, for θ ∈

[
0, π

2

]
and δ−np = 0,

then system (2) has the first integral

L(x, y) = (x2 + y2)
1
2 exp

(
−
∫ arctan y

x

θ∗

(
f(u)

h(u)
+

g(u)

h(u)

)
du

)
.

where θ∗ ∈
[
0, π

2

]
. Additionally, the system (2) has no limit cycle at the interior of the

first quadrant on the plane.
(iii) If h(θ) = 0 for all θ ∈ [0, 2π] , then system (2) has the first integral T (x, y) = y

x .
Also , the system (2) has no limit cycle.

Proof. In order to demonstrate our results, we write the polynomial differential
system (2) in polar coordinates (r, θ) , defined by x = r cos θ and y = r sin θ, then system
(2) becomes { .

r = f(θ)rnp+1 + g(θ)rδ+1,
.

θ = h(θ)rnp,
(3)

where
.
r = dr

dt ,
.

θ = dθ
dt .

(i) If h(θ) ̸= 0, F (cos θ, sin θ)p > 0, G(cos θ, sin θ)p > 0, for θ ∈
[
0, π

2

]
and δ−np ̸= 0.

Take as an independent variable the coordinate θ, then differential system (3) writes

dr

dθ
=

f(θ)

h(θ)
r +

g(θ)

h(θ)
rδ−np+1, (4)

which is a Bernoulli equation. We take a new variable ρ = rnp+δ and we obtain the
linear equation

dρ

dθ
= (np+ δ)

(
f(θ)

h(θ)
ρ+

g(θ)

h(θ)

)
. (5)

The general solution of linear equation (5) is

ρ(θ) =

(
k + (np+ δ)

∫ θ

θ∗

exp

(
−(np+ δ)

∫ v

v0

f(s)

h(s)
ds

)
g(v)

h(v)
dv

)
×

exp

(
(np+ δ)

∫ θ

θ∗

f(s)

h(s)
ds

)
,

where k ∈ R, which has the first integral

I(x, y) = (x2 + y2)
np+δ

2 exp

(
−(np+ δ)

∫ arctan y
x

θ∗

f(s)

h(s)
ds

)
−

(np+ δ)

∫ arctan y
x

θ∗

exp

(
−(np+ δ)

∫ v

v0

f(s)

h(s)
ds

)
g(v)

h(v)
dv.

The curves I = l with l ∈ R, are created by the trajectories of the differential system
(2). These trajectories equations can be written in Cartesian coordinates as follows:
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x2 + y2 =

 (
l + (np+ δ)

∫ arctan y
x

θ∗
exp

(
− (np+ δ)

∫ v

v0

f(s)
h(s)ds

)
g(v)
h(v)dv

)
×

exp
(
(np+ δ)

∫ arctan y
x

θ∗
f(s)
h(s)ds

)  2
np+δ

.

So, the periodic orbit 𭟋 is contained in the curve equation

(Λ) : x2+y2 =

 (
l𭟋 + (np+ δ)

∫ arctan y
x

θ∗
exp

(
−(np+ δ)

∫ v

v0

f(s)
h(s)ds

)
g(v)
h(v)dv

)
×

exp
(
(np+ δ)

∫ arctan y
x

θ∗

f(s)
h(s)ds

)  2
(np+δ)

.

But the curve (Λ) cannot contain the periodic orbit 𭟋 and hence no limit cycle is con-
tained in the first quadrant on the plane because the curve (Λ) in the realistic quadrant
contains only a single point or no point on every straight line (∆λ) : y = λx for all λ > 0.

To be persuaded by this verity, let (x0, y0) be a point of intersection of this curve
with straight line (∆λ) : y = λx for all λ > 0, then x0 and y0 must satisfy

x2
0 + y20 =


(
l𭟋 + (np+ δ)

∫ arctan
y0
x0

θ∗
exp

(
−(np+ δ)

∫ v

v0

f(s)
h(s)ds

)
g(v)
h(v)dv

)
× exp

(
(np+ δ)

∫ arctan y
x

θ∗

f(s)
h(s)ds

)


2
(np+δ)

,

y0 = λx0,

hencex0 =
(
1 + λ2

)−1
2

(l𭟋 + (np+ δ)
∫ arctanλ

θ∗
exp

(
−(np+ δ)

∫ v

v0

f(s)
h(s)ds

)
g(v)
h(v)dv

)
× exp

(
(np+ δ)

∫ arctanα

θ∗

f(s)
h(s)ds

)  1
(np+δ)

,

y0 = λx0.

There is at most a unique value of x0 on every half straight OX+. Consequently,
there is at most a unique point in the first quadrant on the plane. So this curve cannot
contain the periodic orbit and hence there is no limit cycle.

(ii) If h(θ) ̸= 0, F (cos θ, sin θ)p > 0, G(cos θ, sin θ)p > 0, for θ ∈
[
0, π

2

]
and δ−np = 0.

Take as an independent variable the coordinate θ, then the differential system (3)
becomes

dr

dθ
=

(
f(θ)

h(θ)
+

g(θ)

h(θ)

)
r. (6)

The general solution of equation (6) is

r(θ) = k exp

(∫ θ

θ∗

(
f(u)

h(u)
+

g(u)

h(u)

)
du

)
,

where k ∈ R, which has the first integral

L(x, y) = (x2 + y2)
1
2 exp

(
−
∫ arctan y

x

θ∗

(
f(u)

h(u)
+

g(u)

h(u)

)
du

)
.

The curves L = l with l ∈ R are created by the trajectories of the differential system (2).
These trajectories can be written in Cartesian coordinates as follows:

(x2 + y2)
1
2 = k exp

(∫ arctan y
x

θ∗

(
f(u)

h(u)
+

g(u)

h(u)

)
du

)
.
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Therefore the periodic orbit (Σ) is contained in the curve

(C) : x2 + y2 = k2Σ exp

(∫ arctan y
x

θ∗

(
f(u)

h(u)
+

g(u)

h(u)

)
du

)2

.

But the curve (C) cannot contain the periodic orbit (Σ) and hence no limit cycle con-
tained in the first quadrant on the plane, because the curve (C) in the realistic quadrant
has at most a unique point on every straight line y = λx for all λ > 0.

To be persuaded by this verity, let (x0, y0) be a point of intersection of this curve
with the straight line (∆λ) : y = λx for all λ > 0, then x0 and y0 must satisfy (x2

0 + y20)
1
2 = kΣ exp

(∫ arctan
y0
x0

θ∗

(
f(u)
h(u) +

g(u)
h(u)

)
du

)
,

y0 = λx0,

hence {
x0 = kΣ(1 + λ2)

−1
2 exp

(∫ arctanλ

θ∗

(
f(u)
h(u) +

g(u)
h(u)

)
du
)
.

y0 = λx0,

There is at most a unique value of x0 on every half straight OX+. Consequently,
there is at most a unique point in the first quadrant on the plane. So this curve cannot
contain the periodic orbit and consequently, there is no limit cycle.

(iii) If h(θ) = 0 for all θ ∈ [0, 2π] , then from (3), it follows that
.

θ = 0. So the straight
lines through the origin of coordinates of the differential system (2) are invariant by the
flow of this system. Hence, T (x, y) = y

x is a first integral of the system. Then all straight
lines through the origin are created by the trajectories, which can be written in Cartesian
coordinates as y = γx, where γ ∈ R. Hence, there is no limit cycle. This completes the
proof of the theorem.

Example 2.1 If we take F (x, y) = 1
9x

2y2
(
x2 + y2

)
, G(x, y) = y4 + x2y2,

2∑
i=1

expPi(x, y) = ex−e−x,
2∑

j=1

expQj(x, y) = ex+e−x, k(x, y) = x3+xy2+x2y+y3,

and p = − 1
2 , then system (2) becomes ẋ = x

((
1
9x

2y2
(
x2 + y2

))−1
2 + (x3 + xy2 + x2y + y3) tanh (x)

)
,

ẏ = y
((

y4 + x2y2
)−1

2 + (x3 + xy2 + x2y + y3) tanh (x)
)
,

(7)

where x(t) and y(t) represent the population density of two species at time t, and

f1(x, y) =

(
1

9
x2y2

(
x2 + y2

))−1
2

+ (x3 + xy2 + x2y + y3) tanh (x) ,

f2(x, y) =
(
y4 + x2y2

)−1
2 + (x3 + xy2 + x2y + y3) tanh (x) ,

are the capita growth rate of each species.
The Kolmogorov system (7) in polar coordinates (r, θ) is written as{

.
r = (cos θ( 19 sin

2 θ)
−1

2 + sin θ)r−1 + ((cos θ + sin θ) tanh (θ))r4,
.

θ = (cos θ − 3)r−2,
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accordingly, f(θ) = cos θ( 19 sin
2 θ)

−1

2 +sin θ, g(θ) = (cos θ+sin θ) tanh (θ) , h(θ) = cos θ−
3. This corresponds to the case (i) of Theorem 2.1. Then the system (7) has the first
integral

I(x, y) = (x2 + y2)
1
2 exp

(∫ arctan y
x

θ∗

cos s( 19 sin
2 s)

−1

2 + sin s

3− cos s
ds

)
−

∫ arctan y
x

θ∗

exp

(∫ v

v0

cos s( 19 sin
2 s)

−1

2 + sin s

3− cos s
ds

)
(cos v + sin v) tanh (v)

cos v − 3
dv.

The curves I = l with l ∈ R, which are created by the trajectories of the differential
system (7), in Cartesian coordinates are written as

x2+y2 =


(
l +
∫ arctan y

x

θ∗
exp

(
−
∫ v

v0

cos s( 1
9 sin2 s)

−1

2 +sin s

cos s−3 ds

)
(cos v+sin v) tanh(v)

cos v−3 dv

)
×

exp

(∫ arctan y
x

θ∗
cos s( 1

9 sin2 s)
−1

2 +sin s

cos s−3 ds

)


2

.

where l ∈ R. Then the system (7) has no periodic orbits, and consequently, no limit
cycle.

