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Abstract: The purpose of this paper is to provide equivalence conditions of exist-
ing conditions for the uniformly exponential dichotomy of strongly continuous quasi
groups (C0-quasi groups) on Banach spaces. There are four equivalent conditions for
the existence of uniformly exponential dichotomy in the used classes of continuous
and integrable function spaces over R. Each condition emphasizes the existence and
uniqueness of mild solutions of the corresponding inhomogeneous equation on the
corresponding space in the C0-quasi group term. The results are parallel with the di-
chotomy for the evolution family. Moreover, a small time-dependent perturbation of
the infinitesimal generator of the C0-quasi groups persists the uniformly exponential
dichotomy. The results are also motivated by illustrative examples.
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1 Introduction

As a generalization of exponential stability and dichotomy for the evolution family [1,2],
the Dichotomy Theorem of C0-quasi groups on Banach spaces has just been developed
in [3], see Theorem 4. The theorem implies that a uniformly exponential dichotomy
of the C0-quasi groups on Banach spaces X is equivalent to the spectral property of
the corresponding evolution semigroup on Lp(R, X). Besides, the uniformly exponential
dichotomy is also equivalent to the existence and uniqueness of Green’s function for the
quasi group, Theorem 9 of [3]. The uniformly exponential stability in this paper refers
to the term in [4–6].
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Consider a non-autonomous abstract Cauchy problem

u̇(t) = A(t)u(t), u(r) = ur, ur ∈ D, t ≥ r, t, r ∈ R, (1)

where A(t) is a linear closed operator in X with the domain D(A(t)) = D being inde-
pendent of t and dense in X. Assume that (1) is well-posed in the sense that there exists
a quasi group {R(t, s}t,s∈R which gives a differential function u [7, 8]. In fact, if ur ∈ D,
then u(t) = R(r, t− r)ur, t ≥ r, is a solution of (1) and u(t) ∈ D. This confirms that the
uniformly exponential dichotomy is a fundamental asymptotic property of the solutions
of (1). The important examples of the finite cases of (1) are given in [9, 10].

Next, consider the inhomogeneously non-autonomous abstract Cauchy problem

u̇(t) = A(t)u(t) + f(t), t ∈ R, (2)

where f is a locally integrableX-valued function on R. It can be verified that the function
u, which satisfies the integral equation

u(t) = R(r, t− r)u(r) +

∫ t

r

R(s, t− s)f(s)ds, t ≥ r, (3)

is a solution (mild solution) of (2). In particular, this confirms that the uniformly
exponential dichotomy of solutions of the non-autonomous abstract Cauchy problem (1)
is equivalent to the existence and uniqueness of the mild solution of the inhomogeneous
equation (2) for some integrable functions f . In other words, it allows to characterize the
uniformly exponential dichotomy for the quasi groups in terms of ”Perron-type” theorems
of classes of integrable function spaces over R. These questions are the counterpart of
the classical theorems of the Perron type for the evolutionary families with varying A(t)
and classes of f ’s are discussed in [11–17].

In [7, 18], a bounded time-dependent perturbation under certain conditions of an
infinitesimal generator of C0-quasi semigroups produces a perturbed C0-quasi semigroup
on the same space. The classical and mild solutions of the new non-autonomous abstract
Cauchy problem induced by the perturbed infinitesimal generator retain dependence on
the similar solutions of the old problem. A question arises whether this situation applies
to the quasi groups. Further, if the old quasi groups have a uniformly exponential
dichotomy, whether the perturbed quasi group also persists the uniformly exponential
dichotomy. As a comparison, under time-dependent Miyadera-type perturbations, the
evolution family persists the uniformly exponential dichotomy [1,2].

This paper focuses on characterizations of the equivalent conditions for the uniformly
exponential dichotomy of the C0-quasi group using classes of integrable function spaces
and investigates the persistence of the uniformly exponential dichotomy due to the time-
dependent perturbations. The organization of this paper is as follows. In Section 2, re-
exposure of the existing results for the uniformly exponential dichotomy of the C0-quasi
groups on a Banach space is considered. Characterizations for the uniformly exponential
dichotomy using four spaces of Cb(R, X), C0(R, X), Lp(R, X), and a scale space of con-
tinuous functions Fα are considered in Section 3. Section 4 investigates the persistence
for the uniformly exponential dichotomy under a bounded time-dependent perturbation
of the infinitesimal generator.

