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Abstract: Indonesia has tropical climate so that many crops can be harvested. One
of agricultural problems is the agricultural pest (Nilaparvata lugens) in a rice field.
This pest can be devastated by the natural predator spider (Lycosa pseudoannulata).
To reduce the number of pests, we use pesticide as a control which is applied in
the pest population. For the problem, we can construct the model as a predator-
prey model with the pest as the prey and the spider as the natural predator. This
paper discusses stability analysis and optimal control of the agricultural pest growth
dynamical model by pesticide. In the agricultural pest dynamical model, there are
populations of pests and spiders. From the mathematical model of agricultural pest
growth, we obtain three equilibrium points. We will analyze the stability of each
equilibrium point by using the eigenvalue. In this paper, for the original mathematical
model of agricultural pest growth, we will introduce a control variable, i.e., pesticide.
Then we will formulate an optimal control problem. The forward-backward sweep
method is employed to solve the optimal control problem and to obtain the numerical
solutions. According to simulation results, pesticide usage can minimize the number
of pests achieving the minimum performance index.
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1 Introduction

Indonesia has a tropical climate so that many crops can be harvested. Indonesia has
large fertile lands for rice fields and rice is one of the primary foods in Indonesia. One
of agricultural problems is the agricultural pest (Nilaparvata lugens) in the rice field.
This pest can be devastated by using the natural predator such as the spider (Lycosa
pseudoannulata).

The behavior of the agricultural pest and the natural predator can be constructed
as a predator-prey mathematical model. In a predator-prey model, there are pest and
predator populations. The pest is the attacking organism damaging crops, while the
predator is the eating organism consuming the pest [1]. In this research, the agricultural
pest (Nilaparvata lugens) and the natural predator spider (Lycosa pseudoannulata) will
be included.

In the previous research, there were numerous works on modelling of diseases, for
example, influenza [2, 3], bird flu [4], dengue fever [5, 6], cancer [7] and Corona virus [8].
Generally, the mathematical model of spreading diseases divides the population into
several subpopulations such as the susceptible population, infected population, and re-
covered population [9–11]. For the three subpopulations, we can determine the reproduc-
tion number and the stability by using the available parameters. Let us mention that the
predator-prey model has been used for determining the stability in the case of natural
selection [12].

In order to reduce the number of pests, we use pesticide as a control variable which is
applied in the pest population. However, the usage of pesticide should be proportional.
Using more pesticide causes side effects on crops and high cost of pesticide. On the
other hand, using less pesticide causes pest growth. For the problem, we can construct
a predator-prey model with the pest as the prey and the spider as the natural predator.
This paper focuses on the stability analysis and optimal control of the agricultural pest
growth dynamical model by using pesticide as the control variable.

In the agricultural pest dynamical model, there are two subpopulations: pest and
spider. From the mathematical model of agricultural pest growth, we obtain three equi-
librium points. We will analyze the stability of each equilibrium point by using the
eigenvalue. The first equilibrium point is unstable, whereas the second and third equilib-
riums are stable, which depends on certain conditions. From the preceding mathematical
model of agricultural pest growth, we introduce a control variable that represents pes-
ticide. Next, we formulate an optimal control problem: the objective function and the
constraints. We use the forward-backward sweep method to obtain the solution of the
optimal control problem and to compute the numerical solutions. This method leverages
the state variables with certain initial condition and adjoint variables with certain final
condition [13]. According to the simulation results, pesticide usage can minimize the
number of pests achieving the minimum performance index.

2 Mathematical Model of Agricultural Pest Growth

In the mathematical model of agricultural pest growth, there are two populations used,
namely, the agricultural pest (Nilaparvata lugens) as the prey and the spider (Lycosa
pseudoannulata) as the natural predator. This model can be constructed as a predator-
prey model.
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2.1 Mathematical model

The mathematical model of agricultural pest growth with the functional response of

Holling
γSP

a+ S0
and the denominator being a constant value, can be constructed as follows

[1]:

Ṡ = rS

(
1− S

K

)
− γSP

a+ S0
, (1)

Ṗ =
αγSP

a+ S0
− δP (2)

with the following parameters:
S(t) : the population of the pest (Nilaparvata lugens) as the prey,
P (t) : the population of the spider (Lycosa pseudoannulata) as the natural predator,
r : intrinsic rate of growth of the pest as the prey,
K : environmental carrying capacity of the pest as the prey population,
γ : search rate of the pest as the prey by the predator,
α : conversion factors,
δ : natural death rate of predators,
a : half saturation constant.
From the model, we conclude the following conditions. Without the existence of

predators, the pest as the prey grows based on the logistic function, and without the
existence of the pest as the prey, the predators go away. Based on the natural selection,
the existence of the pest as the prey will increase the predator, and the existence of
predators will decrease the pest as the prey.