3 Conclusion

In this paper, we proposed a special form of Kolmogorov differential system, where
just select the parameters satisfying the conditions of Theorem 2.1, we obtain explicit
expression for a first integral and characterize its trajectories, this is one of the classical
tools in the classification of all trajectories of dynamical systems.
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Abstract: This paper investigates the phenomenon of chaos synchronization be-
tween the fractional-order lesser date moth and the integer-order chaotic systems.
Based on the Lyapunov stability theory and numerical differentiation, an active con-
trol is obtained to achieve the synchronization between the fractional-order and the
integer-order chaotic systems. Numerical examples are implemented to illustrate and
validate the results.
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1 Introduction

Chaos is a very interesting nonlinear phenomenon that has been intensively studied over
the past two decades. The chaos theory is found to be useful in many areas such as data
encryption [19], financial systems [17,18], biology [22] and biomedical engineering [2], etc.
Fractional-order chaotic dynamical systems have begun to attract a lot of attention in
recent years and can be seen as a generalization of chaotic dynamic integer-order systems.
The synchronization between the fractional-order chaotic system and the integer-order
chaotic system is thoroughly a new domain and it began to attract much attention in
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recent years [9, 20] because of its potential applications in secure communication and
cryptography [11,12]. Obviously, the synchronization between a fractional-order chaotic
system and an integer-order chaotic system is more difficult than the synchronization be-
tween fractional-order chaotic systems or integer-order chaotic systems for the different
order of their error dynamical system. The synchronization between a fractional-order
system and an integer-order system was first studied by Zhou et al. [20] In the past
twenty years, different synchronization types have been proposed, e.g., complete syn-
chronization [24], lag synchronization [4], phase synchronization [10], project synchro-
nization [21], generalized synchronization [6], etc. In this research work ,we apply the
active control theory to synchronize two chaotic systems when a fractional-order system
is chosen as the drive system and an integer-order system serves as the response system,
we demonstrate the technique capability by the synchronization between a fractional-
order lesser date moth chaotic system and an integer-order chaotic system [15]. The
paper is arranged in the following manner. In Section 2, we describe the problem for-
mulation for the fractional-order and the integer-order chaotic systems. In Section 3, we
discuss the synchronisation between a fractional-order lesser date moth chaotic system
and an integer-order chaotic system by using the active control. Section 4 gives the brief
conclusion.

2 Problem Formulation for Fractional-Order and Integer-Order Chaotic
System

Consider the following fractional-order chaotic system as a drive (master) system

Dαx1 = Ax1 + g(x1), (1)

where x1 ∈ Rn is the state vector, A ∈ Rn×n is the linear part, g(x1) is a continuous
nonlinear function, and Dα is the Caputo fractional derivative.
Also, the response system (slave) can be described as

ẋ2 = Ax2 + g(x2) + u(t), (2)

where x2 ∈ Rn is the state vector, A ∈ Rn×n is the linear part, and g(x2) is a continuous
nonlinear function and u(t) ∈ Rn is the control.

Define the synchronous errors as e = x2 − x1. Our aim is to determine the con-
troller u(t) ∈ Rn such that the drive system and response system are synchronized (i.e.,
lim
t→∞

∥e(t)∥ = 0).

The synchronisation error system between the driving system (1) and the response
system (2) can be expressed as

ė = ẋ2 − ẋ1,

where ẋ2 is obtained from the response system (2), while no exact expressions of ẋ1

can be obtained from the driving system (1). Therefore, the numerical differentiation
method is used to obtain ẋ1. According to the definition of derivative, the derivative is
approximately expressed using the difference quotient as

g′(a) ≈ g(a+ h)− g(a)

h
, (3)

g′(a) ≈ g(a)− g(a− h)

h
, (4)
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where (h > 0) is a small increment. Formulae (3) and (4) are called the pre-difference
formula and the post-difference formula, respectively. The post-difference formula is used
in this paper.

3 Synchronisation of Fractional-Order Lesser Date Moth Chaotic System
and Integer-Order Chaotic System by Active Control

In this section, to validate the active control method proposed in [5], we take the
fractional-order lesser date moth chaotic system [15] as a drive system and the integer-
order chaotic system as a response system.

Thus, the drive and response systems are as follows:
Dαx1 = x1(1− x1)− x1y1

β+x1
,

Dαy1 = −δy1 +
γx1y1

β+x1
− y1z1,

Dαz1 = −ηz1 + σy1z1,

(5)

and 
ẋ2 = x2(1− x2)− x2y2

β+x2
+ u1(t),

ẏ2 = −δy2 +
γx2y2

β+x2
− y2z2 + u2(t),

ż2 = −ηz2 + σy2z2 + u3(t),

(6)

where u1(t), u2(t), u3(t) are the active controls.
It is reported that the fractional-order lesser date moth system (5) with the frac-

tional order of α = 0.95 can behave chaotically [15]. The three-dimensional (3D) phase
portraits of the lesser date moth chaotic system with fractional order and integer order,
respectively, are shown in Figure 1 and Figure 2 .

Subtracting (6) from (5) gives the error system as below:

ė1 = e1 − x2
1 + x2

2 − ( y2

β+x2
)e1 +

x1y2

(β+x1)(β+x2)
e1 − x1

β+x1
e2 + x1 − x2

1

− x1y1

β+x1
− ẋ1 + u1(t),

ė2 = −δe2 + [ γy2

β+x2
− γx1y2

(β+x1)(β+x2)
]e1 − (z2 − x1

β+x1
)e2 − y1e3 − δy1

+γx1y1

β+x1
− y1z1 − ẏ1 + u2(t),

ė3 = −ηe3 + σ(y1e3 + z2e2)− ηz1 + σy1z1 − ż1 + u3(t),

(7)

where e1 = x2 − x1, e2 = y2 − y1, e3 = z2 − z1.
We introduce a quadratic Lyapunov function

V (e) =
1

2

3∑
i=1

e2i , (8)

and calculate the derivative of V (e) to obtain

V̇ (e) = e1[e1 − (x2 + x1)e1 − (
y2

β + x2
)e1 +

x1y2
(β + x2)(β + x1)

e1 −
x1

β + x1
e2 (9)

+ x1 − x2
1 −

x1y1
β + x1

− ẋ1] + e2[−δe2 + (
γy2

β + x2
e1 −

γx1y2
(β + x1)(β + x2)

)e1 (10)

− (z2e2 +
γx1

β + x1
)e2 − y1e3 − δy1 +

γx1y1
β + x1

− y1z1 − ẏ1]

+ e3[−ηe3 + σz2e2 + σy1e3 − ηz1 + σy1z1 − ż1] +
3∑

i=1

ui(t)ei(t). (11)
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Figure 1: The 3D phase portrait of the fractional-order lesser date moth system.
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Figure 2: The 3D phase portrait of the integer-order lesser date moth system.

From the above equation, we deduce that if the active control functions ui(t) are chosen
such that

u1(t) = −[2e1 − (x1 + x2)e1 − (
y2

β + x2
)e1 +

x1y2
(β + x1)(β + x2)

e1 −
x1

β + x1
e2

+ x1 − x2
1 −

x1y1
β + x1

− ẋ1]

u2(t) = −[(
γy2

β + x2
− γx1y2

(β + x1)(β + x2)
)e1 − (z2 −

γx1

β + x1
)e2 − y1e3 − δy1

+
γx1y1
β + x1

− y1z1 − ẏ1],

u3(t) = −[σz2e2 + σy1e3 − ηz1 + σy1z1 − ż1],
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equation (11) becomes

V̇ (e) = −(e21 + δe22 + ηe23) < 0. (12)

According to the inequality (8), the system (7) is asymptotically stable.

For the numerical simulations, we use some documented data for some parameters
such as γ = 3, δ = η = 1, σ = 3, β = 1.15, h = 0.85, α = 0.95, then we have
(x1, y1, z1) = (0.7, 0.3, 0.8) and (x2, y2, z2) = (1.2, 0.12, 2.0). The simulation results are
illustrated in Figure 3.
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Figure 3: Synchronization between response system (6). and drive system (5)

4 Conclusion

In this paper, we have studied the phenomenon of chaos synchronization between a
fractional-order lesser date moth chaotic system and an integer-order chaotic system. Our
results demonstrate that if one uses the technique of active control, chaos synchronization
can be achieved between a fractional-order chaotic system and an integer-order chaotic
system. The numerical results are in good accordance with the theoretical analyses.
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Abstract: This paper presents the control of chaotic dynamical systems by design-
ing linear and nonlinear feedback controllers, the stability of chaotic systems has
been studied by three methods, the Lyapunov function, Routh-Hurwitz criteria and
finally, a new method which is based on the Jacobian matrix conditions, we proved
that we can find stability by the third method and not by the Lyapunov function
and Routh-Hurwitz methods, we have also found a good interval or exact value for
the parametric control which stabilises the chaotic system at its equilibruim point.
Numerical simulations show the effectiveness or non-effectiveness of the results for
the three different methods, we apply the feedback control to the Sprott J system,a
novel chaotic system and the Genesio system.
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1 Introduction

The term “control of chaos” is used mostly to denote the area of studies lying at the
interface between the control theory and the theory of dynamic systems studying the
methods of control of deterministic systems with non-regular, chaotic behavior [16]. Sev-
eral techniques have been devised for chaos control, but most are the developments of
two basic approaches: the OGY (Ott, Grebogi and Yorke) method [17], and Pyragas con-
tinuous control [18]. Both methods require a previous determination of unstable periodic
orbits of the chaotic system before the controlling algorithm can be designed. Different
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control strategies for stabilizing chaos [11] have been proposed, such as an adaptive con-
trol [10, 14], time delay control [3], and fuzzy control [7]. Generally speaking, there are
two main approaches for controlling chaos: a feedback control [9, 12] and nonfeedback
control. The feedback control approach offers many advantages such as robustness and
computational complexity over the non-feedback control method.

We generally study stability for feedback control by two methods: the function of
Lyapunov [1] and the criterion of Routh-Huritz, but we fail in the cases when we cannot
assure the existence of stability for all the control laws. In this work, we show that we
can use the third method which is based on the Jacobian matrix conditions, and we can
also choose the function of feedback control.

2 Stability Condition

Suppose that B is an n× n matrix of real constants, its characteristic polynomial is

f(λ) = λn + aλn−1 + bλn−2 + cλn−3 + . . . , n = 1, 2, 3, 4.

The Routh-Hurwitz theorem [4–6] is as follows.

Theorem 2.1 All the roots of the caracteristic polynomial have negative real parts
precisely when the given conditions are satisfied:
λ2 + aλ+ b : a > 0, b > 0.
λ3 + aλ2 + bλ+ c : a > 0, c > 0, ab− c > 0.
λ4 + aλ3 + bλ2 + cλ+ d : a > 0, ab− c > 0, (ab− c)c− a2d > 0, d > 0.

Jacobian matrix conditions. We consider A is the Jacobian matrix at a fixed
point [19],

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (1)

and t = a12a23a31 + a13a21a32, where

A11 =

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ , A22 =

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ , A33 =

∣∣∣∣ a11 a12
a21 a22,

∣∣∣∣ .
Theorem 2.2 If t ≥ 0, all the roots of the characteristic polynomial of A have neg-

ative real parts when the given conditions are satisfied:
det(A) < 0, aii < 0 and Aii > 0, for i = 1, 2, 3.

3 Control of Sprott J System

Theorem 3.1 The controlled Sprott J system [15] is
·
x = 2z − u1,
·
y = −2y + z − u2,
·
z = −x+ y + y2 − u3,

(2)

where u1 = kx, u2 = 0, u3 = y2 + kz and k is the feedback coefficient, the system (2)
will gradually converge to the equilibrium point (0; 0; 0) when k > 1, 5 for the Lyapunov
method and when k > 0, 5 for the Jacobian matrix conditions.
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Proof. For non linear feedback system (2) consider a quadratic Lyapunov function
as v = 1

2 (x
2 + y2 + z2), then

·
v = −kx2 − kz2 − 2y2 + xz + 2yz

< −kx2 − kz2 − 2y2 +
1

2
(y2 + z2) + y2 + z2

< (−k +
1

2
)x2 − y2 + (−k +

3

2
)z2.

