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Abstract: In this paper, we study a model of dynamic von Karman equation coupled
to the thermoelastic equation, with rotational forces and not clamped boundary con-
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of a weak solution for the so-called global energy. In the end, we display a numerical
simulation.
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1 Introduction

In nonlinear oscillation of elastic plates, a dynamic von Karman equation with rotational
forces, (α > 0) [1], describes the buckling and flexible phenomenon of small nonlinear
vibration of vertical displacement to the elastic plates. In nonlinear thermoelastic plate
interaction, we study in this paper the case when the plate is coupled with thermal
dissipation. From physical point of view, the main peculiarities of the model are the
possibility of large deflections of the plate and small changes of the temperature near the
reference temperature of the plate. As is well-known, the model with clamped boundary
conditions, taking and not taking into account the rotational terms, for displacement u,
the Airy stress function ϕ and the thermal function θ, can be formulated by the following
system, see for instance [1].
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Find (u, ϕ, θ) ∈
(
L2([0, T ] , (H2

0 (ω))
2
)
×H1

0 (ω) such that

(P0)



utt − α∆utt +∆2u+ µ∆θ − [ϕ+ F0, u] = p(x) in ω × [0, T ] ,

kθt − η∆θ − µ∆ut = 0 in ω × [0, T ] ,

u|t=0
= u0, (ut)|t=0

= u1, θ|t=0
= θ0 in ω,

u = ∂νu = 0 on Γ× [0, T ] ,

θ = 0 on Γ,

and

(Q)

 ∆2ϕ+ [u, u] = 0 in ω × [0, T ] ,

ϕ = 0, ∂νϕ = 0 on Γ× [0, T ] ,

where ω is the surface plate, u0, u1 and θ0 are the initial data and [., .] is the so-called
Monge-Ampère operator defined by [2]

[ϕ, u] = ∂11ϕ∂22u+ ∂11u∂22ϕ− 2∂12ϕ∂12u. (1)

The parameters µ, η are positive and α, k are non negative. The case α > 0 corre-
sponds to the equation with rotational term. But the parameter k has the meaning of
heat/thermal capacity. Now, in the case k = 0 and α = 0, the model (P0) without rota-
tional inertia can be decoupled, if we substitute ∆θ from the second equation, the first
equation becomes just a model of dynamic von Karman equations with internal viscous
damping [1].

The plate is subjected to the internal force F0 and external force p0. In [1], Chueshov
and Lasiecka studied the problem of structural interaction coupled with the von Karman
evolution and established the theoretical result for a strong, generalized and weak solution
by using the theory of nonlinear semi-group, if one chooses 0 ≤ α ≤ 1 and 0 ≤ k ≤ 1. To
justify the uniqueness, the authors used the limit definition of a generalized solution along
weak continuity of the nonlinear terms involving the Airy stress function and known Lip
continuity of the von Karman bracket with the Airy stress function.

The aim of this paper is to give a condition verified by the external, internal loads
and the initial datums to have a unique weak solution of the von Karman evolution with
rotational terms and not clamped boundary conditions subject to thermal dissipation
and for all α > 0, k > 0 and 0 < µ ≤ η. Our approach is based on an iterative problem
(Pn)n≥0 whose sequence-solution (un, ϕn, θn)n≥0 converges to the unique solution of the
problem under consideration.

This paper is organized as follows. Section 2 is devoted to the description of the
mathematical structure of the model. In Section 3, we use the iterative method for
establishing the uniqueness of weak solution of the associated dynamical plates with
rotational terms, subject to thermal dissipation. In Section 3, we describe the numerical
test.

2 Preliminary Results and Needed Tools

Throughout the following consideration, ω denotes a nonempty bounded domain in R2,
with the regular boundary Γ = ∂ω and α > 0, k > 0, 0 < µ ≤ η are the reals.
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Let p ≥ 1 be a real number and m ≥ 1 be an integer. We denote by |.|p,ω the classical
norm of Lp(ω) and by ∥.∥m,ω that of Hm(ω). For u ∈ H2(ω), we set ∥u∥ = |∆u|2,ω for
the sake of simplicity. We also set

W (0, T ) =
{
u, u ∈ L2

(
[0, T ] , H2

0 (ω)
)
, ut ∈ L2

(
[0, T ] , L2(ω)

)}
,

which is a Hilbert space with the associated norm(
|u|2

L2
(
[0,T ],H2

0 (ω)
) + |ut|2

L2
(
[0,T ],L2(ω)

))1/2

.

In this paper, for the sake of simplicity, we denote

∥u∥α = ∥u∥2 + α |∇ut|22,ω + |ut|22,ω . (2)

We recall the following result [3, 4].

Theorem 2.1 Let f ∈ L2(ω). Then the following problem:
∆2v = f in ω,

v = 0 on Γ,

∂νv = 0 on Γ,

has one and only one solution v ∈ H2
0 (ω) ∩H4(ω) satisfying

∥v∥ ≤ c0 |f |1,ω
for some constant c0 > 0 depending only on mes(ω).

The following remark is of interest.

Remark 2.1 If the function f is in L2
(
[0, T ] , L2(ω)

)
, then the unique solution of

the last problem is in L2
(
[0, T ] , H2

0 (ω) ∩H4(ω)
)
.

We also need to recall the following result [4, 5].

Theorem 2.2 Let g ∈ L2
(
[0, T ] , L2(ω)

)
, u0 ∈ L2(ω) and k, η, µ are non negative

reals. Then the following problem :

(D)



kut − η∆u = µg in ω × [0, T ] ,

u|t=0
= u0 in ω,

u = 0 on Γ× [0, T ] ,

has one and only one solution u ∈ C
(
[0, T ] ;H2(ω) ∩H1

0 (ω)
)
∩ C1

(
[0, T ] ;L2(ω)

)
.