2 Preliminaries

In this section, we recall the results about the sufficient and necessary conditions for
the uniformly exponential dichotomy of the strongly continuous quasi groups on Banach
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spaces [3]. The quasi group itself is a generalization of the strongly continuous quasi
semigroup [19].

Definition 2.1 (Definition 1 [3]) Let L(X) be the set of all bounded linear opera-
tors on a Banach space X. A two-parameter commutative family {R(t, s)}s,t∈R in L(X)
is called a strongly continuous quasi group (C0-quasi group) on X if for each r, s, t ∈ R
and x ∈ X:

(a) R(t, 0) = I, the identity operator on X,

(b) R(t, s+ r) = R(t+ r, s)R(t, r),

(c) lims→0 ∥R(t, s)x− x∥ = 0,

(d) there is a continuous increasing function M : R → [1,∞) such that

∥R(t, s)∥ ≤ M(t+ s).

Let D be the set of all x ∈ X such that the following limits exist:

lim
s→0

R(t, s)x− x

s
, s, t ∈ R.

For t ∈ R, we define an operator A(t) on D as

A(t)x = lim
s→0

R(t, s)x− x

s
.

The family of operators {A(t)}t∈R is called an infinitesimal generator of the C0-
quasi group {R(t, s)}s,t∈R. In what follows, for simplicity, we denote the quasi group
{R(t, s)}s,t∈R and the family {A(t)}t∈R by R(t, s) and A(t), respectively.

We have identified the dichotomy for the C0-quasi groups using uniformly exponential
stability, an extension of the similar term for C0-quasi semigroups [18].

Definition 2.2 (Definition 2 [3]) A C0-quasi group R(t, s) is said to be uniformly
exponentially stable on a Banach space X if there exist constants γ > 0 and N ≥ 1 such
that

∥R(t, s)x∥ ≤ Ne−γ|s|∥x∥, t, s ∈ R, x ∈ X. (4)

Definition 2.3 The C0-quasi group R(t, s) is said to be exponentially bounded on a
Banach space X if there exist a constant ω ∈ R and a function Nω : R+ → [1,∞) such
that

∥R(t, s)x∥ ≤ Nω(t)e
ω|s|∥x∥, t, s ∈ R, x ∈ X.

Sometimes, we have to convert a quasi-group to be an evolution semigroup. For
example, the uniformly exponential stability for a quasi-group is more easily identified
by the spectrum of the infinitesimal generator of the corresponding evolution semigroup.
For a Banach spaceX, Lp(R, X), 1 ≤ p < ∞, denotes the space of all functions f : R → X

with the norm ∥f∥Lp(R,X) =
(∫∞

−∞ ∥f(t)∥pXdt
) 1

p

. Henceforth, in this paper we always

assume that Lp(R, X) with 1 ≤ p < ∞.
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Definition 2.4 (Definition 3 [3]) Let R(t, s) be a C0-quasi group on a Banach
space X. The evolution semigroup associated with R(t, s) on Lp(R, X) is a family of
operators {Es}s≥0 given by

(Esf)(t) = R(t− s, s)f(t− s), s ≥ 0, t ∈ R, f ∈ Lp(R, X). (5)

For simplicity, the evolution semigroup {Es}s≥0 is simply written as Es. We see that
Es is strongly continuous on Lp(R, X). Moreover, if A(t) is the infinitesimal generator
of the C0-quasi group R(t, s) with domain D, then an operator Γ defined by

(Γf)(t) = −df

dt
+A(t)f(t), t ∈ R, (6)

is the infinitesimal generator of Es with the domain

D(Γ) = {f ∈ Lp(R, X) : f is absolutely continuous, f(t) ∈ D}.

The uniformly exponential dichotomy for the C0-quasi groups is an extension of the
similar term for the C0-quasi semigroups introduced by Cuc [4]. Let P : R → L(X) be
a projection-valued function, the complementary projection is given by Q(t) = I − P (t)
for all t ∈ R. If P (t+ s)R(t, s) = R(t, s)P (t), then

RP (t, s) := P (t+ s)R(t, s)P (t) and RQ(t, s) := Q(t+ s)R(t, s)Q(t)

are the restrictions of R(t, s) on ranP (t) and ranQ(t), respectively. The RP (t, s) is the
operator from ranP (t) to ranP (t+ s), while RQ(t, s) maps ranQ(t) to ranQ(t+ s).

