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Abstract: This paper is devoted to the solution of equations with time-dependent
potential, at which the heat and wave equations are taken as prototype problems.
The method of separating variables failed to be applied to the equations. The well-
posedness of the problems is justified by strongly continuous quasi semigroups. The
positive solution of the heat equations is conditioned by the maximum principle de-
pending on the potential. For the wave equations, the bounded potentials imply
the well-posedness of the problems. Further, firstly approximate solutions can be
schemed. The heat and wave equations with specific potentials are considered.
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1 Introduction

Some phenomena of reaction-diffusion in physical systems have models as equations with
time-dependent potentials [1, 2]. In general, they take the forms of nonautonomous
Cauchy problems (NCP) on Banach spaces [3–6],

u̇(t) = A(t)u(t), t ≥ 0,

u(0) = u0, u0 ∈ X,
(1)
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where u is an unknown function from [0,∞) into a Banach space X and every A(t) is
a densely defined closed linear operator on D(A(t)) = D ⊆ X, the domain which is
independent of t.

A strongly continuous quasi semigroup (C0-quasi semigroup) is a sophisticated
method to characterize the well-posedness of the NCP (1) [7]. Another awesomeness
of the C0-quasi semigroups in analyzing the nonautonomous problems can be found
in [8–13]. The method is an alternative to the evolution operator or propagation method
in [1–3,5, 6].

The heat and wave equations with time-dependent potentials are the useful prototypes
of the equations of the same types. The variable separation method failed to be applied to
solve the heat and wave equations of this type. The heat equation with time-dependent
potential on R+ × Ω has a form

ut = ∆u− V (t, x)u+ f(t, x), (t, x) ∈ R+ × Ω, (2)

where ∆ is the Laplace operator on an open bounded set Ω in Rn. By the evolution op-
erator or propagation, problem (2) have been discussed [14,15]. Moreover, determination
of a time-dependent heat transfer known as an inverse time-dependent source problem
in various conditions also has been justified [16–21].

The wave equation with time-dependent potential on R+ × Ω takes a form

utt = ∆u− V (t, x)u+ f(t, x), (t, x) ∈ R+ × Ω. (3)

Under suitable assumptions on the potential V (t, x), the main goal of (3) is to show the
existence of the scattering operator of the propagation [22–25]. In particular, V (t, x) =
V (x), the recovery of V (x) and uniqueness results have been investigated [26,27].

In fact, the procedure used to analyze problems (2) and (3) is very complicated. It
seems that it will be simpler if the problems are modeled as NCP (1) and the C0-quasi
semigroup approach is used. Therefore, in this paper, we focus on the solvability of (2)
and (3) using the C0-quasi semigroups. In the preliminaries, we recall the well-posedness
of (1) that has been developed in [7]. The main results are the well-posedness of problems
(2) and (3).

2 Preliminaries

This work is a continuation of the paper of Sutrima et al. [7]. The paper characterized
the well-posedness of the nonautonomous abstract Cauchy problems using a strongly
continuous quasi semigroup approach. The characterization centers on the infinitesimal
generators of the corresponding quasi-semigroups. Therefore, the materials of this paper
involve the well-posedness results in [7].

Definition 2.1 Let L(X) be the set of all bounded linear operators on a Banach
space X. A two-parameter commutative family {R(t, s)}s,t≥0 in L(X) is called a strongly
continuous quasi semigroup (in short C0-quasi semigroup) on X if:

(a) R(t, 0) = I, the identity operator on X,

(b) R(t, s+ r) = R(t+ r, s)R(t, r),

(c) lims→0+ ∥R(t, s)x− x∥ = 0,
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(d) there is a continuous increasing function M : [0,∞) → [1,∞) such that

∥R(t, s)∥ ≤M(s)

for all r, s, t ≥ 0 and x ∈ X.

The infinitesimal generator of the C0-quasi semigroup {R(t, s)}s,t≥0 is a family of
operators {A(t)}t≥0 on D, where

A(t)x = lim
s→0+

R(t, s)x− x

s

and D is the set of all x ∈ X such that the right-hand limits exist.
For simplicity, we denote by R(t, s) and A(t) the quasi semigroup {R(t, s)}s,t≥0 and

the infinitesimal generator {A(t)}t≥0, respectively. Further, we always consider the C0-
quasi semigroups whose infinitesimal generator has a dense domain in the Banach spaces.