So, if k > 1, 5, we can obtain
·
v < 0.

For the Jacobian matrix conditions, the Jacobian matrix is as follows:

A =

 −k 0 2
0 −2 1
−1 1 −k

 ⇔ det(A) = −2k2 + k − 4,

A11 =

∣∣∣∣ −2 1
1 −k

∣∣∣∣ = 2k − 1,

A22 =

∣∣∣∣ −k 2
−1 −k

∣∣∣∣ = k2 + 2,

A33 =

∣∣∣∣ −k 0
0 −2

∣∣∣∣ = 2k.

According to the previous Theorem 2, we have t = 0, then det(A) < 0, aii < 0 and
Aii > 0 for i = 1, 2, 3 if k > 0.5.
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Figure 1: Control of the Sprott J system at the equilibrium point (0; 0; 0) when k = 0, 8.

Remark 3.1 For the Routh-Hurwitz method we have not solutions for the same
feedback control of the Sprott J system.
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4 Control of Novel Chaotic System

Theorem 4.1 The controlled novel chaotic system [13] is
·
x = 0.2x− yz − u1,
·
y = −0.1y + xz − u2,
·
z = −z + xy − u3,

(3)

where u1 = k(x−x∗), u2 = x(z−z∗)+k(y−y∗), u3 = k(z−z∗) and k is the feedback coef-
ficient, the system (3) will gradually converge to the equilibrium point E2(0.31; 0.44; 0.14)
when k > 0.2 for the Jacobian matrix conditions.

Proof. For non linear feedback system (3) consider a quadratic Lyapunov function
as v = 1

2 [(x− x∗)2 + (y − y∗)2 + (z − z∗)2), then

·
v = 0.2x2 − 0.2xx∗ + yzx∗ − k(x− x∗)2 − 0.1y(y − y∗) + xz∗(y − y∗)− k(y − y∗)2

−z(z − z∗)− (z − z∗)2

< (0.7− k)x2 + (0.4− k + x∗

2 )y2 + (−0.5− k + x∗

2 )z2 − kx∗ − ky∗ − kz∗

+ 1
2 (−0.2x∗ + 2kx∗ − z∗y∗)2 + 1

2 (−0.1y∗ + 2ky∗)2 + 1
2 (z

∗ + 2kz∗)2.

So, if E2(0.31; 0.44; 0.14), we can obtain
·
v < 0 if

0.7− k < 0
0, 555− k < 0
−0, 345− k < 0

1. 237 2k2 − 0.616 02k + 3. 681 3× 10−2 < 0

⇔


k > 0.7

k > 0, 555
k > −0, 345

k ∈
[
6. 944 5× 10−2, 0.428 47

]
.

So, we have no solution.
For the Jacobian matrix conditions, the Jacobian matrix is as follows:

A =

 0.2− k −0.14 0
0.14 −0.1− k 0
0.44 0.31 −k

 ⇔ det(A) = K((0.2− k)(0.1− k)− 0, 0434),

A11 =

∣∣∣∣ −0.1− k 0
0.31 −k

∣∣∣∣ = k(0.1 + k),

A22 =

∣∣∣∣ 0.2− k 0
0.44 −k

∣∣∣∣ = k(k − 0.2),

A33 =

∣∣∣∣ 0.2− k −0.14
0.14 −0.1− k

∣∣∣∣ = k2 − 0.1k − 0.000 4.

According to Theorem 2, we have t = 0, then det(A) < 0, aii < 0 and Aii > 0 for
i = 1, 2, 3 if k > 0.2.

For the Routh-Hurwitz theorem the characteristic polynomial is:

p(λ) = λ3 + (3k − 0.1)λ2 +
(
3k2 − 0.2k − 0.000 4

)
λ+ k3 − 0.1k2 − 0.000 4k,

then 
a = 3k − 0.1,

b = 3k2 − 0.2k − 0.000 4,
c = k3 − 0.1k2 − 0.000 4k,

ab− c = 8.0k3 − 0.8k2 + 0.019 2k + 0.000 04,

then a > 0, c > 0 and ab− c > 0 if k ∈]0.103 85,+∞[.
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Figure 2: Control of a novel chaotic system at the equilibrium point E2(0.31; 0.44; 0.14) and
k = 4.

5 Control of Modified Genesio System

Theorem 5.1 The controlled modified Genesio system [8] is
·
x = y − u1,
·
y = −0.5y + z − u2,
·
z = 3x2 − 6x− 2.85y − 0.5z − u3,

(4)

where u1 = k(x− x∗), u2 = ky + z, u3 = kz + 3(x− x∗) and k is the feedback coefficient,
the system (2) will gradually converge to the equilibrium point (x∗; 0; 0)when k ∈] −
0.25, 0[∪]0.5,+∞[ for the Routh-Hurwitz method and when k ∈]0.5,+∞[ for the Jacobian
matrix conditions.

Proof. For non linear feedback system (4) consider a quadratic Lyapunov function
as v = 1

2 [(x− x∗)2 + y2 + z2), then

·
v = −kx2+(0.5−k)y2+(−0.5−k)z2+xy+6(x∗−1)xz−2.85yz−yx∗−3x∗z+2kxx∗−kx∗

for x∗ = 2,
·

v < (k + 3.5)x2 + (
2.85

2
− k)y2 + (

1.85

2
− k)z2 − 2k − 4.

So, we can obtain
·
v < 0, if

k + 3.5 < 0
2.85
2 − k < 0

1.85
2 − k < 0

−2k − 4 < 0

⇔


k < −3.5
k > 2.85

2
k > 1.85

2 ,
k > −2
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so we have no solution.

For x∗ = 0,

·
v < (k + 3)x2 + (

4.85

2
− k)y2 + (

8.85

2
− k)z2,

then
·
v < 0  k + 3 ≤ 0

4.85
2 − k < 0

8.85
2 − k < 0

⇔

 k < −3
k < 4.85

2
k > 8.85

2

,

so we have no solution.

For the Routh-Hurwitz method, the Jacobian matrix is as follows:

J(0;0;0) =

 −K 1 0
0 −0.5−K 0
−6 −2.85 0.5−K

, so det J(0;0;0) = 0.25K −K3,

A11 =

∣∣∣∣ −0.5−K 0
−2.85 0.5−K

∣∣∣∣ = K2 − 0.25,

A22 =

∣∣∣∣ −k 0
−6 0.5− k

∣∣∣∣ = k2 − 0.5k,

A33 =

∣∣∣∣ −K 1
0 −0.5−K

∣∣∣∣ = K2 + 0.5K,

we have t = 0, then det(j) < 0, aii < 0 and Aii > 0for i = 1, 2, 3 if k ≥ 0.5.

For the second equilibrium point,

J(2;0;0) =

 −K 1 0
0 −0.5−K 0
6 −2.85 0.5−K,

 ,

so, det J(2;0;0), A11, A22 and A33 have the same value of the first point, then, if k > 0.5
the system (2) will gradually converge to the equilibrium point (2; 0; 0). For the Routh-
Hurwitz method the characteristic polynomial for E1(0; 0; 0) and E2(2; 0; 0) equilibrium
points is:
p(λ) = λ3 + 3Kλ2 + ((K − 0.5) (2K + 0.5) +K (K + 0.5))λ+K (K − 0.5) (K + 0.5) ,

a = 3K,

b = 3.0K2 − 0.25,

ab− c = K
(
8.0K2 − 0.5

)
,

then, if k ∈]− 0.25, 0[∪]0.5,+∞[, we have a > 0, b > 0 and ab− c > 0.

Remark 5.1 For k with a negative value of the Routh-Hurwitz method, we have
not a good result for the same feedback control of the Genesio system as we see in the
figures.
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Figure 3: Control of the Genesio system at the equilibrium point E1(0; 0; 0).
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Figure 4: Control of the Genesio system at the equilibrium point E2(2; 0; 0).
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Figure 5: Control of the Genesio system at the equilibrium point E1(0; 0; 0) when k = −0.1 .
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Figure 6: Control of the Genesio system at the equilibrium point E2(2; 0; 0) when k = −0.1 .
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6 Conclusion

This work presents linear and nonlinear feedback control for the Sprott J system, a novel
chaotic system and the Genesio system, we use for stabilizing the systems at equilibrium
points three different methods:the Lyapunov function, the Routh-Hurwitz criterion and
a new method based on the Jacobian matrix, which is a modification of Routh-Hurwitz
conditions. We proved that the stability by new method is satisfied where we do not
have it for the others, and we can get a a good interval or exact value for gain matrix
where the stability satisfied.
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1 Introduction

The increase in pollution of power supply networks is caused by the appearance of devices
based on power electronics components as a non-linear load. For this, the best solution
to improve the quality of electrical energy is the Active Power Filter [1–3]. In this
paper, the shunt active power filter is the main responsible for eliminating the harmonics
in the power supply lines caused by the non-linear load (Three-phase rectifier). For the
shunt Active Filter to work within the standards and give good results of Total Harmonic
Distortion of the supply currents, it suffices to choose its best control in terms of precision
and speed [4]. The authors of [5,6] propose a resonant control scheme in the SRF method
to reduce the calculation rate. This proposal is essential for non-linear loads such as
DC-DC converters where there are electric currents composed by the fundamentals and
harmonics of order 6h± 1, h = 1, 2, ... [7].

2 Principle of the Shunt Active Power Filtering System

The global diagram of the proposed shunt active power filtering system is shown in
Figure 1. It consists of a non-linear load (three-phase rectifier) which is the source of the
harmonics injected into the supply network which becomes polluted [8].

Figure 1: Structure of the SAPF controlled by the SRF method and powered by the PV system.