2.2 Existence of solutions

The solutions of this problem exist if the populations of predators and preys are greater
than or equal to zero, i.e., S(t) ≥ 0, P (t) ≥ 0. As it will be clear later, the equilibrium
points must satisfy these conditions [14].

2.3 Equilibrium points

In order to compute the equilibrium points, we find the solutions of Ṡ = 0, Ṗ = 0 as
follows:

rS

(
1− S

K

)
− γSP

a+ S0
= 0, (3)

αγSP

a+ S0
− δP = 0. (4)

By using simple algebraic manipulations, from (3) and (4), we obtain the following equi-
librium points:

1. Equilibrium point 1 : Se1 = 0, Pe1 = 0;

2. Equilibrium point 2 : Se2 = K, Pe2 = 0;

3. Equilibrium point 3 : Se3 =
δ(a+ S0)

αγ
, Pe3 =

(a+ S0)r(αγK − δ(a+ S0))

αγ2K
.

Next, we analyze the stability of each equilibrium point by using the eigenvalue method
of the Jacobian matrix.
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2.4 Stability analysis

First of all, we derive the Jacobian matrix from (1) and (2). In order to simplify the
notations in the Jacobian matrix, we introduce

f1 = rS

(
1− S

K

)
− γSP

a+ S0
− εuS,

f2 =
αγSP

a+ S0
− δP.

Then the Jacobian matrix is

Jac =


∂f1
∂S

∂f1
∂P

∂f2
∂S

∂f2
∂P

 =


r − 2(

r

K
)S − γP

a+S0
− γS

a+ S0

αγP

a+ S0

αγS

a+ S0
− δ

 . (5)

In order to analyze the stability, we compute the eigenvalue of the Jacobian matrix by
using the formula det(λI − Jac) = 0 after substituting the equilibrium points. The
equilibrium point is stable if the real parts of all eigenvalues are negative. Based on
these conditions, we can conclude that

1. Equilibrium point 1 : Se1 = 0, Pe1 = 0 is always unstable;

2. Equilibrium point 2 : Se2 = 0, Pe2 = 0 is stable if
αγK

δ(a+ S0)
< 1;

3. Equilibrium point 3 : Ss3 =
δ(a+ S0)

αγ
, Pe3 =

(a+ S0)r(αγK − δ(a+ S0))

αγ2K
is

stable if
αγK

δ(a+ S0)
> 1.

3 Optimal Control of Agriculture Pest Growth

In the optimal control of agricultural pest growth, we introduce a control variable u. The
control variable is used to reduce the number of pests. The effectiveness range of the
control variable u lies in the interval [0, 1], where the value of 0 represents the failure
of control functions or the control functions are not to be applied, and the value of 1
represents the successful control functions or the control functions are applied to the
entire population. Therefore, after introducing the control variable u, the mathematical
model in (1) and (2) becomes (6) and (7), respectively.

Ṡ = rS

(
1− S

K

)
− γSP

a+ S0
− εuS, (6)

Ṗ =
αγSP

a+ S0
− δP (7)

with ε being the rate of reducing the pest as the prey due to pesticide.
Now, we formulate an optimal control problem. First, we define an objective function.

The objective function is minimizing the number of pests and the cost of pesticides. As



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (3) (2022) 281–290 285

such, the objective function is defined as follows:

J =

∫ 0

T

(A1S +A2u
2) dt, (8)

where the weights A1 > 0, A2 > 0 are associated with the number of pests as the prey
and the cost of pesticides, respectively. The solution is an optimal control u∗.