Definition 2.5 (Definition 4 [3]) The C0-quasi group R(t, s) is said to have a uni-
formly exponential dichotomy on X if there exist constants N ≥ 1, γ > 0 and a projection-
valued function P : R → L(X) such that for each x ∈ X, the function x 7→ P (t)x is
continuous and bounded, and, for all t, s ∈ R, the following conditions hold:

(a) P (t+ s)R(t, s) = R(t, s)P (t),

(b) RQ(t, s) is invertible as an operator from ranQ(t) to ranQ(t+ s),

(c) ∥RP (t, s)∥ ≤ Ne−γ|s|,

(d) ∥[RQ(t, s)]
−1∥ ≤ Ne−γ|s|.

The pair of γ and N in Definition 2.5 is called the dichotomy constants of R(t, s).
Definition 2.5 states that if the quasi group R(t, s) has a uniformly exponential dichotomy
on X, then R(t, s) and R−1(t, s) are uniformly exponentially stable on ranP (t) and on
ranQ(t), respectively. The dichotomy bound of R(t, s) is defined as

γ(R) := sup{γ > 0 : R(t, s) has exponential dichotomy

with constants γ and N = N(γ)}. (7)

The sufficient and necessary conditions for the uniformly exponential dichotomy of
the C0-quasi groups are given by the following theorems.

Theorem 2.1 (Dichotomy Theorem, Theorem 4 [3]) Assume that R(t, s) is a
C0-quasi group on a Banach space X. Let Es be the corresponding evolution semigroup
given by (5) on Lp(R, X) and let Γ denote its infinitesimal generator given by (6). The
following statements are equivalent:
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(a) The quasi group R(t, s) has a uniformly exponential dichotomy on X.

(b) For each s > 0, σ(Es) ∩ T = ∅, where T := {z ∈ C : |z| = 1}.

(c) 0 ∈ ρ(Γ).

Let Cb(R, X) be the space of all bounded continuous functions f : R → X with the
supremum norm. Let P (·) ∈ Cb(R,Ls(X)) be the projection that satisfies (a) and (b) of
Definition 2.5. Green’s function for R(t, s) is a map GP : R2 \ {(0, 0)} → Ls(X) defined
by

GP (t, s) = RP (t, s)P (t), t > s,

GP (t, s) = −[RQ(t, s)]
−1Q(t), t < s.

Green’s operator G associated with GP on Lp(R, X) is defined by

(Gf)(t) =

∫ ∞

−∞
GP (s, t− s)f(s)ds, f ∈ Lp(R, X). (8)

Theorem 2.2 (Theorem 9 [3]) Let Γ be the infinitesimal generator of the evolu-
tion semigroup Es corresponding to a C0-quasi group R(t, s) defined by (5) on Lp(R, X).
The quasi group R(t, s) has a uniformly exponential dichotomy on X if and only if there
exists a unique Green’s function GP for R(t, s). Moreover, if the associated Green’s
operator is given by (8), then G = −Γ−1 on Lp(R, X).

We summarize that the sufficient and necessary conditions for a C0-quasi group to
have a uniformly exponential dichotomy are that the corresponding evolution semigroup
is hyperbolic. Moreover, the dichotomy is equivalent to the uniqueness of Green’s function
for the C0-quasi group.

3 Equivalent Conditions for Uniformly Exponential Dichotomy

In the section, we shall characterize the others equivalent conditions for the uniformly
exponential dichotomy of the C0-quasi groups. The characterizations refer to the method
used in [1, 13] for the family of the evolution operators.

We start with defining Green’s operator G for the C0-quasi group R(t, s) as in (8) on
Cb(R, X) by

(Gf)(t) =

∫ ∞

−∞
GP (s, t− s)f(s)ds, f ∈ Cb(R, X). (9)

We see that G is a bounded operator on Cb(R, X).

Condition (M). For each g ∈ Cb(R, X), there exists a unique function u ∈ Cb(R, X)
such that

u(t) = R(r, t− r)u(r) +

∫ t

r

R(s, t− s)g(s)ds, t ≥ r. (10)

Remark 3.1 Condition (M) states that for each g ∈ Cb(R, X), there exists a unique
mild solution u ∈ Cb(R, X) of the integral equation (10). Thus, if we define an operator
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Gg = u on Cb(R, X), then G is closed. In fact, if gn → g and un := Ggn → u in
Cb(R, X), then for each t ∈ R,

u(t) = lim
n→∞

un(t) = lim
n→∞

(
R(r, t− r)un(r) +

∫ t

r

R(s, t− s)gn(s)ds

)
= R(r, t− r)u(r) +

∫ t

r

R(s, t− s)g(s)ds.