Proposition 2.1 Under the assumptions of Theorem 2.2 and if we choose g = −∆f ,
then the unique solution of the problem (D) satisfies the following inequality:

∀0 ≤ t ≤ T, k |u|22,ω + η

∫ t

0

|∇u|22,ω ≤ k |u0|22,ω + µ

∫ t

0

|∇f |22,ω , (3)

where f ∈ H2(ω), k > 0 and 0 < µ ≤ η.
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Proof. Since u is a solution of the problem (D), we have

k

2

d

dt
|u|22,ω + η |∇u|22,ω =

∫
ω

gu =

∫
ω

−∆fu =

∫
ω

∇f∇u ≤ 1

2
|∇f |22,ω +

1

2
|∇u|22,ω .

Now, if we integrate the latter inequality with respect to t > 0, we then deduce, by using
the fact that (u)|t=0

= u0 in ω,

k

2
|u|22,ω + η

∫ t

0

|∇u|22,ω ≤ k

2
|u0|22,ω +

µ

2

∫ t

0

|∇f |22,ω +
µ

2

∫ t

0

|∇u|22,ω ,

we have that 0 ≺ µ ≤ η, then we conclude that

k |u|22,ω + η

∫ t

0

|∇u|22,ω ≤ k |u0|22,ω + µ

∫ t

0

|∇f |22,ω .

The following theorem is of interest, see [1].

Theorem 2.3 Assume that for f ∈ L2(ω), α > 0 and (u0, u
1) ∈ H2

0 (ω)×H1
0 (ω), the

problem

(S)



(1− α∆)utt +∆2u = f in ω × [0, T ] ,

u = ∂νu = 0 on Γ× [0, T ] ,

u|t=0
= u0, (ut)|t=0

= u1 in ω,

has a unique solution (u, ut) ∈ C([ 0, T ] , H2
0 (ω)×H1

0 (ω)), and the energy equality

E0(u, ut) = E0(u0, u
1) +

∫ t

0

∫
ω

fut

holds, here

E0(u0, u
1) =

1

2

∫
ω

(∥u0∥22,ω +
∣∣u1∣∣2

2,ω
+ α

∣∣∇u1∣∣2
2,ω

).

Now, let us put
F1(u, ϕ) = [ϕ+ F0, u]. (4)

Before giving our main result, we now state the following results.

Proposition 2.2 Let (u, v) ∈ (H2
0 (ω))

2 and F0 ∈ H4(ω) be with small norms. Let
ϕ, φ ∈ H2

0 (ω) be the solutions of the following two problems:

∆2ϕ = − [u, u] and ∆2φ = − [v, v] .

Then the following estimations:∣∣∣ [u, ϕ]− [v, φ]
∣∣∣
2,ω

≤ c1∥u− v∥

and
∥F1(u, ϕ)− F1(v, φ)∥(L2(ω))3 ≤ c1 ∥u− v∥

hold for some 0 < c1 < 1.
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Proof. Following [1], we have∣∣∣ [u, ϕ]− [v, φ]
∣∣∣
2,ω

≤ c0
(
∥u∥2 + ∥v∥2

)
∥u− v∥

for some c0 > 0. Let c > 0 be small enough such that ∥u∥ ≤ c and ∥v∥ ≤ c. We have∣∣∣ [u, ϕ]− [v, φ]
∣∣∣
2,ω

≤ 2c0c
2 ∥u− v∥

and so

∥F1(u, ϕ)− F1(v, φ)∥(L2(ω))3 ≤
∣∣∣ [ϕ+ F0, u ]− [φ+ F0, v ]

∣∣∣
2,ω
,

≤
∣∣∣ [ϕ, u ]− [φ, v ]

∣∣∣
2,ω

+
∣∣∣ [F0, u− v ]

∣∣∣
2,ω
,

≤
(
2c0c

2 + 4 ∥F0∥4,ω
)
∥u− v∥ .

If we choose

∥F0∥4,ω <
1

4
and 0 < c <

√
1− 4 ∥F0∥4,ω

2c0
,

we have
0 < c1 = 2c0c

2 + 4 ∥F0∥4,ω < 1,

we then conclude the proof. The following proposition is of interest.

Proposition 2.3 Let f ∈ L2([0, T ], L2(ω)), θ0 ∈ H1
0 (ω) and (u0, u

1) ∈ H2
0 (ω) ×

H1
0 (ω). The following problem :

(S1)



(u)tt − α∆(u)tt +∆2u+ µ∆θ = f in ω × [0, T ] ,

kθt − η∆θ = µ∆ut in ω × [0, T ] ,

u = ∂νu = θ = 0 on Γ× [0, T ] ,

(u)|t=0
= u0, (ut)|t=0

= u1, (θ)|t=0
= θ0 in ω,

has one and only one solution (u, θ) ∈ L2([ 0, T ] , H2
0 (ω) × H1

0 (ω)) and ut ∈
L2([ 0, T ] , H1

0 (ω)) satisfies

∥u∥α + k |θ|22,ω + 2η

∫ t

0
|∇θ|22,ω ≤ eT

(
∥u0∥2 + α

∣∣∇u1
∣∣2
2,ω

+
∣∣u1

∣∣2
2,ω

+ k |θ0|22,ω +

∫ T

0
|f |22,ω

)
. (5)

Proof. For establishing the existence and uniqueness of solution of the problem under
consideration, we will study the problem (S)1 by considering the n-order approximate
solution and we use the variational problem.
Let { ek, e1k } be a basis in the space H2

0 (ω) × H1
0 (ω). We define an n-order Galerkin

approximate solution to the problem (S)1 with clamped boundary conditions on the
interval [ 0, T ], as a function (un(t), θn(t)) of the form, see for instance [1, 6],

un =

n∑
k=1

hk(t)ek and θn =

n∑
k=1

lk(t)e
1
k n = 1, 2, 3, ...,
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where (hk(t), lk(t)) ∈ W 2,+∞(0, T, IR) ×W 1,+∞(0, T, IR) and ϕn is determined by un

according to the problem (Q) and (un0, θn0), un1 are chosen such that (un0, θn0) converges
to (u0, θ0) in L

2([0, T ] , H2
0 (ω)×H1

0 (ω)) and un1 converges to u1 in L2([0, T ] , H1
0 (ω)).