Let R(λ,A(t)) := (λ − A(t))−1 be the resolvent operator of A(t) for λ ∈ ρ(A(t)),
where ρ(A(t)) is the resolvent set of A(t). The following result is the version of the
Hille-Yosida Theorem for a C0-quasi semigroup.

Theorem 2.1 (Theorem 2.3 of [7]) For each t ≥ 0, let A(t) be a closed and
densely defined operator on D and the map t 7→ A(t)y is a continuous function from
R+ to X for all y ∈ D. If R(λ,A(·)) is locally integrable and there exist constants
N,ω ≥ 0 such that [ω,∞) ⊆ ρ(A(t)) and

∥R(λ,A(t))r∥ ≤ N

(λ− ω)r
, λ > ω, r ∈ N,

then A(t) is the infinitesimal generator of a C0-quasi semigroup.

We recall the well-posedness of the Cauchy problem (1) that has been discussed in [7].
First, we consider the inhomogeneous form of the Cauchy problem (1)

u̇(t) = A(t)u(t) + f(t), t ≥ 0,

u(0) = u0, u0 ∈ X,
(4)

where f is a continuous function from [0,∞) to a Banach space X. Let C(Ω, X) and
C1(Ω, X) denote the set of all continuous functions on Ω and the set of all functions with
continuous derivative on Ω, respectively.

Definition 2.2 A function u is called a classical solution of (4) on [0, τ ] if u ∈
C1([0, τ ], X), u(t) ∈ D for all t ∈ [0, τ ] and u(t) satisfies (4) for all t ∈ [0, τ ]. The function
u is called a classical solution on [0,∞) if u is a classical solution on [0, τ ] for each τ > 0.

Therefore, the classical solution of the nonautonomous abstract Cauchy problem (1)
is the classical solution of (4) when f = 0.

Lemma 2.1 (Lemma 3.2 of [7]) Let A(t) be the infinitesimal generator of a C0-
quasi semigroup R(t, s) on a Banach space X and u0 ∈ D. If f ∈ C([0, τ ], X) and u is a
classical solution of (4), then A(·)u(·) ∈ C([0, τ ], X) and

u(t) = R(0, t)u0 +

∫ t

0

R(s, t− s)f(s)ds. (5)
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Definition 2.3 The nonautonomous abstract Cauchy problem (1) is said to be well-
posed if it satisfies the following conditions:

(WP1) Existence. For each u0 ∈ D, there exists a classical solution u of (1) on [0,∞).

(WP2) Uniqueness. If u, v : [0, τ ] → X are the classical solutions of (1), then u(t) = v(t)
for all t ∈ [0, τ ], τ > 0.

(WP3) Continuous dependence. The classical solution x depends continuously on t ∈
[0,∞) and u0 ∈ D, i.e., the map ϕ : [0,∞) × D → X with ϕ(t, u0) = u(t) is
continuous.

The well-posedness of the nonautonomous Cauchy problem (1) is characterized by the
existence and uniqueness of the infinitesimal generator of the related C0-quasi semigroup.

Theorem 2.2 (Theorem 3.6 of [7]) For each t ≥ 0, let A(t) : D → X be a closed
and densely defined operator in a Banach space X. The family A(t) is the infinitesi-
mal generator of a C0-quasi semigroup on X if and only if the nonautonomous abstract
Cauchy problem (1) is well-posed.

We have a similar result on the well-posedness of the inhomogeneous nonautonomous
Cauchy problem (4).

Theorem 2.3 (Theorem 3.11 of [7]) If A(t) is the infinitesimal generator of a
C0-quasi semigroup on X, then the inhomogeneous nonautonomous abstract Cauchy prob-
lem (4) is well-posed.

We note that Theorem 2.3 remains valid when f belongs to the Sobolev space
W 1,p([0,∞), X), 1 ≤ p <∞.

3 Results and Discussion

As an auxiliary result, we have a perturbation of the infinitesimal generator of the C0-
quasi semigroups. The following one is a special case of the perturbation.