This gives u = Gg.

In particular, if R(t, s) is uniformly exponentially dichotomic, then G is equal to
Green’s operator G in (9).

Lemma 3.1 If Green’s operator G defined in (9) is bounded on Cb(R, X), then for
each g ∈ Cb(R, X), there exists a solution u ∈ Cb(R, X) of (10).

Proof. For g ∈ Cb(R, X), we set u := Gg. For t ≥ r, we show that u satisfies (10).
In this proof, we use the fact that R−1(k, l − k) = R(l, k − l). For t ≥ r,

u(t)−R(r, t− r)u(r) = (Gg)(t)−R(r, t− r)(Gg)(r)

=

∫ t

r

P (t)R(s, t− s)P (s)g(s)ds−
∫ ∞

t

R−1
Q (s, t− s)Q(s)g(s)ds

+

∫ t

r

R(s, t− s)R(r, s− r)R−1
Q (s, r − s)Q(s)g(s)ds

+

∫ ∞

t

R(r, t− r)[RQ(t, r − t)RQ(s, t− s)]−1Q(s)g(s)ds

=

∫ t

r

P (t)R(s, t− s)P (s)g(s)ds+

∫ t

r

R(s, t− s)Q(s)g(s)ds

=

∫ t

r

R(s, t− s)g(s)ds.

As a generalization of Theorem 10 from [18], we have the following lemma which
implies that the infinitesimal generator Γ is invertible on Lp(R, X).

Lemma 3.2 Let Es be the evolution semigroup defined in (5) on Lp(R, X) with its
infinitesimal generator Γ in (6). If u, g ∈ Lp(R, X), then the following statements are
equivalent.

(a) u ∈ D(Γ) dan Γu = −g.

(b) u is a solution of the integral equation (10) that corresponds to g.

Proof. (a) ⇒ (b). Assume that (a) holds. By an elementary property of C0-
semigroup, we have

Esu− u =

∫ s

0

ErΓudr = −
∫ s

0

Erg dr, s ≥ 0. (11)

Substituting (Esu)(t) = R(t− s, s)u(t− s) (definition of Es) into (11) gives

R(t− s, s)u(t− s)− u(t) = −
∫ s

0

R(t− v, v)g(t− v) dv.
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The transformation of variable r = t− s gives statement (b).
(b)⇒ (a). Assume that (b) holds. If s ≥ 0, t− s ≥ r, and u is a solution of (10), then

(Esu)(t) = R(t− s, s)

[
R(r, t− s− r)u(r) +

∫ t−s

r

R(v, t− s− v)g(v) dv

]
= R(r, t− r)u(r) +

∫ t−s

r

R(v, t− v)g(v) dv.

Consequently, for s > 0, we obtain

s−1 [(Esu)(t)− u(t)] = s−1
[
R(r, t− r)u(r) +

∫ t−s

r

R(v, t− v)g(v) dv

−
(
R(r, t− r)u(r) +

∫ t

r

R(v, t− v)g(v) dv

)]
= −s−1

∫ t

t−s

R(v, t− v)g(v) dv = −s−1

∫ s

0

R(t− v, v)g(t− v) dv.

Therefore,

s−1(Esu− u) = −s−1

∫ s

0

Evg dv.

Passing to the limit as s → 0+ proves that u ∈ D(Γ) and Γu = −g.

Remark 3.2 Lemma 3.2 remains valid if Lp(R, X) is replaced by C0(R, X), the space
of all continuous functions f : R → X such that limt→±∞ f(t) = 0 with the supremum
norm. Moreover, Condition (M) holds for some g, u ∈ Lp(R, X).

Theorem 3.1 An exponentially bounded C0-quasi group R(t, s) on a Banach space
X has a uniformly exponential dichotomy if and only if Condition (M) is satisfied.

Proof. (⇒). Let R(t, s) be uniformly exponentially dichotomic. By Theorem 9
of [3], there exists Green’s operator G as defined in (9) corresponding to Green’s function
GP and dichotomy projection P . Lemma 3.1 guarantees the existence of a solution
u ∈ Cb(R, X) of (10) for each g ∈ Cb(R, X).