Let the variational problem of (S)1 be∫
ω

unttu
n
t + α

∫
ω

∇untt∇unt +

∫
ω

∆un∆unt + µ

∫
ω

∆θnunt =

∫
ω

funt

and ∫
ω

θnt θ
n − η

∫
ω

(∇θn)2 = µ

∫
ω

∆unt θ
n.

Since (unt , θ
n) ∈ H2

0 (ω)×H1
0 (ω) and

∫
ω
∆θnunt =

∫
ω
θn∆unt , we have

1d

2dt
(|unt |

2
2,ω + ∥un∥2 + α |∇unt |

2
2,ω) + µ

∫
ω

θn∆unt =

∫
ω

funt ,

and
kd

2dt
|θn|22,ω + η |∇θn|22,ω =

∫
ω

∆θnunt .

Hence

1d

2dt
(|unt |

2
2,ω + ∥un∥2 + α |∇unt |

2
2,ω) +

kd

2dt
|θn|22,ω + η |∇θn|22,ω =

∫
ω

funt .

Now, if we integrate the latter inequality with respect to t > 0, with (2) and by using
the fact that un|t=0 = un0, (u

n
t )|t=0 = un1 and θn|t=0 = θn0, we deduce that

1

2
(∥un∥α + k |θn|22,ω) + η

∫ t

0
|∇θn|22,ω =

1

2
(|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω) +

∫ t

0

∫
ω
fun

t .

And for all 0 ≤ s ≤ t,

∥un∥α+k |θ
n|22,ω+2η

∫ t

0

|∇θn|22,ω ≤ |un1|22,ω+α |∇un1|22,ω+∥un0∥2+k |θn0|22,ω+
∫ T

0

|f |22,ω

+

∫ t

0

(
∥un∥α + k |θn|22,ω + 2η

∫ s

0

|∇θn|22,ω
)
. (6)

For any 0 ≤ s ≤ t, we put

I(s) = ∥un∥α + k |θn|22,ω + 2η

∫ s

0

|∇θn|22,ω .

The inequality (6) yields

e−s
(
I(s)−

∫ s

0

I(σ)dσ
)
≤ e−s

(
|un1|22,ω +α |∇un1|22,ω + ∥un0∥2+k |θn0|22,ω +

∫ T

0

|f |22,ω
)
.

Now, we have

d
ds

(
e−s

∫ s

0
I(σ)dσ

)
= e−sI(s)− e−s

∫ s

0
I(σ)dσ = e−s

(
I(s)−

∫ s

0
I(σ)dσ

)
,

≤ e−s
(
|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω +

∫ T

0
|f |22,ω

)
,
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and

|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω +

∫ T

0

|f |22,ω = I(0) +

∫ T

0

|f |22,ω

does not depend on s, then∫ t

0

d

ds

(
e−s

∫ s

0

I(σ)dσ
)
ds ≤ (

∫ t

0

e−sds)
(
|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω

+

∫ T

0

|f |22,ω
)
,

from which we deduce

e−t

∫ t

0

I(σ)dσ ≤ (1− e−t)
(
|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω +

∫ T

0

|f |22,ω
)
.

Since ∫ t

0

(∥un∥α + k |θn|22,ω + 2η

∫ s

0

|∇θn|22,ω) =
∫ t

0

I(σ)dσ,

it follows that∫ t

0
I(σ)dσ ≤ (1−e−t)

e−t

(
|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω +

∫ T

0
|f |22,ω

)
,

≤ (et − 1)
(
|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω +

∫ T

0
|f |22,ω

)
,

≤ (eT − 1)
(
|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω +

∫ T

0
|f |22,ω

)
.

This, with (6), yields

∥un∥α + k |θn|22,ω + 2η
∫ t
0 |∇θn|22,ω ≤

(
|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω +

∫ T
0 |f |22,ω

)
+(eT − 1)

(
|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω +

∫ T
0 |f |22,ω

)
,

≤ eT
(
|un1|22,ω + α |∇un1|22,ω + ∥un0∥2 + k |θn0|22,ω +

∫ T
0 |f |22,ω

)
.

This estimate implies that there exists a subsequence (unl , θnl) such that
(unl , θnl) ⇀ (u, θ) weakly in H2

0 (ω) × L2(ω)) and ((unl)t,∇θnl) ⇀ ((u)t,∇θ) weakly in
H1

0 (ω)× L2(ω).
For showing that (u, θ) is a weak solution of the problem (S)1, we use the same method

as in [6]. Let φj ∈ C1(0, T ), 1 ≤ j ≤ j0, such that φj(T ) = 0 and

ψ =

j0∑
j=1

φj ⊗ ej , φ =

j0∑
j=1

φj ⊗ e1j .