3.1 Pontryagin’s maximum principle

If u is an optimal control associated with the state of the system, then there exist adjoint
variables

(
λS λP

)
that satisfy the following conditions [10]:

λ̇S = −∂H

∂S
= −A1 − λS

(
1− S

K

)
− γSP

a+ S0

(
r − 2r

K
S − γP

a+ S0
− εu

)
− λP

(
αγP

a+ S0

)
(9)

λ̇P = −∂H

∂P
= −λS

(
− γS

a+ S0

)
− λP

(
αγS

a+ S0
− δ

)
(10)

λS(T ) = λP (T ) = 0, (11)

where the Hamiltonian is

H = A1S +A2u
2 +

(
λS λP

)


rS

(
1− S

K

)
− γSP

a+ S0
− εuS

αγSP

a+ S0
− δP

 . (12)

An optimal control u∗ is obtained as follows:

∂H

∂u
= 0, (13)

2A2u+ λS(−εS) = 0, (14)

u = min

(
1,max

(
0,

λS εS

2A2

))
. (15)

3.2 Forward-backward sweep method

In order to compute the optimal control, we use the forward-backward sweep method.
When we apply the method to the optimal control problem of agricultural pest growth,
the steps are as follows [15]. Notice that the state and adjoint variables are

f1 = rS

(
1− S

K

)
− γSP

a+ S0
− εuS,

f2 =
αγSP

a+ S0
− δP,

g1 = −A1 − λS

(
r − 2r

K
S − γP

a+ S0
− εu

)
− λP

(
αγP

a+ S0

)
,

g2 = −λS

(
− γS

a+ S0

)
− λP

(
αγS

a+ S0
− δ

)
.



286 T. HERLAMBANG, A.Y.P. ASIH, D. RAHMALIA, D. ADZKIYA AND N. AINI

Next, we describe the forward-backward sweep method. The method is written as an
algorithm so that we can implement the method easily. Here is the complete algorithm:

uold = u.

1. Calculate the solution of state variables, where the initial conditions are S0, P0,
by using the Runge-Kutta fourth-order method. For the agricultural pest growth
model, the steps are

k11 = f1 (Si, Pi, ui) ,

k12 = f2 (Si, Pi, ui) ,

k21 = f1

(
Si +

h

2
k11, Pi +

h

2
k12,

ui + ui+1

2

)
,

k22 = f2

(
Si +

h

2
k11, Pi +

h

2
k12,

ui + ui+1

2

)
,

k31 = f1

(
Si +

h

2
k21, Pi +

h

2
k22,

ui + ui+1

2

)
,

k32 = f2

(
Si +

h

2
k21, Pi +

h

2
k22,

ui + ui+1

2

)
,

k41 = f1 (Si + hk31, Pi + hk32, ui+1) ,

k42 = f2 (Si + hk31, Pi + hk32, ui+1) ,

Si+1 = Si +
h

6
(k11 + 2k21 + 2k31 + k41) ,

Pi+1 = Pi +
h

6
(k12 + 2k22 + 2k32 + k42) .

2. Calculate the solution of adjoint variables, where the final conditions are
λN(T ),λP (T ), by using the Runge-Kutta fourth-order method as follows:

l11 = g1
(
λS(i), λP (i), Si, Pi, ui

)
,

l12 = g2
(
λS(i), λP (i), Si, Pi, ui

)
,

l21 = g1

(
λS(i) −

h

2
l11, λP (i) −

h

2
l12,

Si + Si−1

2
.
Pi + Pi− 1

2
,
ui + ui−1

2

)
,

l22 = g2

(
λS(i) −

h

2
l11, λP (i) −

h

2
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Si + Si−1

2
.
Pi + Pi− 1

2
,
ui + ui−1

2

)
,

l31 = g1

(
λS(i) −

h

2
l21, λP (i) −

h

2
l22,

Si + Si−1

2
.
Pi + Pi− 1

2
,
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2

)
,

l32 = g2

(
λS(i) −

h

2
l21, λP (i) −

h

2
l22,

Si + Si−1

2
.
Pi + Pi− 1

2
,
ui + ui−1

2

)
,

l41 = g1
(
λS(i) − hl31, λP (i) − hl32, Si−1, Pi−1, ui−1

)
,

l42 = g2
(
λS(i) − hl31, λP (i) − hl32, Si−1, Pi−1, ui−1

)
,

λS(i−1) = λS(i) −
h

6
(l11 + 2l21 + 2l31 + l41) ,

λP (i−1) = λS(i) −
h

6
(l12 + 2l22 + 2l32 + l42) .
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3. Calculate the optimal control u∗ using (15).

4. Update the optimal control

u← u+ uold

2
. (16)

5. Calculate the performance index as the value of objective function

J(u) =

T−1∑
k=0

(
A1S(k)

2 +A2u(k)
2
)
. (17)

4 Simulation Results

To simulate the closed-loop system, we need to define the parameters. Table 1 describes
the parameters used in the simulation.