To prove the uniqueness of the solution of (10), let g = 0 and suppose there exists
u ∈ Cb(R, X) such that u(t) = R(r, t− r)u(r), t ≥ r. It suffices to prove that u = 0. The
uniformly exponential dichotomy of R(t, s) implies

P (t)u(t) = RP (r, t− r)P (r)u(r) and Q(t)u(t) = RQ(r, t− r)Q(r)u(r), t ≥ r.

The boundedness of ∥u(·)∥ and condition (c) of Definition 2.5 give

∥P (t)u(t)∥ ≤ Ne−γ(t−r)∥u(r)∥.

Passing to the limit as r → −∞ provides that P (t)u(t) = 0 for all t ∈ R. On the other
hand, condition (d) of Definition 2.5 forces

∥Q(r)u(r)∥ = ∥[RQ(r, t− r)]−1Q(t)u(t)∥ ≤ Ne−γ(t−r)∥u(t)∥.

Passing to the limit as t → ∞ implies that Q(r)u(r) = 0 for all r ∈ R. Therefore, u = 0.
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(⇐). Let Condition (M) be satisfied. We define an operator G on Cb(R, X) by
Gg = u. By Theorem 2.1, it suffices to show that Γ is invertible on Cb(R, X). Since
u = Gg and g ∈ Lp(R, X), Lemma 3.2 implies that u ∈ D(Γ) and Γ(−G)g = Γ(−u) =
g. Thus, Γ is right invertible. On the other hand, the linearity of G implies that
(−G)Γu = (−G)(−g) = u. This proves the left invertibility of Γ. Thus, Γ is invertible
with Γ−1 = −G.

We shall characterize the other conditions for the uniformly exponential dichotomy
of the quasi groups. We start with defining the scale of function space Fα, α > 0, by

Fα := {f ∈ C(R, X) : e−α|·|f(·) ∈ Cb(R, X)}.

Thus, Fα is the space of continuous, exponentially bounded functions with exponent α.
These spaces provide three conditions formulated as follows.

Condition (MC0). For each g ∈ C0(R, X), the integral equation (10) has a unique
solution u ∈ C0(R, X).

Condition (MLp
). For each g ∈ Lp(R, X), 1 ≤ p ≤ ∞, the integral equation (10)

has a unique solution u ∈ Lp(R, X).

Condition (MFα). For each g ∈ Fα, the integral equation (10) has a unique solution
u ∈ Fα.

Theorem 3.2 Let R(t, s) be an exponentially bounded C0-quasi group on X.

(a) The following statements are equivalent:

(i) R(t, s) has uniformly exponential dichotomy.

(ii) Condition (M) holds.

(iii) Condition (MC0
) holds.

(iv) Condition (MLp) holds.

(b) The operator G defined by Conditions (M), (MC0
), or (MLp

) as in Remark 3.1, is
equal to Green’s operator G as in (9). Further, if Es is the evolution semigroup on
the space C0(R, X) or Lp(R, X) with the infinitesimal generator Γ, then G = −Γ−1.

Proof. Theorem 3.1 guarantees that Condition (M) is equivalent to (i).
Let G be an operator defined using Condition (MC0) (resp. (MLp)) as in Remark 3.1.

Lemma 3.2 together with Dichotomy Theorem 2.1 implies the uniformly exponential
dichotomy for R(t, s). These show that (iii)(resp. (iv)) is equivalent to (i).

If R(t, s) has a uniformly exponential dichotomy, then by Theorem 2.2, Green’s op-
erator G is defined on Lp(R, X) or C0(R, X) satisfies G = −Γ−1. Moreover, using the
same argument as in the proof of the necessity of Theorem 3.1, we conclude that (MC0

)
and (MLp) hold, and G = G.

Lemma 3.3 Condition (MFα) holds for R(t, s) if and only if Condition (M) holds
for Rα(t, s), where Rα(t, s) = e−α(|t+s|−|t|)R(t, s) and α ∈ [0, β) for some β > 0.

Proof. If Condition (M) holds for Rα(t, s), there exists a bounded operator Gα

on Cb(R, X) defined by Gαg = u. We define an operator Jα : Fα → Cb(R, X) by
(Jαf)(t) = e−α|t|f(t), t ∈ R. Similarly, if Condition (MFα

) holds for R(t, s), then there
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exists a bounded operator G ∈ L(Fα) defined by Gg = u. We see that Gα = JαGJ−1
α .