After the variational problem, we have

−
∫ T

0

∫
ω

unlt ψt + α

∫ T

0

∫
ω

∇unlt ∇ψt + µ

∫ T

0

∫
ω

∇θnl∇ψ +

∫ T

0

∫
ω

∆unl∆ψ
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=

∫ T

0

∫
ω

fψ −
∫
ω

unl1ψ(0)− α

∫
ω

∇unl1∇ψ(0) (7)

and

−
∫ T

0

(∫
ω
θnlφt + η

∫
ω
∇θnl∇φ− µ

∫
ω
∇unl∇φt

)
= −

∫
ω
θnl0φ(0) + µ

∫
ω
∇unl1∇φ(0). (8)

Now, we can pass to the limit nl → +∞, in (7) and (8), we find that for all
ψ ∈ L2([0, T ], H2

0 (ω)), ψt ∈ L2([0, T ], H1(ω)), φ ∈ L2([0, T ], H1
0 (ω)) and φt ∈

L2([0, T ], L2(ω)) such that ψ(T ) = φ(T ) = 0. We deduce that

−
∫ T

0

∫
ω

utψt + α

∫ T

0

∫
ω

∇ut∇ψt + µ

∫ T

0

∫
ω

∇θ∇ψ +

∫ T

0

∫
ω

∆u∆ψ

=

∫ T

0

∫
ω

fψ −
∫
ω

u1ψ(0)− α

∫
ω

∇u1∇ψ(0)

and

−
∫ T

0

(∫
ω
θφt + η

∫
ω
∇θ∇φ− µ

∫
ω
∇u∇φt

)
= −

∫
ω
θ0φ(0) + µ

∫
ω
∇u1∇φ(0).

This shows that (u, θ) is a weak solution of the problem (S)1, by the some method as in
the last proof, we deduce the following inequality:

∥u∥α+k |θ|22,ω +2η

∫ t

0

|∇θ|22,ω ≤ eT (
∣∣u1∣∣2

2,ω
+α

∣∣∇u1∣∣2
2,ω

+ ∥u0∥2+k |θ0|22,ω +

∫ T

0

|f |22,ω).

For the uniqueness, let (u1, θ1) and (u2, θ2) be two solutions. We use a similar proof
as that of inequality (5), for the solution (u1 − u2, θ1 − θ2) of the following problem:

(1− α∆)(u1 − u2)tt +∆2(u1 − u2) + µ∆(θ1 − θ2) = 0 in ω × [0, T ] ,

k(θ1 − θ2)t − η∆(θ1 − θ2) = µ∆(u1 − u2)t in ω × [0, T ] ,

θ1 − θ2 = u1 − u2 = ∂ν(u1 − u2) = 0 on Γ× [0, T ] ,

(u1 − u2)|t=0
= 0, ((u1 − u2)t)|t=0

= 0, (θ1 − θ2)|t=0
= 0 in ω,

it follows that

∥u1 − u2∥α + k |θ1 − θ2|22,ω + 2η

∫ t

0

|∇(θ1 − θ2)|22,ω ≤ eT (
∣∣(u1)1 − (u2)

1
∣∣2
2,ω

+ ∥(u1)0 − (u2)0∥2 + α
∣∣∇((u1)

1 − (u2)
1)
∣∣2
2,ω

+ k |(θ1)0 − (θ2)0|22,ω).

Then u1 = u2 and θ1 = θ2. The proof of the proposition is completed.

3 Iterative Approach: The Main Results

For establishing the existence and uniqueness of solution of the problem (P0) in the case
of rotational terms α > 0, we use the following iterative approach.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (3) (2022) 263–280 271

Let n ≥ 2 and let 0 ̸= u1 ∈ H2
0 (ω) be given. We first find ϕn−1 ∈ H2

0 (ω) as the
solution of the equation ∆2ϕn−1 = − [un−1, un−1] and (un, θn) as the solution of the
following problem:

(Pn)



(un)tt − α∆(un)tt +∆2un = F (un−1, ϕn−1, θn) in ω × [0, T ] ,

k(θn)t − η∆θn = µ∆(un)t in ω × [0, T ] ,

un = ∂νun = θn = 0 on Γ× [0, T ] ,

(un)|t=0
= u0, ((un)t)|t=0

= u1, (θn)|t=0
= θ0 in ω,

where
F (u, ϕ, θ) = F1(u, ϕ)− µ∆θ + p,

and F1 is defined by (4).
We are now in a position to state our main result of this section.

Theorem 3.1 Let p ∈ L2(ω), (u0, u
1) ∈ H2

0 (ω) ×H1
0 (ω) and θ0 ∈ H1

0 (ω). Assume
that all the following quantities:

∥F0∥4,ω , |p|2,ω , ∥u0∥
2
+
∣∣u1∣∣2

2,ω
+ α

∣∣∇u1∣∣2
2,ω

and ∥θ0∥21,ω

are small with 0 < µ ≤ η. Then the problem (P0) with rotational forces has one and
only one weak solution (u, ϕ, θ) in L2

(
[0, T ] , H2

0 (ω) × H2
0 (ω) × H1

0 (ω)
)
such that ut ∈

L2
(
[0, T ] , H1

0 (ω)
)
and utt ∈ L2

(
[0, T ] , L2(ω)

)
.

Proof. We divide the proof into four steps.
Step 1: Let us consider the problem (Pn), where 0 ̸= u1 does not depend on t.
Throughout this proof, we use the notation

∥(u, θ)∥∗ = ∥u∥α + k |θ|22,ω + 2η

∫ t

0

|∇θ|22,ω ,

where ∥.∥α is defined by (2). According to Proposition 2.2 and Theorem 2.1, there exists
a constant c0 > 0. Now, for ∥F0∥4,ω <

1
4 , we can choose c := c(∥F0∥4,ω , c0, T ) > 0 such

that

0 < 4c0c < 1, 0 < c <

√
1− 4 ∥F0∥4,ω

2c0
and ∥u1∥2,ω < c < 1.

By a mathematical induction on n ≥ 1, we will prove that the following two inequalities:

∥u∥α = ∥un∥2 + α |∇(un)t|22,ω + |(un)t|22,ω ≤ ∥u1∥22,ω and ∥ϕn∥2,ω ≤ ∥u1∥2,ω

hold for all n ≥ 1 and any 0 ≤ t ≤ T . For n = 1, we have

∥u1∥α = ∥u1∥2 + |(u1)t|22,ω = ∥u1∥22,ω

since u1 does not depend on t. Otherwise, for ϕ1 being the solution of the problem
∆2ϕ1 = − [ u1, u1 ], Theorem 2.1 ensures that there exists c0 > 0 such that

∥ϕ1∥2,ω ≤ c0 |[ u1, u1 ]|1,ω ,
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using the proof of Proposition 2.2 with ∥u1∥2,ω < c and 0 < 4c0c < 1, we can deduce
that

∥ϕ1∥2,ω ≤ 4c0 ∥u1∥22,ω ≤ 4c0c ∥u1∥2,ω ≤ ∥u1∥2,ω .