3 Synchronous Reference Frame (SRF) Method

Figure 2 shows the block diagram of the SRF method [1, 9]. This method is based on
the transformation of three-phase load currents (ila, ilb, ilc) into a two-phase stationary
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Figure 2: Block diagram of the SRF method.

frame (α− β) as shown in equation (1):

[
iLα

iLβ

]
=

√
2

3

[
1 −1/2 −1/2

0
√
3/2 −

√
3/2

] iLa

iLb

iLc

 . (1)

The two-phase currents ilα and ilβ of stationary (α − β) axes are transformed in id
and iq into two-phase synchronous frame (d-q axes) employing equation (2), where cosθ
and sinθ represent the synchronous unit vectors which can be generated using the Phase
Locked Loop system (PLL):[

id
iq

]
=

[
cosθ sinθ
−sinθ cosθ

] [
iLα

iLβ

]
. (2)

So, we see the alternative components idq f can be obtained by subtracting the idq dc

part from the total d-axis current (id and iq), which leaves behind the harmonic compo-
nent present in the load current. The inverse Park transformation allowed us to obtain
the reference currents of the two-phase stationary frame i∗f,αβ from the currents of the
two-phase stationary frame idq dc as shown in equation (3):[

i∗fα
i∗fβ

]
=

[
cosθ −sinθ
sinθ cosθ

] [
id dc

iq dc

]
. (3)

Finally, the currents of the two-phase stationary frame i∗f,αβ are transformed back
into a three-phase stationary frame and the reference filter currents i∗fa, i

∗
fb and i∗fc are

obtained according to equation (4): i∗fa
i∗fb
i∗fc

 =

√
2

3

 1 0

− 1
2

√
3
2

− 1
2 −

√
3
2

[
i∗fα
i∗fβ

]
. (4)

4 The Photovoltaic Solar Source Description and Modeling

In PV systems, they achieve great performance, fast responses and less fluctuations in
steady state for rapid irradiance and/or temperature variation improving the amount of
energy effectively extracted from the PV generator [10]. The datasheet of the monocrys-
talline photovoltaic module of BP SOLAR MSX120 type is given in Table 1.
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Technical characteristics Values
Maximum power : Pmax 120 W
Open-circuit voltage : VOC 42.1 V
Short-circuit current : ISC 3.87 A
Maximum power voltage : Vmax 33.7 V
Maximum power current : Imax 3.56 A
Number of cells 72
Température coefficient of ISC : ki (0.065± 0.015) %/◦C
Température coefficient of VOC : kv -(80± 10) mV/◦C

Table 1: Technical characteristics of the PV module of BP SOLAR MSX120 type.

The model used to simulate the performance of the PV module (group of cells in
series) is deduced from the model of the characteristic of a solar cell by the following
equation, with z photovoltaic cells connected in series [11,12]:

Ipv = Iph − I0

[
e

q(Vpv+z.Rs.Ipv)

z.a.k.Tck − 1

]
− Vpv + z.Rs.Ipv

z.Rsh
. (5)

Figure 3 shows the block diagram of the PV system containing the boost chopper
with its MPPT controller by the Perturb and Observe algorithm (PandO).

Figure 3: Block diagram of the PV system used.

5 Simulation Results and Discussion

Table 2 shows the parameters of the two-level shunt active filtering system controlled by
the Synchronous Reference Frame (SRF) method.

Figure 4 illustrates the two forms of line currents. The first, the load current ila
(before filtering up to 0.05 s), and the second, the source current isa (after filtering up
to 0.1 s). We observe in the first part that the non-linear load influences the supply line
and distorts the ila wave, which indicates that this line is full of harmonics. We also note
in the second part that the electric current began to take its sinusoidal curve isa after
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Parameters Values
Supply voltage vS(rms) and frequency f 220V, 50 Hz
Line’s inductance Ls and resistance rs 19.4 µH, 0.25mΩ
DC link’s inductance Ldc, and resistance rdc 15 mH, 4 Ω
Load inductance Ll and resistance rl 0.3 mH, 0.3 Ω
DC link voltage Vdc 620V
Coupling inductance Lfa and resistance rfa 1.22 mH, 0.2 Ω

Table 2: Parameters of the shunt active filtering system controlled by the Synchronous Refer-
ence Frame (SRF) method.

it had passed the transient phase in the time of 0.07 seconds. This indicates that the
SAPF has almost completely eliminated impurities.

The THD of the load current ila shown in Figure 5 is high (23.56 %) and that
would be rejected by the energy supplier. It is also affects the non-linear load (devices
malfunction). We also see that the harmonics of order (6h± 1) appeared because of the
use of the non-linear load (the rectifier).

Figure 4: Load and source currents of the SAPF system supplied by a PV source.

In Figure 6, we can clearly see the harmonics decrease by the THD ratio of the source
current isa equal to 1.16 %, which is very acceptable.

Figure 7 shows the three currents of the shunt active filtering system. Before the
insertion of the SAPF, the line current is deformed, it is the load current ila only. After
closing the breaker at the time of 0.05 s, the filter current intervenes and compensates
for the line current and becomes almost sinusoidal source current isa.

The two stages of the filter current ifa and its reference i∗fa are shown in Figure 8.
At the breaker closing time (at 0.05 s), the filter current follows the trajectory of its
reference produced by the SRF block, especially in the permanent state. This means
that the error is almost zero.

The DC link voltage Vdc which supplies the inverter is shown in Figure 9. Its value
increases from 351.2 V without the SAPF to 620 V with the SAPF. Note that the value
stabilizes just after the transient regime in each part.
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Figure 5: Total Harmonic Distortion of the load current before applying the SAPF.

Figure 6: Total Harmonic Distortion of the source current after applying the SAPF.

Figure 7: Different currents before and after the insertion of the SAPF.

6 Conclusion

In this paper, we studied the identification by the Synchronous Referential Frame method
(SRF) on the one hand and the optimization of the energy which feeds the inverter by
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Figure 8: Filter current and its reference before and after the insertion of the SAPF.

Figure 9: DC link voltage before and after the insertion of the SAPF.

the MPPT controller on the other hand, we can say that the quality of the compensation
of current harmonics depends on the performance of the chosen identification method.
The simulation results have shown the efficiency of the SAPF powered by a photovoltaic
generator and controlled by the SRF technique and offering good results from the THD
of the current on the source side, so the power factor is close to unity. This implies that
the conditions of the international recommendation IEEE519-92 are well verified.

References

[1] L. Xiangshun, H. Hongliang, L. Jianghua and L. Zhiwei. Modified Synchronous Reference
Frame Method for Active Power Filter Under Asymmetric and Distorted Supply Voltages
Condition. In: International Conference on Industrial Informatics-Computing Technology,
Intelligent Technology, Industrial Information Integration. Wuhan, China, 2016, 1–5.
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1 Introduction

Differential equations, including ordinary differential equations (ODEs) and partial dif-
ferential equations (PDEs), formalize the description of the dynamical nature of the world
around us. However, solving these equations is a challenge due to extreme computational
cost and because most PDEs do not have an analytical solution, their solution can be
approximated using classical numerical methods (which are based on a discretization of
the domain) [17], [18], [11]. These methods are particularly efficient for low-dimensional
problems on regular geometries; however, finding an appropriate discretization for a com-
plex geometry can be as difficult as solving the partial differential equation itself. This
problem is particularly severe if the space dimension is large as there is no straightfor-
ward way to discretize irregular domains in space dimensions larger than three. Solving
equations is a high-level human intelligence work and a crucial step towards general
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artificial intelligence (AI). Therefore, the obstacle of extreme computational cost in nu-
merical solution may be bypassed by using general AI techniques such as deep learning
and reinforcement learning, which were rapidly developed during the last decades. Data
used to train the network is randomly sampled within the entire solution domain in each
training batch, including initial conditions and boundary conditions.

Recently, deep learning has revolutionized many scientific fields [4], [7], [5]. Includ-
ing the solution of the differential equation PDEs, Raissi [14] propose a deep learning
approach for discovering nonlinear partial differential equations from scattered and po-
tentially noisy observations in space and time. Beck and et al. [6] propose a new method
for solving high-dimensional fully nonlinear second-order PDEs. The Deep Galerkin
Method uses a deep neural network instead of a linear combination of basis functions.
The deep neural network is trained to satisfy the differential operator, initial condition,
and boundary conditions using stochastic gradient descent at randomly sampled spatial
points. In the stochastic framework, Weinan et al. [23] propose a new algorithm for solv-
ing PDEs and backward stochastic differential equations in high dimension. There are
many other works on solving differential equations using the neural network [22], [9], [16].
The ODEs and PDEs are equations which impose relationships between the different par-
tial derivatives of a multivariable function. We ask the following question: if there exists
a neural network capable of simultaneously and uniformly approaching a function and its
partial derivatives. The answer to this question and the mathematical theory of physics-
informed neural networks is already treated by Allan pinkus in [20]. In this work, we
will solve the LL equation in high dimension, using the artificial neural network by two
different methods as will be described below. One of the major difficulties that exists for
solving this equation by the classical methods is the non-covex contraint, see [2, 3, 17].
We will see that this constraint is not a problem for the neural network approach because
we add this constraint in the loss function.

The rest of the paper is structured as follows. In the next section, we present the LL
equation arising in micromagnetism and which will be the subject of our investigation. In
Section 3, we explore the use of deep learning for solving the PDEs under consideration
in micromagnetism in high dimension. To this end, it is necessary to formulate the PDEs
as a learning problem. We put forth two distinct classes algorithms of deep learning, and
highlight their performance through the lens of different benchmark problems. In fact, we
use a deep neural network to approximate the PDE solution with this parameterization,
a loss function is set up, and then we train so that the Loss function becomes very small.
For the training data, the network uses points randomly sampled from the region where
the function is defined, and the optimization is performed using gradient descent. We
conclude the paper in Section 4 by giving some comments and a direction for future work.

2 The Model Statement

In this paper, we consider the simplified LL equation in which we neglect magnetostatic,
anistotropy, and a Zeeman field. To describe the model equations, we consider Ω ⊂ Rd,
d ∈ N∗, a bounded and regular open set. We assume that a ferromagnetic material
occupies the domain Ω. The magnetization field of the ferromagnetic material is denoted
by M(x, t), where x and t mean the position and time, respectively. Then, the LL model
in Q = Ω× (0, T ) is described by

∂tM(x, t) = −M(x, t)×△M(x, t)− µM(x, t)×M(x, t)×△M(x, t) in Q (1)
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subject to the initial conditions

M(x, 0) = M0(x), |M0(x)| = 1 in Ω (2)

and a periodic boundary condition. Here, × denotes the exterior product, M(x, t) =
(m1(x, t),m2(x, t),m3(x, t)) ∈ R3, and µ ⩾ 0 is the damping parameter. Next, we
consider the energy-structure

E(M(t)) = ∥∇M(t)∥L2(Ω).

By integration on the equation (1), we obtain the following energy equation:

E(M(t)) = E(M(0))− 2µ

∫ t

0

∫
Ω

∥ M(x, s)×△M(x, s) ∥2 dxds. (3)

For any t ⩾ 0, equation (3) implies that the problem has the energy dissipation property
for the case µ > 0 and the energy conservation property for the case µ = 0.

If we multiply the LL equation (1) by M(x, t), we obtain the important hypothesis of
micromagnetism is that the local magnetization vector must be constant in magnitude

|M(x, t)| = |M0(x)| = 1 for any t > 0. (4)

Ferromagnetic materials are very important in industry and modern technology and have
been used for fundamental studies and in many everyday applications such as sensors,
electric motors, generators, hard disk media, and most recently spintronic memories.

3 Deep Learning Algorithm

The goal is to approximate the solution M = (m1,m2,m3) for the equation (1) by a
deep neural network with parameter set {weights,biases}. For this, we will work on two
different cases. In the first case, suppose we know the solution at some random points in
Q. In the second case, assume we only know the solution at some random points in ∂Q
and some random points in Ω× {0}.