Thus, Condition (M) holds for Rα(t, s) if and only if Gα ∈ L(R, X). However, G ∈ L(Fα)
if and only if Condition (MFα) holds for R(t, s).

Theorem 3.3 Let R(t, s) be an exponentially bounded C0-quasi group on X. The
quasi group R(t, s) has a uniformly exponential dichotomy if and only if there exists
β > 0 such that if α ∈ [0, β), then Condition (MFα

) holds for R(t, s). Moreover, for each
α > 0 and g ∈ Fα, the solution of the integral equation (10) is given by u = Gg, where
G ∈ L(Fα) is equal to Green’s operator G on Fα as defined in (9).

Proof. (⇐). If α = 0, then Condition (MFα
) and Condition (M) are identical.

(⇒). Assume that R(t, s) has a uniformly exponential dichotomy with the dichotomy
bound γ > 0. If β ∈ (0, γ), then R(t, s) has a uniformly exponential dichotomy with
constants β and N = N(β), see (7). Consequently, if α ∈ [0, β), then the quasi group
Rα(t, s) defined in Lemma 3.3 has a uniformly exponential dichotomy with constants
N(β) and β − α. Theorem 3.1 provides that Condition (M) holds for Rα(t, s). Let
G ∈ L(Fα) be the operator defined by Gg = u. Since Gα = Gα, where Gα is Green’s
operator for the dichotomic quasi group Rα(t, s) and Gα is as in the proof of Lemma 3.3,
the assertions follow.

Remark 3.3 We note that conditions (M), (MC0
), (MLp

), and (MFα
) for the uni-

formly exponential dichotomy of the C0-quasi groups are parallel with the similar condi-
tions for exponential dichotomy of the evolution family, see [1, 13].

Example 3.1 Let X = R2 and φ : R → R be a continuous increasing function such
that limt→±∞ φ(t) < ∞. Define a C0-quasi group on X by

R(t, s)x =
(
e−(v(t+s)−v(t))x1, e

−sφ(0)+v(t+s)−v(t)x2

)
, t, s ∈ R,

where v(t) =
∫ t

0
φ(s)ds and x = (x1, x2). The quasi group R(t, s) has a uniformly

exponential dichotomy on X.

Similar to Example 3 of [3], we have the evolution semigroup Es in (5) on the space
Lp(R, X) given by

(Esf)(t) =
(
e−(v(t)−v(t−s))f1(t− s), e−sφ(0)+v(t)−v(t−s)f2(t− s)

)
,

where f(t) = (f1(t), f2(t)), s ≥ 0, and t ∈ R with the infinitesimal generator

(Γf)(t) = (−f ′
1(t)− φ(t)f1(t),−f ′

2(t) + [−φ(0) + φ(t)]f2(t)) .

Moreover,
(Γ−1f)(t) = − (h1(t), h2(t)) ,

where

h1(t) = e−ϕ(t)

∫
f1(t)e

ϕ(t)dt, h2(t) = e−φ(0)t+ϕ(t)

∫
f2(t)e

φ(0)t−ϕ(t)dt,

ϕ(t) =

∫
φ(t) dt.

By Condition (M), for each g ∈ Cb(R, X), there exists a unique solution u ∈ Cb(R, X)
satisfying the integral equation (10). In fact, we have u = −Γ−1g. Therefore, R(t, s) has
a uniformly exponential dichotomy on X.
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Remark 3.4 We can easily verify that Example 3.1 fulfills Conditions (MC0
), (MLp

)
and (MFα

). It is possible that Condition (MFα
) holds for some α ∈ (0, γ), but the quasi

group R(t, s) has no uniformly exponential dichotomy, as shown by the following example.

Example 3.2 Let X be a Banach space of R2 with the norm ∥x∥ = |x1|+ |x2|, where
x = (x1, x2). The quasi group R(t, s) defined on X by

R(t, s)x =
(
e(t+s) cos(t+s)−t cos t−sx1, e

sx2

)
, t, s ∈ R,

has no uniformly exponential dichotomy, but it satisfies Condition (MFα) for all g ∈ MFα

and 0 < α < 2.