Table 1: Parameters of optimal control of agricultural pest growth.

Parameters Value
The population of the pest (Nilaparvata lugens) as the prey S(0) 20

The population of the spider (Lycosa pseudoannulata) as 10
the natural predator P (0)

Intrinsic rate of growth of the pest as the prey r 1
Environmental carrying capacity of the pest as the prey population K 30

Search rate of the pest as the prey by the predator γ 1
Natural death rate of the predator δ 0.6

Half saturation constant a 10
Rate of reducing the pest as the prey due to pesticide ε 5
Weight related to the number of the pest as the prey A1 1

Weight related to the cost of pesticide A2 2

The simulation results are applied with two parts because there are three equilibrium
points, but an equilibrium (equilibrium of type 1) is unstable. In the first simulation,
the conversion factor α = 0.1, and in the second simulation, the conversion factor α = 8.

4.1 Simulation with equilibrium point of type 2

In this simulation, conversion factors α = 1 will be applied. From the results, we obtain

αγK

δ(a+ S0)
=

(0.1)(1)(30)

0.6(10 + 20)
=

3

18
= 0.167 < 1.

At the equilibrium point of type 2, the equilibrium point is stable if
αγK

δ(a+ S0)
< 1. The

numerical simulation with the equilibrium point of type 2 can be seen in Figure 1 and
Figure 2 (left).

Figure 1 (left) displays the number of agricultural pests (Nilaparvata lugens) as preys
while Figure 1 (right) displays the number of spiders (Lycosa pseudoannulata) as natural
predators. In Figure 1 (left), the number of pests as preys with pesticide control is
smaller than the number of pests as the prey without control. In Figure 1 (right), the
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Figure 1: The left panel represents the numerical solution of the number of agricultural pests
(Nilaparvata lugens) as preys. The right panel denotes the numerical simulation of the number
of spiders (Lycosa pseudoannulata) as natural predators.

number of predators with pesticide control tends to 0 and is almost similar to the number
of predators without control because pesticide is only applied in the pest population.

Figure 2 (left) shows the optimal control of pesticide used. Initially, the pesticides
are given to around 95% of the population. Then the number of individuals receiving
the pesticides is decreasing. When t ≥ 10, the pesticides are given to around 55% of the
population.

Figure 2: The left panel denotes the optimal control of pesticides. The right panel represents
the numerical solution of the number of agricultural pests (Nilaparvata lugens) as preys.

4.2 Simulation with equilibrium of type 3

In this simulation, conversion factors α = 8 will be applied. From the results, we obtain

αγK

δ(a+ S0)
=

(8)(1)(30)

0.6(10 + 20)
=

240

18
= 13.33 > 1.
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At the equilibrium point of type 3, the equilibrium point is stable if
αγK

δ(a+ S0)
> 1.

Numerical simulation with the equilibrium point of type 3 can be seen in Figure 2 (right)
and Figure 3.

Figure 2 (right) shows the number of agricultural pests (Nilaparvata lugens) as preys,
while Figure 3 (left) displays the number of spiders (Lycosa pseudoannulata) as natural
predators. Both Figure 2 (right) and Figure 3 (left) show fluctuative graphs. When pests
as the prey increase, then predators follow the increase, and if pests as the prey decrease,
then predators follow the decrease. The pesticide as the control can cause the number
of pests as the prey to decrease. However, it also affects predators so that predators
also decrease. Figure 3 (right) shows the optimal control of pesticide used. Initially,

Figure 3: The left panel represents the numerical simulation of the number of spiders (Lycosa
pseudoannulata) as natural predators. The right panel denotes the optimal control of pesticides.

the pesticides are given to around 88% of the population. After that, the number of
individuals receiving the pesticides is decreasing. Starting from t = 4, the number of
individuals receiving the pesticides is fluctuating between 0 and 3.8.

5 Conclusions

In the agricultural pest dynamical model, there are populations of the pest and the spider.
From the mathematical model of agriculture pest growth, we obtain three equilibrium
points. We analyze the stability of each equilibrium point by using the eigenvalue. The
first equilibrium point is unstable, whereas the second and third equilibriums are stable
if certain conditions are satisfied. Furthermore, we have introduced a control variable,
which represents pesticide, in the agricultural pest growth model. We have formulated
an optimal control problem and solved it numerically. Moreover, we have conducted
several simulations to show the effectiveness of the proposed method.
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