The desired inequalities are true for n = 1.
Suppose that for k = 2, ..., n and 0 ≤ t ≤ T , we have

∥uk∥α ≤ ∥u1∥22,ω and ∥ϕk∥2,ω ≤ ∥u1∥2,ω .

According to Proposition 2.2 and Theorem 2.1, we have

∥ϕn∥2,ω ≤ c0 |[ un, un ]|1,ω ≤ 4c0 ∥un∥2 ≤ 4c0c ∥un∥ ≤ c1 ∥un∥ .

Since un+1 is a solution of (Pn+1), Proposition 2.3, Proposition 2.2 and Theorem 2.1
imply that there exists 0 < c1 = 2c0c

2 + 4 ∥F0∥4,ω < 1 such that

∥(un+1, θn+1)∥∗ ≤ eT (∥u0∥2 + α
∣∣∇u1∣∣2

2,ω
+ k |θ0|22,ω +

∣∣u1∣∣2
2,ω

+
∫ T

0
(∥F1(un, ϕn)∥(L2(ω))2

+p)2 ≤ eT (∥u0∥2 + α
∣∣∇u1∣∣2

2,ω
+ k |θ0|22,ω +

∣∣u1∣∣2
2,ω

+ 2
∫ T

0

(
∥F1(un, ϕn)∥2(L2(ω))2 ,

+ |p|22,ω
)
≤ eT (∥u0∥2 + α

∣∣∇u1∣∣2
2,ω

+ k |θ0|22,ω +
∣∣u1∣∣2

2,ω
+ 2

∫ T

0
c21 ∥un∥

2
+ 2T |p|22,ω),

≤ eT (∥u0∥2 + α
∣∣∇u1∣∣2

2,ω
+
∣∣u1∣∣2

2,ω
+ k |θ0|22,ω + 2

∫ T

0
c1 ∥un∥2 + 2T |p|22,ω),

≤ eT (∥u0∥2 + α
∣∣∇u1∣∣2

2,ω
+
∣∣u1∣∣2

2,ω
+ k |θ0|22,ω + 2

∫ T

0
c1(∥un∥2 + 2T |p|22,ω),

≤ eT (∥u0∥2 + α
∣∣∇u1∣∣2

2,ω
+
∣∣u1∣∣2

2,ω
+ k |θ0|22,ω + 2Tc1

∥∥u1∥∥2
2,ω

+ 2T |p|22,ω).

If we choose c > 0 sufficiently small, then 0 < c1 < 1, 0 < c2 := 2eT c1 < 1, and we have

∥(un+1, θn+1)∥∗ ≤ eT (∥u0∥2 + α
∣∣∇u1∣∣2

2,ω
+

∣∣u1∣∣2
2,ω

+ k |θ0|22,ω + 2T |p|22,ω) + c2 ∥u1∥22,ω ,

and we can choose

∥u0∥2 + α
∣∣∇u1∣∣2

2,ω
+
∣∣u1∣∣2

2,ω
+ 2T |p|22,ω + k |θ0|22,ω ≤ (1− c2)

eT
∥u1∥22,ω .

We have

∥un+1∥α = ∥un+1∥2 + α |∇(un+1)t|22,ω + |(un+1)t|22,ω ≤ ∥(un+1, θn+1)∥∗

and
∥ϕn∥2,ω ≤ c1 ∥un∥2,ω ≤ ∥u1∥2,ω .

It follows that

∥un+1∥α ≤ eT (∥u0∥2 + α
∣∣∇u1∣∣2

2,ω
+

∣∣u1∣∣2
2,ω

+ k |θ0|22,ω + 2T |p|22,ω) + c2 ∥u1∥22,ω ,

≤ eT (1−c2)
eT

∥u1∥22,ω + c2 ∥u1∥22,ω = ∥u1∥22,ω .
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Further, we have
∥ϕn+1∥2,ω ≤ c0 |[ un+1, un+1 ]|1,ω ,

which, with ∥u1∥2,ω < c and 0 < 4c0c < 1, immediately yields

∥ϕn+1∥2,ω ≤ 4c0 ∥un+1∥2 ≤ 4c0 ∥u1∥22,ω ≤ 4c0c ∥u1∥2,ω ≤ ∥u1∥2,ω .

Summarizing, we have proved that, for all n ≥ 1 and any ∀0 ≤ t ≤ T , we have

∥un∥α ≤ ∥u1∥22,ω and ∥ϕn∥2,ω ≤ ∥u1∥2,ω .

Moreover, we have

k |θn|22,ω + 2η

∫ t

0

|∇θn|22,ω ≤ ∥(un, θn)∥∗ ≤ ∥u1∥22,ω .

Step 2: For n ≥ 2, let un, θn be the solution of (Pn).
Let 2 ≤ m ≤ n, then it is easy to see that θn − θm and un − um are solutions of the

following problem:

(1− α∆)(un − um)tt +∆2(un − um) + µ∆(θn − θm) = F1(un−1, ϕn−1)

−F1(um−1, ϕm−1) in ω × [0, T ] ,

k((θn)t − (θm)t)− η∆(θn − θm) = µ∆((un)t − (un)t) in ω × [0, T ] ,

un − um = θn − θm = ∂ν(un − um) = 0 on Γ× [0, T ] ,

(un − um)|t=0
= ((un)t − (um)t)|t=0

= ((θn)t − (θm)t)|t=0
= 0 in ω.