3.1 First case

We consider a neuron network composed by several layers such that the first layer
represents the inputs (the random points (ti, xi) of Q), while the last layer represents
the output solution Mp = (m1p,m2p,m3p) at the random points (ti, xi) linked by the
parameters weights and biases, the other layers are hidden layers.
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tn

xn

Input
layer

Hidden
layer 1

Hidden
layer ...

Hidden
layer n

m1p

m2p

m3p

Output
layer

The first step in approximating the solution M at all points of Q is to calculate the
objective function Loss.

Let N be the number of the random points (xi, ti) ∈ Q at which we know the exact
solution. We define

(fm1
, fm2

, fm3
) =

∂Mp(x, t)

∂t
+Mp(x, t)×△Mp(x, t)+µMp(x, t)×Mp(x, t)×△Mp(x, t),

MSEf = MSEfm1
+MSEfm2

+MSEfm3
,

MSEM = MSEm1
+MSEm2

+MSEm3

and

MSEContraint =
1

N

N∑
i=1

|(m1(x
i, ti))2 + (m2(x

i, ti))2 + (m3(x
i, ti))2 − 1|2

with

MSEfmr
=

1

N

N∑
i=1

|fmr (x
i, ti)|2,

MSEmr =
1

N

N∑
i=1

|mr(x
i, ti)−mrp(x

i, ti)|2.

for r = 1, 2, 3. The objective function Loss is given by

Loss = MSEf +MSEM +MSEContraint.

In the next step, we will deduce an iterative gradient algorithms designed to minimize
Loss. This minimization is achieved by an adequate weight configuration. For this, we
will use the limited-memory quasi-Newton code for unconstrained optimization L-BFGS,
developed at the Optimization Center, a joint venture of Argonne National Laboratory
and Northwestern University by Liu and Nocedal [13]. Numerical and comparative tests
using TensorFlow [1] illustrate the performance of our algorithm. More specifically, we
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1. Initialize the parameter set {weights,biases}.

2. Generate random samples (ti, xi) from Q.

3. Calculate the Loss functional for the current mini-batch si = {(ti, xi)}.

4. We choose {weights,biases} randomly such that Loss becomes minimal.

5. Repeat steps (3)-(4) until Loss is very small.

apply the following algorithm.

When the Loss function becomes small enough, we say that the neuron network has
become trained and in this case, we can determine the solution of the equation (1) at
any point of Q.

Numerical simulation. For our purpose we consider non-trivial exact solutions [10]
for LL equation (1) on Ω. Here, let α ∈ R, l ∈ Z and k = lπ. The exact solution in
one-dimensional space is given by

M(t, x) = (m1(t, x),m2(t, x),m3(t, x)),

where

m1(t, x) =
sinα cos(kx− ϕ(x, t, α, k, µ))

d(t, α, k, µ)
,

m2(t, x) =
sinα sin(kx− ϕ(x, t, α, k, µ)

d(t, α, k, µ)
,

m3(t, x) =
exp(k2µt) cosα

d(t, α, k, µ)
,

with

d(t, α, k, µ) =

√
sin2 α+ exp(2k2µt) cos2 α

and

ϕ(x, t, α, k, µ) =
1

µ
log

(d(t, α, k, µ) + exp(k2µt) cosα

1 + cosα

)
.

The exact solution in two-dimensional space is given by

M(t, x) = (m1(t, x, y),m2(t, x, y),m3(t, x, y)),

where

m1(t, x, y) =
sinα cos(k(x+ y)− ϕ(x, t, α, k, µ)

d(t, α, k, µ)
,

m2(t, x, y) =
sinα sin(k(x+ y)− ϕ(x, t, α, k, µ)

d(t, α, k, µ)
,

m3(t, x, y) =
exp(2k2µt) cosα

d(t, α, k, µ)
,
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Figure 1: A comparison between the exact solution m1 and the calculated solution m1p, for
different number of iterations and d = 1.

with

d(t, α, k, µ) =

√
sin2 α+ exp(4k2µt) cos2 α

and

ϕ(x, t, α, k, µ) =
1

µ
log

(d(t, α, k, µ) + exp(2k2µt) cosα

1 + cosα

)
.

We trained the neural network on 2000 random points; which took approximately 5000
and 25000 iterations for the one-dimensional space and two-dimensional space, respec-
tively. After the training we gave to neural network 100×100 for d = 1, and 100×100×100
for d = 2 and after that we compared the outputs m1p, m2p and m3p with the exact
solutions m1, m2 and m3. We observed that they were almost equal, indicating that
the neural network has become well trained to find the value of m1, m2 and m3 at each
point of the domain Q. The following figures illustrate everything we have said. Figures
1, 2 and 3 propose a comparison between the exact solutions m1, m2 and m3 and the
calculated solutions m1p, m2p and m3p, respectively, for different number of iterations
and d = 1. Figure 4 proposes a comparison between the exact solution m1 and the
calculated solution m1p, for different number of iterations, t = 0.5 and d = 1. Figures 5
and 6 propose a comparison between the exact solutions m1 and m2 and the calculated
solutions m1p and m2p, respectively, for different number of iterations, t = 0.5 and d = 2.
We use the parameters µ = 0.01, α = π/3 and k = 4. This data-set is then used to train
a 5-layer deep neural network with 200 neurons per a hidden layer by minimizing the
mean square error loss of using the L-BFGS optimizer.
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Figure 2: A comparison between the exact solution m2 and the calculated solution m2p, for
different number of iterations and d = 1.
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Figure 3: A comparison between the exact solution m3 and the calculated solution m3p, for
different number of iterations and d = 1.
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Figure 4: A comparison between the exact solution represented by the red color and the
approximate solution represented by the blue color for t = 0.50, d = 1 and for different iterations.
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Figure 5: A comparison between the exact solution m1 and the approximate solution m1p for
t = 0.50, d = 2 and for different iterations.
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Figure 6: A comparison between the exact solution m2 and the approximate solution m2p for
t = 0.50, d = 2 and for different iterations.

3.2 Second case

This situation differs from the first case in the input layer, but it is very similar in
terms of the method and steps used in determining the solution of the equation at all
points. Here we will consider a neuron network composed by several layers such that
the first layer represents the inputs (the random points sn = {(xn, tn), (δn, vn), wn} on
Q, ∂Q and Ω), it is composed of five neurons, the first for xn, the second for tn, the
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third for δn, the fourth for vn and the last for wn, the last layer represents the output
solution Mp = (m1p,m2p,m3p) at the random points {(tn, xn), δn, vn, (wn, 0)} linked by
the weights and biases parameters, while the other layers are hidden layers.

1

2

3

4

5

Input
layer

Hidden
layer 1

Hidden
layer ...

Hidden
layer n

m1p

m2p

m3p

Output
layer

The objective function Loss in this case is given by

Loss = MSEf +MSEinit +MSEbound +MSEContraint

with
MSEinit = MSEm1init +MSEm2init +MSEm3init ,

and
MSEbound = MSEm1bound

+MSEm2bound
+MSEm3bound

,

with

MSEmrinit
=

1

Ninit

Ninit∑
i=1

|mr(δ
i, vi)−mrp(δ

i, vi)|2,

MSEmrbound
=

1

Nbound

Nbound∑
i=1

|mr(w
i, 0)−mrp((w

i, 0)|2,

for r = 1, 2, 3, the numbers Ninit and Nbound are, respectively, the numbers of the random
points (δi, vi) ∈ ∂Q and (wi, 0) ∈ Ω×{0} for which we know the solution of the equation
(1). In the next step, we will deduce an iterative gradient algorithm designed to minimize
Loss. We apply the following algorithm.
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1. Initialize the parameter set {weights,biases}.

2. Generate random samples from the domain’s and time spatial boundaries, i.e.,

• Generate (tn, xn) from Q.

• Generate (δn, vn) from ∂Q.

• Generate wn from Ω.

3. Calculate the Loss functional for the current mini-batch

sn = {(xn, tn), (δn, vn), wn}.

4. We choose {weights,biases} randomly such that Loss becomes minimal.

5. Repeat steps (3)-(4) until Loss is very small

Numerical simulation. At this stage, we solve the equation in the two -dimensional
space only, for the numerical test, we apply an initial condition

M0(x, y) =


sin(α) cos(k(x+ y)),

sin(α) sin(k(x+ y)),

cos(α).

(5)

We trained the neural network on N = 2000 random points in Q, Ninit = 100 in Ω×{0}
and Nbound = 200 in ∂Q. We use the parameters µ = 3, α = π/3 and k = 4. This
data-set is then used to train a 5-layer deep neural network with 50 neurons per a
hidden layer. Figure 7 represent Magnetization component averages < m1 >, < m2 >,
< m3 >, < norm > and the Energy versus time. Through this figure, we find that
the solution obtained realizes all the properties of the equation, the decreasing energy,
the conservation of the norm. Thus, we conclude that this method is effective in solving
differential equation (1).
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Figure 7: Magnetization component averages < m1 >,< m2 >,< m3 >,< norm > and
Energy versus time for µ = 3, α = π/3 and k = 4.

4 Concluding Remarks

In this work, we proposed two essentially different approaches, but they are similar
in steps for solving differential equation (1). The first method is based on knowledge
of equation solutions at some random points of the field Q. The second depends on
the knowledge of the solution at some random points of the fields Ω × {0} and ∂Q.
We obtain good results because we can find a solution for the equation using the two
methods at each point of Q. Through these results, we conclude the following. The first
method is ineffective because we often do not know the solution at some random points
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of Q, but they are good at identifying some variables in the differential equation, for
example, looking for the correct PDEs, see [15], as we think, it will give good results
in an inverse source problem. For the PDEs to be well posed, it is necessary to give
the initial conditions and the conditions at the edge, which implies that it is possible
to find the solutions of PDEs at random points of Ω × {0} and ∂Q, this makes the
second method more effective and more realistic in solving differential equations. In the
next works, we will apply a deep learning approach to solve the model of magnetization
dynamics with inertial effects [8] and compare the results we will get with the results
obtained in [17]. Also, we will try to propose a new algorithm for solving PDE (1) in high
dimension, by making an analogy between the backward stochastic differential equations
and reinforcement learning with the gradient of the solution playing the role of the policy
function.
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Abstract: This paper deals with certain new fractional-order three-dimensional
chaotic systems. These autonomous systems are the fractional version of dynami-
cal systems introduced recently by Faghani et al. [6]. The feature property of these
systems is the presence of fractional order derivatives as well as equality of their
eigenvalues. Nu- merical investigations on the dynamics of these systems have been
carried out using a systematic computer search. Some simple fractional chaotic sys-
tems with identi- cal eigenvalues were obtained, and their dynamical properties have
been analyzed by means of the Lyapunov exponents.
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1 Introduction

Chaos systems have been receiving much attention from scientific community in the
study of dynamical systems due to their applications in ecology, engineering and secure
communications [3, 20]. Since the publication of Lorenz’s seminal paper in 1963, there
is no theory that allows us to predict chaotic solutions.The relationship between chaotic
systems and their strange attractors is still unknown. Thanks to numerical simulations,
we have been studying chaos, it was the essential tool by which many works have been
done to study chaos in dynamical systems. Chaotic systems can be categorized as systems
with self-excited attractors and systems with hidden attractors. The basin of attraction
for the chaotic system with self-excited attractor intersects with an unstable equilibrium,
while the chaotic system with hidden attractors has a basin of attraction which does not
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intersect with the neighborhoods of the equilibrium. It is well known that if real parts
of all eigenvalues at the equilibrium point are negative, then there exist stable manifolds
in a small neighborhood of an equilibrium point, whereas the existence of a positive real
part in at least one eigenvalue of them shows the unstable manifolds.