From Lemma 3.3, it suffices to show that Rα(t, s) satisfies Condition (M) for all
g ∈ Cb(R, X). In fact, for g = (g1, g2) ∈ Cb(R, X) and P (t)x = (x1, 0), we can set u = Gg,
where G is Green’s operator defined in (9) with respect to Rα(t, s). For 0 < α < 2, we
verify that

u(t) = (Gg)(t) = (u1(t), u2(t)) ∈ Cb(R, X),

where

u1(t) = e−α|t|−t+t cos t

∫ t

−∞
eα|s|+s−s cos sg1(s)ds,

u2(t) = −e−α|t|
∫ ∞

t

e−α|s|−sg2(s)ds.

Suppose that R(t, s) has uniformly exponential dichotomy with respect to the family
of projections P (t) above. If N , γ > 0 are the constants satisfying Definition 2.5, i.e.,
∥RP (t, s)∥ ≤ Ne−γ|s|, then

e(t+s) cos(t+s)−t cos t−s ≤ Ne−γ|s|

for all t, s ∈ R. But for t = (2n − 1)π and s = π, we have e2(2n−1)π ≤ Ne−γπ, which is
absurd for large enough n.

4 Persistence under Perturbation

Theorem 2.1 implies that the existence of a dichotomy for a strongly continuous quasi
group R(t, s) is a spectral property. It persists under small perturbations. We shall first
consider the bounded perturbation.

Theorem 4.1 Let R(t, s) and R1(t, s) be the C0-quasi groups on a Banach space X.
If R(t, s) has a uniformly exponential dichotomy on X, then for each r > 0, there exists
an ϵ > 0 such that R1(t, s) has a uniformly exponential dichotomy and

sup
t∈R

∥R1(t, r)−R(t, r)∥L(X) ≤ ϵ.

Proof. From (5), for f ∈ Lp(R, X), we have

(Erf)(t) = R(t− r, r)f(t− r) and (Er
1f)(t) = R1(t− r, r)f(t− r).
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We obtain the estimate

∥Er
1f − Erf∥pLp

=

∫
R
∥R1(t− r, r)f(t− r)−R1(t− r, r)f(t− r)∥pdt

=

∫
R
∥[R1(t, r)−R(t, r)]f(t)∥pdt ≤ ϵp∥f∥pLp

.

This implies that ∥Er
1 − Er∥L(Lp(R,X)) ≤ ϵ.

The equivalence of (a) and (b) in the Dichotomy Theorem 2.1 gives σ(Er) ∩ T = ∅.
The semicontinuity of the spectrum implies that σ(Er

1)∩T = ∅ for a sufficiently small ϵ.
Therefore, R1(t, s) has a uniformly exponential dichotomy.

Theorem 4.1 describes that a dichotomy persists under small perturbation of the C0-
quasi groups. The similar result of the additive perturbation is given by the following
theorem. The theorem refers to the perturbed generator of the C0-quasi groups given
below.

Theorem 4.2 Let A(t) be the infinitesimal generator of a C0-quasi group R(t, s) on a
Banach space X. If B ∈ Cb(R,L(X)), then there exists a unique C0-quasi group RB(t, s)
with the infinitesimal generator A(t) +B(t) such that

RB(t, r)x = R(t, r)x+

∫ r

0

R(t+ s, r − s)B(t+ s)RB(t, s)xds (12)

for all t ∈ R, r > 0, and x ∈ X. Moreover, if ∥R(t, r)∥ ≤ M(r), then

∥RB(t, r)∥ ≤ M(r)e∥B∥M(r)r.

Proof. The proof is similar to the proof of Theorem 3 of [18].

Theorem 4.3 Let R(t, s) be the C0-quasi group with the infinitesimal generator A(t)
which has a uniformly exponential dichotomy on a Banach space X. Then, there exists
ϵ > 0 such that for each B ∈ Cb(R,L(X)) with ∥B∥∞ := sup

t∈R
∥B(t)∥L(X) ≤ ϵ, there

exists a C0-quasi group RB(t, s) with the infinitesimal generator A(t) + B(t) which has
a uniformly exponential dichotomy on X.

Proof. From Theorem 4.2, there exists a C0-quasi group RB(t, s) with the infinites-
imal generator A(t) +B(t). Further, by (12), for t > r and x ∈ X, we have

RB(r, t− r)x = R(r, t− r)x+

∫ t−r

0

R(r + s, t− r − s)B(r + s)RB(r, s)xds. (13)

Let Γ and ΓB be the infinitesimal generators of the evolution semigroups corresponding
to the C0-quasi groups R(t, s) and RB(t, s), respectively.