According to Proposition 2.2 and Theorem 2.1 we deduce, for all 0 ≤ t ≤ T ,

∥(ϕn−1 − ϕm−1)∥2,ω ≤ 4c0c ∥un−1 − um−1∥ .

Using Proposition 2.3 and Proposition 2.2, again we have, with 0 < c3 = TeT c1 < 1,

∥(un − um, θn − θm)∥∗ ≤ eT
∫ T

0
|F1(un−1, ϕn−1)− F1(um−1, ϕm−1)|2(L2(ω))2 ,

≤ eT
∫ t

0
c1 ∥un−1 − um−1∥2 .

It follows that

∥(un−um, θn−θm)∥∗ ≤ c3
∫ t

0
∥(un−1 − um−1, θn−1 − θm−1)∥∗

≤ (c3)
m−2

∫ t

0
...
∫ t

0

(
∥(un−m+2 − u1, θn−m−2 − θ1∥∗

≤ (c3)
m−2

∫ t

0
...

∫ t

0

∑n−m+1
k=0 (c3)

k
∫ t

0
...

∫ t

0
∥(u2−u1θ2−θ1)∥∗

≤ (c3)
m−2

∫ t

0
...

∫ t

0

∑n−m+1
k=0 (c3)

k
∫ t

0
...

∫ t

0

(
∥(u2, θ2)∥∗

+ ∥(u1, θ1)∥∗
)
≤ (c3T )

m−2
∑n−m+1

k=0 (c3T )
k
(
2 ∥u1∥22,ω

)
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and ∫ T

0
∥(un − um, θn − θm)∥2∗ ≤ T (c3T )

m−2
∑n−m+1

k=0 (c3T )
k(2 ∥u1∥22,ω).

And so we have

∥ϕn − ϕm∥2,ω ≤ 4c0c ∥un − um∥ .

The sequence (un, ϕn−1)n≥2 is a Cauchy sequence in H2
0 (ω) × H2

0 (ω) and (un)n≥2

is also a Cauchy sequence in W (0, T ). It follows that (un, ϕn−1) converges to
(u, ϕ) in H2

0 (ω) × H2
0 (ω), (un)t converges to (u)t in L2(ω) and ∇(un)t converges to

∇ut in L2(ω). We then have ∆2(un, ϕn−1) weakly converges to ∆2(u, ϕ) in L2(ω)×L2(ω).

Step 3: Using the inequality (3), we have

k |θn−1 − θm−1|22,ω + η

∫ t

0

|∇(θn−1 − θm−1)|22,ω ≤ µ

∫ t

0

(|∇(un−1 − um−1)t|2,ω)
2.

We deduce that θn is a Cauchy sequence in L2([0, T ] , H1
0 (ω)), then θn converges to θ in

L2([0, T ] , H1
0 (ω)). By Proposition 2.2, we have F1(un−1, ϕn−1) converges to F1(u, ϕ) in

(L2(ω))2.

Since the operator ”trace” is continuous, for all n ≥ 2, we have (un, ϕn−1)Γ =
(∂νun, ∂νϕn−1) = (0, 0) and so (u, ϕ)Γ = (∂νu, ∂νϕ) = (0, 0).

Thanks to Theorem 2.3, we have (un, (un)t) ∈ C([0, T ] , H2
0 (ω) × H1

0 (ω)) with
(un)|t=0

= u0, ((un)t)|t=0
= u1, which implies that (u)|t=0

= u0, ((u)t)|t=0
= u1. By

the assumption (u0, u
1) ∈ H2

0 (ω)×H1
0 (ω), we have un ∈ C0([0, T ] , H2

0 (ω)) and (un)n≥2

converges to u in W (0, T ).

Let v ∈ L2
(
[0, T ] , H2

0 (ω)
)
be such that vt ∈ L2

(
[0, T ], L2(ω)

)
, (1− α∆)vtt +∆2v ∈

L2
(
[0, T ] , H−2(ω)

)
, v(x1, x2, T ) = 0 and vt(x1, x2, T ) = 0. Since un is a solution of

(Pn), by virtue of the transposition theorem, see [4], we deduce that

∫ T

0

∫
ω

un((1−α∆)vtt+∆2v) =

∫ T

0

∫
ω

F (un−1, ϕn−1, θn−1)v+

∫
ω

u1v(0)−
∫
ω

u0vt(0)+

α

∫
ω

(−∇(ut)n(T )∇v(T ) +∇u1∇v(0)) + α

∫
ω

(∇un(T )∇vt(T )−∇u0∇vt(0)).

We have un converges to u in H2
0 (ω), then∫ T

0

∫
ω

un((1− α∆)vtt +∆2v) converges to

∫ T

0

∫
ω

u((1− α∆)vtt +∆2v),

and using Proposition 2.2, with∫ T

0

∫
ω

F (u, ϕ, θ) =

∫ T

0

∫
ω

F1(u, ϕ, θ) + µ

∫ T

0

∫
ω

∇θ∇u+ p,

we deduce that∫ T

0

∫
ω

F (un−1, ϕn−1, θn−1)v converges to

∫ T

0

∫
ω

F (u, ϕ, θ)v,
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and so we have∫ T

0

∫
ω

u((1− α∆)vtt +∆2v) =

∫ T

0

∫
ω

F (u, ϕ, θ)v +

∫
ω

u1v(0)−
∫
ω

u0vt(0)+

α

∫
ω

(−∇ut(T )∇v(T ) +∇u1∇v(0)) + α

∫
ω

(∇u(T )∇vt(T )−∇u0∇vt(0)).

By the transposition theorem, we obtained that u is a solution of the problem (S)1.
In summary, we have proved that (u, ϕ, θ) is a solution of the thermoelastic von

Karman evolution.