Theorem 3.1 If A(t) and B are the infinitesimal generators of a C0-quasi semigroup
R(t, s) and C0-semigroup T (s) on a Banach space X, respectively, such that R(t, s) and
T (s) are commutative, then A(t) + B is the infinitesimal generator of a C0-quasi semi-
group K(t, s) given by

K(t, s) = T (s)R(t, s), s, t ≥ 0.

Proof. It is easy to show that K(t, s) verifies the definition of a C0-quasi semigroup.
By the Hille-Yosida Theorem for T (s) and the fact that R(t, s) is a C0-quasi semigroup,
there exist constants N,ω > 0 and an increasing function M such that

∥K(t, s)∥ ≤MK(s), t, s ≥ 0,

where MK(s) = NeωsM(s). For t ≥ 0 and x ∈ D ∩ D(B), the continuity of T (s) gives

lim
s→0+

K(t, s)x− x

s
= lim

s→0+
T (s)

R(t, s)x− x

s
+ lim

s→0+

T (s)x− x

s
= [A(t) +B]x.
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This shows that A(t) +B generates K(t, s).
Theorem 3.1 is to be central in the discussion of the time-dependent potential prob-

lems. Theorem 3 of [10] gives the general perturbation of the infinitesimal generator of
C0-quasi semigroups. Also in [10], we see the applications of the perturbation in the
linear nonautonomous control systems.

3.1 Heat equation with time-dependent potential

In this subsection, we shall apply the well-posedness to heat equations with time-
dependent potentials. Let Ω be an open bounded set of Rn with a regular boundary
∂Ω. We consider the non-autonomous heat equation

∂u

∂t
(t, x) = ∆u(t, x)− V (t, x)u(t, x) + f(t, x) in (0, τ)× Ω,

u(t, x) = 0 on (0, τ ]× ∂Ω,

u(0, x) = u0(x) in Ω,

(6)

where ∆ is the Laplace operator, V is a Lebesgue measurable potential on [0, τ ]×Ω and
f ∈ L2([0, τ ] × Ω). Set X = L2(Ω), the Laplace operator ∆ in (6) is densely defined in
X with

D(∆) = H2(Ω) ∩H1
0 (Ω),

where H1
0 denotes a space of functions in H1(Ω) that vanish at the boundary. In this

case, Hm(Ω) is the Sobolev space given by

Hm(Ω) := {u ∈ L2(Ω) : u, . . . ,
dm−1u
dxm−1 are absolutely continuous on Ω, dmu

dxm ∈ L2(Ω)}.

Moreover, ∆ is a self-adjoint operator such that

⟨∆u, u⟩ ≤ λ0∥u∥2, u ∈ D(∆),

where λ0 is the first eigenvalue of ∆. Lumer-Phillips’ theorem implies that ∆ is the
infinitesimal generator of a C0-semigroup T in X such that

∥T (t)∥ ≤ eλ0t, t ≥ 0. (7)

Setting u(t) = u(t, ·), V (t) = V (t, ·), and A(t) = ∆−V (t), we can rewrite the problem
(6) as

u̇(t) = A(t)u(t) + f(t), u(0) = u0, t ∈ [0, τ ]. (8)

Theorem 3.2 If u0 ∈ X and the operator −V (t) verifies the hypothesis of Theo-
rem 2.1, then the non-autonomous problem (6) has a unique solution u which belongs to
C([0, τ ], X).

Proof. By Theorem 2.1, there exists a unique C0-quasi semigroup R(t, s) generated
by −V (t). Theorem 3 of [10] implies that A(t) is the infinitesimal generator of a C0-
quasi semigroup K(t, s) in X with K(t, s) = T (s)R(t, s). Theorem 2.3 gives that the
non-autonomous Cauchy problem (8) is well-posed with a unique solution

u(t) = K(0, t)u0 +

∫ t

0

K(s, t− s)f(s)ds. (9)

Together with Theorem 3.10 of [7], the assertion follows.
A physical interpretation requires the positive solution of the Cauchy problem (6).

By virtue of Theorem 10 on page 44 of [28], we obtain the following result.
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Proposition 3.1 If u0(x), f(t, x), V (t, x) ≥ 0 for all (t, x) ∈ [0, τ ] × Ω, then the
solution (9) is positive.

The following example gives an illustration how the heat equation with the time-
dependent potential in R3 is solved.