Recently, fractional calculus, which is a mathematical topic whose history goes back
more than 300 years, has received a considerable attention. It has been found that
many systems can be described by fractional differential equations. For instance, frac-
tional derivatives have been widely used in viscoelasticity, anomalous diffusion phenom-
ena, electromagnetism, digital cryptography and many other phenomena [13, 15]. Some
fractional-order dynamical systems have been investigated since the seminal paper of
Grigorenko and Grigorenko [7], which demonstrated the existence of chaotic solutions in
the fractional-order Lorenz dynamical system, see [2, 4, 5, 8, 9, 11,18,19].

In 2011, Sprott presented criteria for proposing new systems with strange attractors.
To date, many new chaotic systems which satisfy Sprott’s criteria are proposed, among
which we cite chaotic systems without any equilibria, with a line, curve, and surface
equilibria [1, 10,12,14].

Recently, Faghani et al. [6] defined a new category of chaotic systems with identical
eigenvalues, proposed three general structures with special conditions and described their
chaotic attractors.

In this paper, we propose the fractional version of systems studied by Faghani et
al. [6]. These systems have the features of the presence of fractional derivatives and the
equality of eigenvalues. The paper is organized as follows. In Section 2, the fractional
systems are defined with their conditions. From defined systems, 14 simple chaotic flows
are proposed according to the initial conditions, parameters, and fractional orders. The
paper is concluded in Section 3.

2 Proposed Fractional Systems

First of all, we define the Caputo fractional derivative. The reader can refer to [13], for
more details.

Definition 2.1 The αth-order Caputo fractional derivative of function f (t) with
respect to t and the terminal 0 is given by

0D
α
t f =

dαf (t)

dtα
=

1

Γ (m− α)

t∫
0

f (m) (τ)

(t− τ)
α+1−m dτ,

where m is an integer such that m − 1 ≤ α < m, and Γ is the well-known Gamma
function.

We consider now the fractional version of systems proposed in [6] with the Caputo
fractional derivatives as follows:

Dα1x = y, (1)

Dα2y = z,

Dα3z = a1x+ a2y + a3z + a4x
2 + a5y

2 + a6z
2 + a7xy + a8xz + a9yz + a10,

Dα1x = −z, (2)

Dα2y = b1x+ b2z,

Dα3z = a1x+ a2y + a3z + a4x
2 + a5y

2 + a6z
2 + a7xy + a8xz + a9yz + a10,
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Dα1x = z, (3)

Dα2y = z − y

Dα3z = a1x+ a2y + a3z + a4x
2 + a5y

2 + a6z
2 + a7xy + a8xz + a9yz + a10,

where Dαi denotes the derivatives of order αi (0 < αi < 1, i = 1, 3 ) in the sense of
Caputo, ai, i = 1, 10, are the real parameters of the systems, and (b1, b2) = (−1, 1) or
(b1, b2) = (1,−1).

Our next step is to make the three eigenvalues equal, we do this by putting some
suitable conditions on systems parameters. The equilibrium points of the above systems
are calculated as follows:

Dα1x = 0,
Dα2y = 0,
Dα2z = 0.
For the system (1) and system (3), the equilibrium point is

(x∗, y∗, z∗) = (m, 0, 0) ,m =
−a1 ±

√
a21 − 4a4 a10
2a4

,

if a4 ̸= 0 and a21 − 4a4 a10 ≥ 0.
For the system (2), the equilibrium point is

(x∗, y∗, z∗) =

(
0,

−a2 ±
√
a22 − 4a5a10
2a5

, 0

)
,

for a5 ̸= 0 and a22 − 4a5a10 ≥ 0.
The eigenvalues of the equilibrium points for the systems are determined by setting

the determinant of the matrix λI − J to zero, where J is the Jacobien matrix defined as

J =

 δxf1 (q) δyf1 (q) δzf1 (q)
δxf2 (q) δyf2 (q) δzf2 (q)
δxf3 (q) δyf3 (q) δzf3 (q)

 ,

where Dαixi = fi (x, y, z) , 1 ≤ i ≤ 3, (x1, x2, x3) = (x, y, z) and q = (x∗, y∗, z∗) is the
equilibrium point.

We obtain the characteristic equation for each equilibrium point. For example, the

characteristic equation for the equilibrium point

(
−a1 +

√
a21 − 4a4 a10
2a4

, 0, 0

)
is

λ3 − (a3 + a8m)λ2 − (a2 + a7m)λ− (a1 + 2a4m) = 0,

where

m =
−a1 +

√
a21 − 4a4 a10
2a4

.

Eigenvalues are solutions of the characteristic equation, if they are equal, we have iden-
tical eigenvalues. Under the following conditions, the eigenvalues are equal

a2 =
−1

3

(
a3 + a8

−a1 +
√
a21 − 4a4 a10
2a4

)2

−a7
−a1 +

√
a21 − 4a4 a10
2a4

, (4)
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and

a3 = 3

(√
a21 − 4a4a10

) 1
3

−a8
−a1 +

√
a21 − 4a4a10
2a4

. (5)

In a similar manner, we found conditions for the second equilibrium point of Eq. (1)
and for the equilibrium points in the other structures in Eqs. (2) and (3).

Under these conditions, we search for systems according to the fractional-order, pa-
rameters, and initial conditions which show chaotic dynamics.

So, using a systematic computer search, fourteen systems with chaotic dynamics were
found by combining the parameters a1 through a10, which satisfy the constraints in Eq.
(4)-(5) (and similar constraints for systems (2) and (3) ) on the fractional- orders and
initial conditions. The found simple chaotic systems are listed in Table 1 as FE1−FE14.
The equilibriums of all these systems are at the origin. The systems FE1 − FE9 have
three zero eigenvalues, then the stability of the equilibrium point is not determined, while
the systems FE10−FE14 have positive identical eigenvalues, thus the equilibrium point is
unstable. The Lyapunov exponents of the systems are calculated by Wolf’s method [17].
The chaotic solutions are determined by the positivity of at least one Lyapunov exponent,
which is the case in all systems FE1−FE14. Also, the Lyapunov exponents with respect
to time of some proposed systems are presented in Fig.1. Attractors projected onto the
xy−plane for all proposed systems are shown in Fig. 2.
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0
)

FE1 Dα1x = y 0.99 a = 0.78 0 0 0.0103 −48.73
Dα1y = z 0 0 0.0007 −30.86
Dα1z = x2−y2+axz 0 0 −16.6512 63.52

FE2 Dα1x = y 0.98 a = 0.78 0 0 0.0085 −48.73
Dα1y = x− z 0 0 −0.0011 −30.86
Dα1z = −x2+ay2+byz 0 0 −16.9313 63.52

FE3 Dα1x = −z 0.95 a = 6 0 0 0.0207 −2.64
Dα1y = x− z b = 9 0 0 −0.0006 0.91
Dα1z = x2−y2+axz 0 0 −0.8690 −4.14

FE4 Dα1x = −z 0.9 a = 6 0 0 0.0212 −2.64
Dα1y = x− z b = 9 0 0 −0.0003 0.91
Dα1z = x2−y2+axz 0 0 −1.0683 −4.14

FE5 Dα1x = z 0.9 a = 0.3 0 0 0.1450 −39.56
Dα1y = z −y b = −1.5 0 0 0.0002 −2.85
Dα1z = −y + z + ax2 c = 0.6 0 0 −37.5602 −41.22
+bxy + cxz

FE6 Dα1x = z 0.8 a = 0.3 0 0 0.1914 −39.56
Dα1y = z −y b = −1.5 0 0 −0.0008 −2.85
Dα1z = −y + z + ax2 c = 0.6 0 0 −44.2027 −41.22
+bxy + cxz
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FE7 Dα1x = z 0.9 a = −0.4364 0 0 0.1812 −3.87
Dα1y = z −y b = 2 0 0 0.0010 −0.7
Dα1z = −y + z + ax2 c = −0.7229 0 0 −36.7658 2.31

+bxy + cxz
FE8 Dα1x = z 0.85 a = −0.4364 0 0 0.1743 −3.87

Dα1y = z −y b = 2 0 0 0.0009 −0.7
Dα1z = −y + z + ax2 c = −0.7229 0 0 −41.3095 2.31

+bxy + cxz
FE9 Dα1x = −z 0.99 a = 0.128 0 0.2 0.0323 −21.36

Dα1y = −x+ z b = 0.008 0 0.2 0.0001 −18.43
Dα1z = a x+ b y + cz c = 0.6 0 0.2 −1.7123 −11.03
+d x2 + e y2 + fzy d = −0.16

e = 0.01
f = 0.1

FE10 Dα1x = −z 0.88 a = 0.128 0 0.2 0.0538 −21.36
Dα1y = −x+ z b = 0.008 0 0.2 0.0002 −18.43
Dα1z = a x+ b y + cz c = 0.6 0 0.2 −2.5653 −11.03
+d x2 + e y2 + fzy d = −0.16

e = 0.01
f = 0.1

FE11 Dα1x = −z 0.99 a = 0.544 0 0.4 0.1754 −21.36
Dα1y = −x+ z b = 0.64 0 0.4 −0.1676 −18.43
Dα1z = a x+ b y + cz c = 1.2 0 0.4 −1.0270 −11.03
+d x2 + e y2 + f zy d = −0.16

e = 0.01
f = 0.1

FE12 Dα1x = −z 0.89 a = 0.544 0 0.4 0.2714 −21.36
Dα1y = −x+ z b = 0.64 0 0.4 −0.2575 −18.43
Dα1z = a x+ b y + cz c = 1.2 0 0.4 −1.5700 −11.03
+d x2 + e y2 + f zy d = −0.16

e = 0.01
f = 0.1

FE13 Dα1x = −z 0.97 a = 0.875 0 0.5 0.17.86 −21.36
Dα1y = −x+ z b = 0.125 0 0.5 −0.4383 −18.43
Dα1z = a x+ b y + cz c = 1.5 0 0.5 −1.0196 −11.03
+d x2 + e y2 + f zy d = −0.16

e = 0.01
f = 0.1

FE14 Dα1x = −z 0.99 a = 0.875 0 0.5 0.1636 −21.36
Dα1y = −x+ z b = 0.125 0 0.5 −0.4013 −18.43
Dα1z = a x+ b y + cz c = 1.5 0 0.5 −0.9368 −11.03
+d x2 + e y2 + f zy d = −0.16

e = 0.01
f = 0.1

Table 1: Fourteen fractional-order three-dimensional chaotic systems with identical
eigenvalues.
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FE13

FE11

FE10

FE3

Figure 1: Lyapunov Exponents of some systems in Table 1 with respect to time.
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FE1 FE2

FE3 FE4

FE5 FE6

FE7 FE8

Figure 2: Attractors for 14 fractional-order systems in the xy-plane with initial conditions
given in Table 1.
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FE9 FE10

FE11 FE12

FE13 FE14

Figure 3: Attractors for 14 fractional-order systems in the xy-plane with initial conditions
given in Table 1 (continued).