Step 4: We now prove the uniqueness. Assume that there exist two solutions
(u1, ϕ1, θ1) and (u2, ϕ2, θ2) in L2([0, T ] , H2

0 (ω) × H2
0 (ω) × H1

0 (ω)) such that, for some
c > 0 being sufficiently small, we have

∥∥u1∥∥
W (0,s0)

≤ c and
∥∥u2∥∥

W (0,s0)
≤ c.

This implies that u1 − u2 and (θ1 − θ2) satisfies the following problem:

(P3)



(1− α∆)(u1 − u2)tt +∆2(u1 − u2) = F (u1, ϕ1, θ1)

−F (u2, ϕ2, θ2) in ω × [0, T ] ,

k(θ1 − θ2)t − η∆(θ1 − θ2) = µ∆(u1 − u2)t in ω × [0, T ] ,

u1 − u2 = ∂ν(u
1 − u2) = θ1 − θ2 = 0 on Γ× [0, T ] ,

u1(x1, x2, 0)− u2(x1, x2, 0) = 0 in ω,

(u1)t(x1, x2, 0)− (u2)t(x1, x2, 0) = 0 in ω,

(θ1)t(x1, x2, 0)− (θ2)t(x1, x2, 0) = 0 in ω,

which means that (u1 − u2, θ1 − θ2) is a solution of the problem (P3). Proposition 2.2,
Proposition 2.3 and Theorem 2.1 ensure that there exists c0 > 0 such that

∥∥(u1 − u2, θ1 − θ2)
∥∥
∗ ≤ eT

∫ T

0

∣∣F1(u
1, ϕ1)− F1(u

2, ϕ2)
∣∣2
(L2(ω))2

≤ eT
∫ T

0

c1
∥∥u1 − u2

∥∥2 ≤ eT c1

∫ T

0

∥∥(u1 − u2, θ1 − θ2)
∥∥
∗ .

Since c is small and thus 0 < c3 = TeT c1 < 1, it follows that∫ T

0

∥∥(u1 − u2, θ1 − θ2)
∥∥
∗ ≤ c3

∫ T

0

∥∥(u1 − u2, θ1 − θ2)
∥∥
∗ ,

which, with 0 < c3 < 1, immediately yields ∀0 ≺ t ≺ T , u1 = u2 in ω, ϕ1 = ϕ2 in ω and
θ1 = θ2 in ω.

We conclude that the dynamic von Karman equation coupled with thermal dis-
sipation, without rotational inertia, has one and only one weak solution (u, ϕ, θ) in

L2
(
[0, T ] , H2

0 (ω)×H2
0 (ω)×H1

0 (ω)
)
. The proof of the theorem is completed.
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Proposition 3.1 Let (u, ϕ, θ) ∈ L2
(
[0, T ] , H2

0 (ω) ×H2
0 (ω) ×H1

0 (ω)
)
be the unique

solution of (P0). Then the following equalities:

Ẽ
(
u(t), ut(t), ϕ

)
+
k

2
|θ|22,ω − η

∫ t

0

|∇θt|22,ω = Ẽ1(u0, u
1, ϕ0) +

k

2
|θ0|22,ω ,

with

Ẽ
(
u(t), ut(t), ϕ

)
=

1

2

(
|ut|22,ω + ∥u∥22,ω + α |∇ut|22,ω

)
+

1

4

∫
ω

(
|∆ϕ|2 − 2 [u, F0]u− 4pu

)
and

Ẽ1(u0, u
1, ϕ0) =

1

2

( ∣∣u1∣∣2
2,ω

+ α
∣∣∇u1∣∣2

2,ω
+ ∥u0∥22,ω) +

1

4

∫
ω

(|∆ϕ0|2 − 2 [u0, F0]u0 − 4pu0)

hold for any 0 ≤ t ≤ T . Here ϕ0 ∈ H2
0 (ω) is the unique solution of the equation

∆2ϕ0 = − [u0, u0].

Proof. According to Theorem 2.3, for any ∀0 ≤ t ≤ T , u satisfies the following
energy equality:

E0(u(t), ut(t)) = E0(u0, u
1) +

∫ t

0

∫
ω

F (u, ϕ, θ)ut

= E0(u0, u
1) +

∫ t

0

∫
ω

[u, ϕ+ F0]ut − µ

∫ t

0

∫
ω

∆θut +

∫ t

0

∫
ω

p(x1, x2)ut.

First we have ∫ t

0

∫
ω

p(x1, x2)ut =

∫
ω

p(x1, x2)u(t)−
∫
ω

p(x1, x2)u0.

Otherwise, see [1], one has, with ∆2ϕ = [u, u],∫ t

0

∫
ω

[u, ϕ+ F0]ut =

∫ t

0

∫
ω

[u, ϕ]ut +

∫ t

0

∫
ω

[u, F0]ut,

=
1

2

∫ t

0

∫
ω

d

dt
([u, u]ϕ) +

1

2

∫ t

0

∫
ω

d

dt
([u, F0]u),

= −1

4

∫
ω

|∆ϕ|2 + 1

4

∫
ω

|∆ϕ0|2 +
1

2

∫
ω

[u, u]F0 −
1

2

∫
ω

[u0, u0]F0

and

µ

∫ t

0

∫
ω

∆θut = µ

∫ t

0

∫
ω

θ∆ut =
k

2

∫ t

0

d

dt
|θ|22,ω − η

∫ t

0

|∇θ|22,ω

=
k

2
|θ|22,ω − k

2
|θ0|22,ω − η

∫ t

0

|∇θ|22,ω .
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Finally, we conclude that

Ẽ
(
u(t), ut(t), ϕ

)
+
k

2
|θ|22,ω − η

∫ t

0

|∇θt|22,ω = Ẽ1(u0, u
1, ϕ0) +

k

2
|θ0|22,ω .

Remark 3.1 In this section, we described an iterative method for constructing a
unique weak solution, this method is a very good tool to illustrate this solution from a
numerical point of view.