Example 3.1 Consider the problem (6) in R3. Let V be a potential on [0, τ ] × Ω
given by V (t, x) = α(t)Z(x), where Ω = (0, 1)3 and Z(x) = −|x|−1 is the Coulomb
potential on Ω and α is a measurable function on [0, τ ].

We see that −V (t) verifies Theorem 2.1. In addition, if α(t) = − 1

t+ 1
, −V (t) gener-

ates a C0-quasi semigroup R(t, s) on X given by

R(t, s)u(x) =

(
t+ 1

t+ s+ 1

) 1
|x|

u(x), u ∈ X, x ∈ Ω.

The C0-semigroup T (t) in (7) is given by

T (t)u =

∞∑
l,m,n=1

e−(l2+m2+n2)π2t⟨u, ϕlmn⟩ϕlmn, u ∈ X,

where ϕlmn(x) = 2
√
2 sin(lπx1) sin(mπx2) sin(nπx3) and ⟨·, ·⟩ is the inner product in X.

Therefore, for arbitrary f ∈ L2([0, τ ]× Ω), the solution of (6) is given by

u(t, x) = K(0, t)u0(x) +

∫ t

0

K(s, t− s)f(s, x)ds, (10)

whereK(t, s) = T (s)R(t, s). Moreover, we see if u0(x), f(t, x) ≥ 0 for all (t, x) ∈ [0, τ ]×Ω,
then the solution (10) is positive.

Remark 3.1 (1) The quasi semigroup is an alternative approach to solve the non-
autonomous heat equation in [0, τ ]×Rn. In some way, the approach is simpler than the
approach used by Gulisashvili [14]. Moreover, if the potential V verifies Theorem 2.1,
then it belongs to the Kato class Kn or the uniform Kato class An,τ .

(2) The quasi semigroup is also immediately applicable to solve the Schrodinger equa-
tion with a time-dependent potential

i
∂ψ

∂t
(t, x) = −1

2
∆ψ(t, x) + V (t, x)ψ(t, x).

Refer to Evans [2], the quasi semigroups can eliminate the scattering method.

3.2 Wave equation with time-dependent potential

Let Ω be an open bounded set of Rn with a regular boundary ∂Ω. We consider the wave
equation with a time-dependent potential

∂2u

∂t2
(t, x) = ∆u(t, x)− V (t, x)u(t, x) + f(t, x) in (0, τ)× Ω,

u(t, x) = 0 on (0, τ ]× ∂Ω,

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

(11)
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where V is a Lebesgue measurable function on [0, τ ]×Ω and f ∈ L2([0, τ ]×Ω). We also
assume that ∥V ∥∞ := sup(t,x)∈[0,τ ]×Ω |V (t, x)| <∞.

Using the notations as in Section 3.1, we see that Λ = −∆ is strictly positive self-
adjoint operator in the Hilbert space X. We consider a Hilbert space Z = D(

√
Λ) ⊕X

with the generic element

z =

[
z1
z2

]
and the inner product in Z is given by

⟨z, w⟩Z = ⟨
√
Λz1,

√
Λw1⟩X + ⟨z2, w2⟩X .

Define a linear operator A in Z by

A0z =

[
0 1
−Λ 0

] [
z1
z2

]
,

with D(A0) = D(Λ)⊕D(
√
Λ).

Theorem 3.3 If u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω), then the non-autonomous problem

(11) has a unique mild solution u belonging to C([0, τ ], H1
0 (Ω)) ∩ C1([0, τ ], X).

Proof. When setting

Y (t) =

[
u(t, ·)
ut(t, ·)

]
, Q(t) =

[
0 0

−V (t, ·) 0

]
, F (t) =

[
0

f(t, ·)

]
, Y0 =

[
u0
u1

]
,

the problem (11) is equivalent to

Ẏ (t) = A(t)Y (t) + F (t), Y (0) = Y0, t ∈ [0, τ ], (12)

where A(t) = A0 +Q(t). By Proposition 2.12 of [29], we see that A0 is the infinitesimal
generator of a C0-quasi semigroup S(t, s) on Z given by

S(t, s) =

[
cos(

√
Λs) Λ−1/2 sin(

√
Λs)

−Λ1/2 sin(
√
Λs) cos(

√
Λs)

]
.