We consider the operator Γ + B, where (Bf)(t) = B(t)f(t), t ∈ R. Since B is a
bounded operator, the operator Γ + B generates a unique C0-semigroup T (s) satisfying
the equation

T (s)f = Esf +

∫ s

0

Es−wBT (w)f dw, Es = esΓ, s ≥ 0. (14)

The implication (a) ⇒ (c) of Theorem 2.1 gives 0 ∈ ρ(Γ). Consequently, if ∥B∥ =
∥B∥∞ ≤ ϵ, then 0 ∈ ρ(Γ + B) = ρ(ΓB). The implication (c) ⇒ (a) of Theorem 2.1
concludes that RB(t, s) has an exponential dichotomy.
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From (13), with s = t− r and x = f(t− r), we have

(esΓBf)(t) = (Esf)(t) +

∫ s

0

(Es−wBewΓBf)(t) dw, t ∈ R.

In this case, we have proved that esΓB = T (s) satisfies (14) and ΓB = Γ + B.
Next, we shall prove the persistence of a uniformly exponential dichotomy for a C0-

quasi group R(t, s) with the infinitesimal generator A(t) relative to the class of per-
turbations that satisfy the Miyadera condition. Theorem 2.1 implies that if Γ is the
infinitesimal generator of the evolution semigroup Es associated with a uniformly expo-
nentially dichotomic C0-quasi group R(t, s), then Γ is invertible on Lp(R, X). Dichotomy
Theorem 2.1 implies the following result.

Theorem 4.4 Let R(t, s) be a uniformly exponentially dichotomic C0-quasi group
with the infinitesimal generator A(t) and R1(t, s) be a C0-quasi group with the infinites-
imal generator A(t) +B(t). Assume that B is an operator on the domain D(Γ) ∩ D(B),
which has an extension B̂ on D(Γ) such that the operator Γ1 := Γ+ B on D(Γ1) = D(Γ)
generates the evolution semigroup associated with R1(t, s). If there exist constants a and
b such that

∥B̂f∥ ≤ a∥f∥+ b∥Γf∥ for f ∈ D(Γ) and a∥Γ−1∥+ b < 1,

then the perturbed quasi group R1(t, s) has a uniformly exponential dichotomy.

Proof. Theorem IV.1.16 [20] implies that Γ1 is invertible on Lp(R, X). Since Γ1

is the infinitesimal generator of the evolution semigroup associated with R1(t, s), the
assertion follows from the implication (c) ⇒ (a) of Dichotomy Theorem 2.1.

Example 4.1 Consider the quasi groupR(t, s) in Example 3.1, which has a uniformly
exponential dichotomy on X = R2 with the norm ∥x∥ = |x1|+|x2| and φ(0) < −1. Under
a perturbation

B(t) =


0, t < 0,

−t, 0 ≤ t ≤ 1,

−1, t > 1,

R(t, s) persists the uniformly exponential dichotomy on X.

We notice that R(t, s) has the infinitesimal generator

A(t)x = (−φ(t)x1, [−φ(0) + φ(t)]x2) , x ∈ X.

Given ϵ = 1, we verify that B ∈ Cb(R,L(X)) with ∥B∥∞ = ϵ. By Theorem 4.3, there
exists a uniformly exponentially dichotomic quasi group RB(t, s) on X generated by
A(t) +B(t). Indeed, we have RB(t, s) = B(t, s)R(t, s), where

B(t, s) =


1, t, s < 0,

e−
1
2 (s

2+2st), 0 ≤ t, s ≤ 1,

e−s, t, s > 1.

Moreover, by the mean value theorem for the integral with respect to φ, we obtain the

dichotomy constants N = max
{
1, e

3
2+φ(0)

}
and γ = inft∈R φ(t) in Definition 2.5 for

RB(t, s), where β = supt∈R φ(t).
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5 Conclusions

In this paper, we provide four equivalent conditions for uniformly exponential dichotomy
of C0-quasi groups on Banach spaces. They base on the existence and uniqueness of mild
solutions of the inhomogeneous equations on Cb(R, X), C0(R, X), Lp(R, X), 1 ≤ p < ∞,
and Fα, respectively. The equivalent conditions are parallel with the exponential di-
chotomy for the evolution family. A small time-dependent perturbation of the infinitesi-
mal generator of the C0-quasi groups persists the uniformly exponential dichotomy.
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