4 Numerical Application

This section displays a numerical resolution in terms of the previous theoretical study.

4.1 Preliminaries

Let ω be defined by
ω =]0, 1[×]0, 1[⊂ R2

and T > 0. In order to solve numerically the problem (P0), we introduce a uniform mesh
of width h. Let ωh be the set of all mesh points inside ω with the internal points

xi = ih, yj = jh, i, j = 1, ...N − 1, h =
1

N + 1
, ∆t =

1

T
.

Let ωh be the set of boundary mesh points and uh be the finite-difference approximation
of u. In [7], Bilbao presented a numerical study of the convergence and stability of the
conservative finite difference schemes for the dynamic von Karman plate equations via
energy conserving methods.

For approaching the weak unique solution of the dynamic nonlinear plate coupled
with structural acoustic model, we will utilize the following discrete model of the von
Karman evolution developed by Bilbao and Pereira in [7, 8]:

(∗)



(1− α(δ2x + δ2y))δ
2
t u

n
ij + µ(δ2x + δ2y)θ

n
ij +∆2

hu
n
ij = [ unij v

n
ij + Fij ] + pij in ωh,

kδtθ
n
ij − η(δ2x + δ2y)θ

n
ij − µδt(δ

2
x + δ2y)u

n
ij = 0 in ωh,

∆2
hv

n
ij = − [ unij u

n
ij ] in ωh,

u0ij = (φ0)ij , δtu
0
ij = (φ1)ij , θ

0
ij = (θ0)ij in ωh,

unij = vnij = θnij = 0 on ωh,

∂νu
n
ij = ∂νv

n
ij = 0 on ωh,

with the following discrete differential operators:

δ2t u
n
ij =

un+1
ij − 2unij + un−1

ij

(∆t)2
,

δtu
n
ij =

un+1
ij − unij

∆t
,
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∆2
hu

n
ij = h−4 [ uij−2 + uij+2 + ui−2j + ui+2j − 8(uij−1 + uij+1 + ui−1j + ui+1j)

+ 2(ui−1j−1 + ui−1j+1 + ui+1j−1 + ui+1j+1)− 20uij ] ,

δ2xu
n
ij =

uni+1j − 2unij + uni−1j

(h)2
,

δ2yu
n
ij =

unij+1 − 2unij + unij−1

(h)2
,

δ2xyu
n
ij =

uni+1j+1 − uni+1j−1 − uni−1j+1 + uni−1j−1

(2h)2
,

[ unij , v
n
ij ] = δ2xu

n
ijδ

2
yv

n
ij − 2δ2xyu

n
ijδ

2
xyv

n
ij + δ2yu

n
ijδ

2
xv

n
ij .

We have transformed the above problem to the numerical resolution in two steps itemized
as follows.
First step: We use the numerical procedure of 13-point formula of finite difference de-
veloped by Gubta in [9] for illustrating the weak solution of the following biharmonic
problem:  ∆2v = f1 in ω,

v = g1 on Γ,
∂νv = g2 on Γ.

Second step: According to the first and second steps, we use the discrete model of the
von Karman evolution (∗) for illustrating the unique solution of the structural interaction
model coupled with the dynamic von Karman evolution.

4.2 Non-coupled approach

In [9], Gubta presented a numerical analysis of the finite-difference method for solving
the biharmonic equation. Such method is known as the non-coupled method of 13-point
formula of finite difference.

Proposition 4.1 [9] The 13-point approximation of the biharmonic equation for
approaching the unique solution v of the problem (P ) is defined by

(1)

 Lhvij = h−4 [vij−2 + vij+2 + vi−2j + vi+2j − 8(vij−1 + vij+1 + vi−1j + vi+1j)

+2(vi−1j−1 + vi−1j+1 + vi+1j−1 + vi+1j+1)− 20vij ] = f1(xi, yj)

for i, j = 1, 2, ..., N − 1, where we set vij = v(xi, yj).

When the mesh point (xi, yj) is adjacent to the boundary ωh, then the undefined
values of vh are conventionally calculated by the following approximation of ∂νv:

vi−2,j =
1
2vi+1,j − vij +

3
2vi−1,j − h(∂xv)i−1,j ,

vi,j−2 = 1
2vi,j+1 − vij +

3
2vi,j−1 − h(∂yv)i,j−1,

vi+2,j =
1
2vi+1,j − vij +

3
2vi−1,j − h(∂xv)i+1,j ,

vi,j+2 = 1
2vi,j+1 − vij +

3
2vi,j−1 − h(∂yv)i,j+1.
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4.3 Numerical test

We consider the following analytical body force and lateral forces:

F0(x, y) = ye−x2−y2

, p(x, y) = 0.01x(x− y)e−x2−y2

,

φ0 = 1510−6x2y2(x− y − 1)2(y − 1)2e−x2−y2

, φ1 = 1510−6(sin(πx) sin(πy))2,

θ0 = 10−13x2y3(x− 1)2(y − 1)2(e−x2

− e−y2

).

Figure 1: The thermal function θ, t1 = 0.2s and t7 = 60s.

5 Conclusion

In this paper, we described an iterative method for constructing a unique weak solution
to the model of dynamic von Karman equations with a flexible phenomenon of small
nonlinear vibration of displacement in nonlinear oscillation of elastic plate, with rota-
tional terms and not clamped boundary conditions subject to thermal dissipation. Our
approach is in fact a good tool for justifying the theoretical results. We then use the
method of finite difference for approaching the unique solution of the theoretical prob-
lem. These results have potential for application in the fields of physics. Similar study
for the models of dynamic von Karman equations with thermal dissipation and for free
boundary conditions of the shell could be the purpose for future research.

Figure 2: Displacement of plate, t1 = 0.2s and t7 = 60s.
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Figure 3: The Airy stress function, t1 = 0.2s and t6 = 32s.
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