Since ∥Q(t)∥ ≤ ∥V ∥ <∞ for t ∈ [0, τ ], Theorem 3 of [10] gives that A(t) is the infinites-
imal generator of a C0-quasi semigroup R(t, s) on Z such that

R(r, t) =

∞∑
n=0

Sn(r, t), (13)

where S0(r, t)y = S(r, t)y and Sn(r, t)y =
∫ t

0
S(r + s, t − s)Q(r + s)Sn−1(r, s)yds for

r, t ≥ s ≥ 0, y ∈ Z and n ∈ N. Therefore, Theorem 2.3 implies that the problem (12)
has a unique mild solution given by

Y (t) = R(0, t)Y0 +

∫ t

0

R(s, t− s)F (s)ds. (14)

By Theorem 3.10 of [7], the first component in (14) provides the required solution, u(t, x),
of the problem (11).
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Remark 3.2 (1) Theorem 3.1 is not applicable in the determination of a quasi semi-
group R(t, s) since S(t, s) is not commutative with any nontrivial quasi semigroups.

(2) We stress again that the function Y in (14) is the exact solution to (12) whose
first component is the solution u(t, x) of the problem (11). However, it is not easy to
find the explicit form of R(t, s) in (13). The approximation Y (n), n = 0, 1, 2, . . ., to the
solution Y of (14) gives the properties of u(t, x).

Zero approximation. This is a function Y (0) in the form (14) for R(t, s) = S(t, s).
The first component of Y (0) gives u(0), the zero approximation to the solution of the
problem (11) given by

u(0)(t, ·) = [cos
√
Λt]u0 + [Λ−1/2 sin

√
Λt]u1 +

∫ t

0

Λ−1/2 sin
√
Λ(t− s)f(s, ·)ds. (15)

By the spectral theorem, this solution can be written in the form

u(0)(t, ·) =
∫ ∞

0

cos
√
λt d(E(λ)u0) +

∫ ∞

0

sin
√
Λt√
λ

d(E(λ)u1)

+

∫ ∞

0

∫ t

0

sin
√
λ(t− s)√
λ

f(s, ·)ds d(E(λ)), (16)

where E(λ) ∈ {E(λ)} ≡ {E(λ)}λ∈σ(Λ) is the spectral family for Λ.
The formula (16) indicates that the smoothness of u depends on the smoothness of

the data functions. Moreover, the representation implies that the asymptotic behaviour
of u(t, x) as t → ∞ is closely related to the properties of the spectrum, σ(Λ), and the
spectral family, {E(λ)}.

Taking into account (15) gives the initial value problem

∂2u(0)

∂t2
(t, ·) = ∆u(0)(t, ·) + f(t, ·), u(0)(0, ·) = u0, u

(0)
t (0, ·) = u1.

This shows that u(0) is a solution to the problem (11) without the potential or unper-
turbed problem. The form (14) implies that all subsequent approximations obtained by
taking more terms in (13) are the solutions of a perturbed problem.

First approximation. The first two terms of (13) give

Y (1)(t) = R(0, t)Y0 +

∫ t

0

R(s, t− s)F (s)ds,

where R(r, t) = S(r, t) + S1(r, t). The first component of Y (1) gives u(1) by

u(1)(t, ·) =u(0)(t, ·) +
∫ t

0

[{−Λ−1/2 sin
√
Λ(t− s) cos

√
Λt}V (s)u0

− {Λ−1 sin
√
Λ(t− s) sin

√
Λt}V (s)u1] ds +∫ t

0

∫ t−s

0

{−Λ−1 sin
√
Λ(t− s− η) sin

√
Λη}V (s+ η)f(s, ·)dη ds. (17)

Taking into account (17) gives the initial value problem

∂2u(1)

∂t2
(t, ·) = ∆u(1)(t, ·)− V (t, ·)u(0)(t, ·) + f(t, ·), u(1)(0, ·) = u0, u

(1)
t (0, ·) = u1.
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We see that u(1) is a solution to the wave equation with the nontrivial forcing term on
the right-hand side. In particular, the forcing term depends on the potential V and the
previously approximate solution u(0).