3 Conclusion

This paper introduces new fractional-order three-dimensional chaotic systems which have
identical eigenvalues as a particular property. Using an exhaustive computer search, we
proposed 14 fractional-order systems which show chaotic dynamics, where the origin was
the equilibrium of these systems. Eight of the proposed systems have zero identical
eigenvalues, while six of the other systems have three positive and equal eigenvalues.
For all fractional-order chaotic systems proposed, the attractors were projected onto the
xy-plane, and the Lyapunov exponents were calculated.
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Abstract: Corona Virus Disease (Covid-19) has become the focus of world attention
because it attacked many people in the world and many people died. The effect of
Covid-19 is not only on the health of people, it is negatively affecting all aspects of
life including the social area, economy, sport, and tourism. Hotels and restaurants
that are an important part of the tourism industry have got a big negative impact
from Covid-19. Since this disease has spreaded in many countries including Indonesia,
the Indonesian goverment adopted regulations to close the hotels and restaurants to
prevent the spread of Covid-19. This research comes from the need to find out the
estimated number of hotels and restaurants to be closed due to Covid-19. The estima-
tion method will involve the Backpropagation Neural Network. The backpropagation
Neural Network can make estimation of the number of closed hotels and restaurants
approaching the target. Simulations are applied by splitting the dataset into training
data (80%) and testing data (20%). From Backpropagation Neural Network simula-
tions, the Backpropagation Neural Network can make estimation of the number of
closed hotels and restaurants in training data with optimal RMSE being 9.2422 and
testing data with optimal RMSE being 8.9419.
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1 Introduction

In early 2020, Corona Virus Disease (Covid-19) has become the focus of world attention
because it attacked many people in the world and many people died. This disease was
firstly found in China and then it spreaded worldwide, including Indonesia. Covid-19 is
the disease caused by the Corona virus resembling SARS so that it is named SARS-CoV2.
The symptoms of this disease are fever, tiredness, dry cough, sore throat, difficulty in
breathing or shortness of breath.

Because this disease has spreaded in many countries including Indonesia, the Indone-
sia goverments adopted regulations to close the hotels and restaurants to prevent the
spread of Covid-19. The tourism industry is the industry that has multiplier effect in
a country or region. This industry is strongly affected by Covid-19 and it will need
a long time to recover. Hotels are one of the biggest players in the tourism industry.
Many new hotels are built in tourism cities and metropolitan cities such as Jakarta and
Surabaya [1,2]. Jakarta is the city in Indonesia where the first victim came and the city
with the most Covid-19 positive victims. Because of that, the estimation of the number
of closed hotels and restaurants in Jakarta is important to be done. In this research, the
estimation method will involve the Backpropagation Neural Network [3].

A neural network (NN) was introduced by McCulloch and Pitts in 1943. The NN work
resembles that of the human neuron system. The type of a Neural Network used in the
estimation process is Backpropagation. Backpropagation consists of forward propagation,
backward propagation, and updating weight matrices. In forward propagation, some
computations using an activation function start from the input, hidden layer, and output,
respectively. In backward propagation, error factor computations are applied from the
output, hidden layer, and input, respectively. After that, we update weight matrices [4,5].

In the previous research, forecasting methods for estimation have been applied by
exponential smooting [1], Kalman Filter on mobile robot trajectory [6], Kalman Filter
Estimation [7], Autonomous Underwater Vehicle Optimization [8–10] steam temperature
and water level estimation [11], stock price estimation [12,13], crude oil and profitability
estimation [14–16], Blood Stock Estimation [17, 18], arm robot motion estimation [19],
and fuzzy logic by Adaptive Neuro Fuzzy Inference System [20]. Backpropagation has
been applied in weather prediction [2,21] with various types of data [22]. This algorithm
is applied in training data and testing data in a certain proportion. In this research, the
Backpropagation Neural Network will be used for estimating the number of closed hotels
and restaurants in Jakarta. In making estimation of the number of closed hotels and
restaurants using the Backpropagation Neural Network, some inputs are required such
as the number of positive victims in Jakarta, the number of recovered victims in Jakarta,
the number of dead victims in Jakarta, the number of positive victims in Indonesia, the
number of recovered victims in Indonesia, the number of dead victims in Indonesia, the
number of positive victims in the world, the number of recovered victims in the world,
and the number of dead victims in the world.

From Backpropagation Neural Network simulations, the Backpropagation Neural Net-
work can make estimation of the number of closed hotels and restaurants in training data
with optimal RMSE being 9.2422 and testing data with optimal RMSE being 8.9419. We
also repeat these simulations five times.
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2 Literature Review

A Neural Network was introduced by Mc Culloch and Pitts in 1943. The behavior of a
Neural Network is as follows [23]: (a) the signal is traveling between neurons through a
connector; (b) connectors have weight which will either increase or decrease the signal;
(c) To determine the output, a neuron uses an activation function applied in the sum of
inputs received.

In a Neural Network, an activation function is used for determining the output of a
neuron. The argument of an activation function is a linear combination of the input and
weight as in equation (1):

net =
∑
i

xiwi, f(net) = f

(∑
i

xiwi

)
. (1)

The activation function used is continuous, differentiable, and not descending function
[4]. In this research, the activation function applied is binary sigmoid with the range (0-1)
as in equation (2):

f(net) =
1

1 + e−net
,

f ′(net) = f(net)(1− f(net)). (2)

Backpropagation is a type of the Neural Network used in the estimation process.
Backpropagation consists of some inputs x1, x2, . . . , xn, some hidden layer z1, z2, . . . , zp,
and some output y1, y2, . . . , ym. In the input and hidden layer, there is bias with value
1. Weight vij connects input xi to hidden layer zj . Weight wjk connects hidden layer zj
to output yk. In Backpropagation, there are three phases of calculation such as forward
propagation, backward propagation, and update weight matrices [4]. A backpropagation
model can be seen in Figure 1.

Figure 1: Backpropagation Neural Network Model.
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The algorithm of a Backpropagation Neural Network is as follows:
Initialization weight matrices V and W with random number between −0.5 to 0.5.

e = 1
while(e ≤ max epoch&&MSE ≥ min MSE)
for(d = 1 : datasize)

1. Each input receives a signal which continues to each hidden layer through forward
propagation in equation (3) until equation (6) and backward propagation in equa-
tion (7) until equation (11).
Forward Propagation

2. All outputs zj , j = 1, 2, . . . , p are calculated in the hidden layer in equation (4).

z netj = voj +

n∑
i=1

xivij , (3)

zj = f(z netj) =
1

1 + e−z netj
. (4)

3. Calculate all outputs yk, k = 1, 2, . . . ,m, in equation (6).

y netk = wok +

p∑
j=1

zjwjk, (5)

yk = f(y netk) =
1

1 + e−y netk
. (6)

Backward Propagation

4. Calculate the factor δ output based on the error in each output yk, k = 1, 2, . . . ,m,

δk = (tk − yk)f
′(y netk). (7)

5. Calculate the weight update

∆wjk = αδkzj , k = 1, 2, . . . ,m, j = 0, 1, 2, . . . , p. (8)

6. Calculate the factor δ hidden layer in equation (10) based on the error in each
hidden layer zj , j = 1, 2, . . . , p,

δ netj =

m∑
k=1

δkwjk, (9)

δj = δ netjf
′(z netj). (10)

7. Calculate the weight update

∆vij = αδjxi, j = 1, 2, . . . , p, i = 0, 1, 2, . . . , n. (11)

Update Weight Matrices
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8. Update the new weight matrices

wjk = wjk +∆wjk, (12)

vij = vij +∆vij . (13)

end
Compute the root of mean square error (RMSE)

RMSE =

√√√√ 1

datasize

datasize∑
d=1

1

m

m∑
k=1

(Tdk − Ydk)
2
, (14)

where Tdk is the target value and Ydk is outputs.
e = e+ 1
end

3 Result and Discussion

Datasets are taken from the report of closed hotels and restaurants from March 1, 2020
until April 30, 2020 (61 days), issued by the Indonesian Hotels and Restaurants As-
sociation, with the observed area of Jakarta as the first city where Covid-19 was first
discovered. These data will be estimated by the Backpropagation Neural Network.

In addition, there are the data of the number of Covid-19 victims (positive, recov-
ered, dead) in Jakarta from March 1, 2020 until April 30, 2020, obtained from the
official Covid-19 Jakarta website, the data of the number of Covid-19 victims (positive,
recovered, dead) in Indonesia from March 1, 2020 until April 30, 2020, obtained from
the Ministry of Health, Republic of Indonesia, and the data of the number of Covid-19
victims (positive, recovered, dead) in world from March 1, 2020 until April 30, 2020,
obtained from the Worldometer website. They will be used as inputs in the Backpropa-
gation Neural Network, where the output is the number of closed hotels and restaurants
in Jakarta from March 1, 2020 until April 30, 2020, as estimations.

3.1 Data Used

The graph of the number of closed hotels and restaurant from March 1, 2020 until April
30, 2020, in Jakarta can be seen in Figure 2.

For estimating the number of closed hotels and restaurants by the Backpropagation
Neural Network, we need some inputs such as the number of positive victims in Jakarta,
the number of recovered victims in Jakarta, the number of dead victims in Jakarta, the
number of positive victims in Indonesia, the number of recovered victims in Indonesia,
the number of dead victims in Indonesia, the number of positive victims in the world, the
number of recovered victims in the world, and the number of dead victims in the world.

The graph of the number of Covid-19 victims in Jakarta from March 1, 2020 until
April 30, 2020, can be seen in Figure 3. There are three parts of the graph with different
colors that are the number of positive victims, the number of recovered victims, and the
number of dead victims.

The graph of the number of Covid-19 victims in Indonesia from March 1, 2020 until
April 30, 2020, can be seen in Figure 4. There are three parts of the graph with different
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Figure 2: The number of closed hotels and restaurants.

Figure 3: The number of Covid-19 victims in Jakarta.

colors that are the number of positive victims, the number of recovered victims, and the
number of dead victims.

The graph of the number of Covid-19 victims in the world from March 1, 2020 until
April 30, 2020, can be seen in Figure 5. There are three parts of the graph with different
colors that are the number of positive victims, the number of recovered victims, and the
number of dead victims.
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Figure 4: The number of Covid-19 victims in Indonesia.

Figure 5: The number of Covid-19 victims in the world.