For a realization, we consider problem (11) in one dimensional space with Ω = (0, 1),
τ = 1, the potential V (t, x) = h(x)e−iωt, (t, x) ∈ [0, τ ] × Ω, and f = 0. From (17), the
first approximation solution to the problem (11) in the spectral form is

u(1)(t, ·) =
∫ ∞

0

[a0(λ) sin(
√
λt) + b0(λ) cos

√
λt] d(E(λ)u0)

+

∫ ∞

0

[a1(λ) sin
√
Λt+ b1(λ) cos

√
Λt] d(E(λ)u1), (18)

where

a0(λ) = −4λe−iωt − 4λ+ 2ω2

2
√
λω(4λ− ω2)

h(·)i, b0(λ) =
2
√
λ(4λ− ω2)− (e−iωt − 1)h(·)

2
√
λ(4λ− ω2)

a1(λ) =
4λ− ω2 − 2(e−iωt + 1)h(·)√

λ(4λ− ω2)
, b1(λ) =

4(e−iωt − 1)

ω(4λ− ω2)
h(·)i.

The eigenvalues and eigenvectors of Λ are λn = n2π2 and ϕn(x) =
√
2 sin(nπx),

n = ±1,±2, . . ., respectively. Hence, by the Cauchy theorem, the solution (18) can be
counted as

u(1)(t, x) =

∞∑
n=1

2
[ {
a0(n

2π2) sin(nπt) + b0(n
2π2) cos(nπt)

}
⟨u0, ϕn⟩ϕn(x)

+
{
a1(n

2π2) sin(nπt) + b1(n
2π2) cos(nπt)

}
⟨u1, ϕn⟩ϕn(x)

]
,

where ⟨·, ·⟩ is the inner product in X.

Remark 3.3 (1) We see that if ω2/4 in the resolvent set ρ(Λ) and h is bounded on
Ω, then u(1)(t, x) is bounded as t → ∞. This implies that the solution u(t, x) is also
bounded as t→ ∞.

(2) If ω = 0, then the problem (11) is the wave problem with the time-independent
potential and the first approximation to the solution of the problem (18) can be easily
obtained. Again, the solution is bounded as t→ ∞.

3.3 Nonlinear equations

We shall show that the quasi semigroup approach is applicable to solve the nonlinear
equations. To begin with, we denote by C0(Ω) the Banach space of continuous functions
on Ω that vanish on ∂Ω with the sup norm. Given an initial value u0 ∈ C0(Ω), we
consider the nonlinear version of the non-autonomous heat equation (6)

ut = ∆u− V u+ f(u),

u|∂Ω = 0,

u(0) = u0.

(19)

Theorem 2.3 guarantees that the initial value problem (19) is locally well-posed. More
precisely, there exists a maximal time 0 < τ0 ≤ ∞ and a function u ∈ C ([0, τ0], C0(Ω))∩
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C
(
(0, τ0), C

2(Ω)
)
∩ C1 ((0, τ0), C0(Ω)) which is a classical solution of (19), see [30].

Further, by Theorem 3.2, u is the unique solution of (19) in L∞ ((0, τ)× Ω) for any
0 < τ < τ0 given by

u(t) = K(0, t)u0 +

∫ t

0

K(s, t− s)f(u(s))ds. (20)

It is clear that the global solution u in (20) depends on u0 and the nonlinearity of f .
Recall that the solution u is global if τ0 = ∞, meanwhile u is blowing up in finite time
if τ0 < ∞ and limt→τ0 ∥u(t)∥L∞ = ∞. In particular, for V ≡ 0, the conditions for the
global and blowing up solutions of (19) were discussed in [30]. Analogously, for f and V
are positive, we can verify the conditions of the solution u in (20) to be globally positive.

Remark 3.4 We can also apply the quasi semigroups to solve the nonlinear version
of the Schrodinger equation in Remark 3.1 and the wave equation (11). Further, we can
also classify the nonlinearity of f such that the solutions are global.

4 Conclusions

We have solved the heat and wave equations as prototype problems of the equations with
time-dependent potentials, even for the nonlinear ones. The well-posedness is justified
by C)-quasi semigroups. By the maximum principle, the positivity of the solution of
the heat equations depends on the potential. In the wave equations, the well-posedness
is guaranteed by the bounded potentials. Moreover, although general approximations
cannot be constructed yet, the first two approximations can be constructed.
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