3.2 Estimation Results

Before applying the estimation process, we need to split the data into training data and
testing data. The data partition used is as follows: for training data, the data used
have the proportion of 80% of all data, while for testing data, the data used have the
remaining proportion (20% of all data). Figure 6 shows the data partition, where the
red plus marks represent the distribution of testing data, and the blue ones represent
training data.

The parameters used in the Backpropagation Neural Network simulation are:
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Figure 6: Data partition into training data (blue) and testing data (red).

Learning rate : 0.2.
The number of hidden layer : 2.
Maximum epoch : 1000.
The model of backpropagation : 9 (input) – 10 (hidden layer 1) – 10 (hidden layer 2) –
1 (output).

The simulation of the Backpropagation Neural Network can be seen in Figures 7, 8
and 9 below. First, initialize the weight matrices and apply to training data using the
Backpropagation Neural Network until the maximum epoch, the convergence process
can be seen in Figure 7. It can be seen in the early epoch, the RMSE resulted is quite
large. In the optimization, the RMSE is decreased and converged. Figure 8 shows the
comparison and error between the target and output. From the training process until
1000 epochs, optimal weight matrices are obtained. Then, the optimal weight matrices
are applied to testing data. Figure 9 shows simulation for testing data.

Figure 7: Convergence Process of the Backpropagation Neural Network.

From the simulation, we obtain the estimation with the root of mean square error
(RMSE) in equation (14) as follows:
Training data : 9.2422.
Testing data : 8.9419.
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Figure 8: Estimation result for training data.

Figure 9: Estimation result for testing data.

We repeat the simulations five times using different initial weights and the results are
given in Table 1.

Number Max epoch RMSE for training data RMSE for testing data
1 1000 9.5604 9.3628
2 1000 9.0513 8.7649
3 1000 9.0156 8.8002
4 1000 9.1428 8.9463
5 1000 8.9626 8.6265

Table 1: The root of mean square error (RMSE) in the Backpropagation Neural Network with
five times trials.

4 Conclusion

The corona Virus (Covid-19) has been negatively affecting the hotels and restaurants
businesses. Hotels and restaurants have become a primary need of the business people,
especially in a big city like Jakarta. The closed hotels and restaurants due to Covid-
19 are also affecting the tax income of the government as well as the income of the
suppliers. In making estimation of the number of closed hotels and restaurants using
the Backpropagation Neural Network, some inputs are required, such as the number of
positive victims in Jakarta, the number of recovered victims in Jakarta, the number of
dead victims in Jakarta, the number of positive victims in Indonesia, the number of
recovered victims in Indonesia, the number of dead victims in Indonesia, the number
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of positive victims in the world, the number of recovered victims in the world, and the
number of dead victims in the world.

The Backpropagation Neural Network can make estimation of the number of closed
hotels and restaurants approaching the target. Simulations are applied by splitting the
dataset into training data (80%) and testing data (20%). From Backpropagation Neural
Network simulations, the Backpropagation Neural Network can make estimation of the
number of closed hotels and restaurants in training data with optimal RMSE being 9.2422
and testing data with optimal RMSE being 8.9419.

The developments of this research are making estimation and classification of the
results by data mining and machine learning techniques.
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1 Introduction

Fractional discrete calculus is a very interesting topic in mathematics with several po-
tential applications in many fields [1]. Namely, since fractional discrete operators are
non local, they are suitable for constructing models characterized by memory effect [2].
This is the reason why fractional-order difference systems, when describing engineer-
ing phenomena over large periods of time, perform better with respect to integer-order
discrete-time systems [3]. Recently, attention has been focused on the presence of chaotic
phenomena in fractional-order systems, described by difference equations [4, 5].

One of the important aspects in the study of chaotic systems is the development of
control strategies to achieve stabilization. The aim of stabilizing chaotic systems is to
derive one-dimensional control law such that both of the map trajectories are controlled
to zero asymptotically. Recently, the topic of stabilization of fractional discrete chaotic
systems started to attract increasing attention [6–10].

This study presents a novel contribution to the topic of stabilization of chaos in Ca-
puto h-difference chaotic systems. After investigating the existence of chaotic behaviors
in the fractional Ushio system, a linear scheme is introduced to control the fractional
Ushio system.
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2 The Fractional Chaotic Ushio System

Referring to the discrete-time Ushio system, it was introduced in [11]. Herein, by exploit-
ing the Caputo h-difference operator, the following fractional Ushio system is proposed:{

C
h∆

ν
ax (t) = (d− 1)x (t+ hν)− x3 (t+ hν) + y (t+ hν) ,

C
h∆

ν
ay (t) = 0.5x (t+ hν)− y (t+ hν) ,

(1)

where C
h∆

ν
a denotes the Caputo h-difference operator, 0 ≤ ν ≤ 1, t ∈ (hN)a+(1−ν)h,

(hN)a+(1−ν)h = {a+ (1− ν)h, a+ (2− ν)h, ...} , a is the starting point and d is a system
parameter.

The Caputo h-difference operator C
h∆

ν
aX (t) of a function X (t) [12] is defined as

C
h∆

ν
aX (t) = ∆−(n−ν)

a ∆nX (t) , t ∈ (hN)a+(n−ν)h , (2)

where ∆X (t) = X(t+h)−X(t)
h , n = ⌈ν⌉+ 1, and the ν-th order h–sum [13] is given by

h∆
−ν
a X (t) =

h

Γ (ν)

t
h−ν∑
s= a

h

(t− σ (sh))
(ν−1)

x (sh) , σ (sh) = (s+ 1)h, a ∈ R, t ∈ (hN)a+νh ,

(3)
where the h–falling factorial function is defined as

t
(ν)
h = hν Γ

(
t
h + 1

)
Γ
(
t
h + 1− ν

) , t, ν ∈ R. (4)

Now, according to [14], the equivalent implicit discrete formula can be written in the
formx(n+ 1) = x(0) + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1) ((d− 1)x (j + 1)− x3 (j + 1) + y (j + 1)),

y(n+ 1) = y(0) + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1) (0.5x (j + 1)− y (j + 1)),

(5)
where x(0), y(0) are the initial states. Here, the implicit system given in (5) is em-
ployed to explore the chaotic behavior of the Ushio system in its fractional order. When
(x(0), y(0)) = (0.1,−0.3)) and d = 1.9, then the fractional-order Ushio system will show
chaotic behaviour. Figure 1, however, shows the chaotic attractor obtained by simulat-
ing the system (5) with the predictor-corrector method, along with the Largest Lyapunov
Exponents (LLEs) and the bifurcation diagram that are obtained.

3 Chaos Stabilization Scheme

This section intends to prove a novel result established for stabilizing the dynamics of
the fractional Ushiou system at zero through establishing a linear control law. When we
refer to stablization, what we are talking about is adding a new time varying parameter
C (t) to one of the system’s states and finding a closed form adaptive formula for these
parameters to force the system states to zero in sufficient time. Before stating the
proposed control law and establishing its stability, it is important to state the following
theorem, which is essential for our proof. Interested readers are referred to [15] for the
proof of this result.
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Figure 1: (a) Phase portrait of the Ushio system for υ = 0.95 and d = 19, b) The bifurcation
diagram versus d, (c) the largest Lyapunov exponents corresponding to (b).

Theorem 3.1 Let x = 0 be an equilibrium point of the nonlinear discrete fractional
system

C
h∆

ν
aX (t) = f (t+ νh,X (t+ νh)) , t (hN)a+(1−ν)h . (6)

If there exists a positive definite and decrescent scalar function V (t,X (t)), such that
C
h∆

ν
aV (t,X (t)) ≤ 0, then the equilibrium point is asymptotically stable.

In the following, a useful inequality for Lyapunov functions is introduced.

Lemma 3.1 [15] For any discrete time t ∈ (hN)a+(1−ν)h , the following inequality
holds:

C
h∆

ν
aX

2 (t) ≤ 2X (t+ νh)
C
h ∆ν

aX (t) , 0 < ν ≤ 1. (7)

Theorem 3.2 The two-dimesional fractional Ushio system can be stabilized under
the one–dimensional control law

C (t) = −dx (t)− 1.5y (t) , t ∈ (hN)a+(1−ν)h . (8)

Proof. The controlled fractional Ushio system involves the time–varying control
parameter C (t) and is given by{

C
h∆

ν
ax (t) = (d− 1)x (t+ hν)− x3 (t+ hν) + y (t+ hν) +C (t+ hν) ,

C
h∆

ν
ay (t) = 0.5x (t+ hν)− y (t+ hν) ,

(9)

where t ∈ (hN)a+(1−ν)h . Substituting the proposed control law (8) into (9) yields the
simplified dynamics{

C
h∆

ν
ax (t) = −x (t+ hν)− x3 (t+ hν)− 0.5y (t+ hν) ,

C
h∆

ν
ay (t) = 0.5x (t+ hν)− y (t+ hν) .

(10)
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Now, we should prove that the trivial solution of (10) is globally asymptotically stable.
If so, we will deduce immediately that all the states of the controlled system given in
(9) will definitely converge towards zero. Actually, this task can be performed using
the Lyapunov method that was summarized earlier by Theorem 3.1. To see this, the
following Lyapunov function has to be considered:

V (x (t) , y (t)) =
1

2

(
x2 (t) + y2 (t)

)
, t ∈ (hN)a+(1−ν)h . (11)

Consequently, applying the fractional Caputo h-difference operator to (11) leads us to
the following assertion:

C
h∆

ν
aV (x (t) , y (t)) =

1

2

(
C
h∆

ν
ax

2 (t) +C
h ∆ν

ay
2 (t)

)
. (12)

Using Lemma 1 yields

C
h∆

ν
aV (x (t) , y (t)) ≤ x(t+ νh)Ch∆

ν
ax(t) + y(t+ νh)Ch∆

ν
ay(t)

= −x2 (t+ hν)− x4 (t+ hν)− 0.5x(t+ νh)y (t+ hν)

+0.5y (t+ hν)x (t+ hν)− y2 (t+ hν)

= −
(
x2 (t+ hν) + x4 (t+ hν) + y2 (t+ hν)

)
< 0.

This means that an efficient stabilization for all states of system (1) occurs at the origin
when using the linear control law (8).

For the purpose of confirming the validity of the established controller, the phase-
space and the evolution of all states of the controlled system (9) are plotted as shown in
Figure 2. Such plots clearly show a stabilization at zero occurs for all chaotic dynamics
of the fractional Ushio system given in (1) when using the linear control law given in (8).

Figure 2: Stabilization of all states of the fractional chaotic Ushio system (1) by using the
control law (8) with ν = 0.95 and d = 1.9.

4 Conclusion

This work has made a contribution to this research field by proposing simple linear control
laws for stabilizing the dynamics of some types of those fractional maps which have been
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established in view of the Caputo h-difference operator. The objective has been achieved
by proving a new theorem based on assuming suitable Lyapunov functions. Since the
designed control law is one-dimensional and linear, it is inexpensive and easy to imple-
ment. Finally, simulation findings have been implemented with the aim of highlighting
the validity of all proposed control schemes.
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