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1 Introduction
The main purpose of this paper is to study the nonlinear elliptic equation
div(|VU|P72VU) + oU + Bz VU + |U|"'U =0, z€R", (1)

where p > 2, ¢ > 1, N > 1, a > 0 and 8 > 0. The equation is derived from the
self-similar solutions of the nonlinear parabolic equation

vy — Apv — 07t =0, in RN x (0, +00). (2)
These particular solutions are of the form
o(t,x) =t~ Ut Px)), (3)
where

1 qg+1—p
ao=—— and f=-—"F—+.
q-—1 plg—1)

If p=2, a=0and 8 =0, the equation is due to Emden-Fowler and plays an impor-
tant role in astrophysics, this motivates many researchers to be interested in the study
of this case, the examples include (but are not limited to) [3}7HLOL12L|17,|18]. In the case
p=2,a>0and g > 0, the equation was studied in [6,(14H16}/19,[20,/22+24]. In the
case p > 2, « = 0 and 8 = 0, (1) was investigated in 2], [13] and [21]. Whenp > 2, >0
and 8 = 1, equation (1) was studied in [1]. When p > 2, a = ﬁ and 8 = %,
equation was studied in [11]. In the case p > 2, @ < 0 and S < 0, we have studied
an equation similar to (1)) but with the term |U]9~1U weakened by its multiplication by
the function |z|' with [ < 0 that tends to 0 at infinity. This study was carried out in [4]
and gave the existence and asymptotic behavior of unbounded solutions near infinity
using nonlinear dynamical systems theory. In this paper, we consider the case where
a>0,08 >0and ! = 0. It is also a generalization of the study carried out in |11].
We will present a result that improves asymptotic behavior near infinity of positive

. . . . . o
solutions, we investigate the structure of solutions of problem (P) in the cases — > N

B

@
and — < N and we give an important relation between the solutions of the problem

(P) and those of a nonlinear dynamical system obtained by using the logarithmic change.

If we put U(z) = u(|z]), it is easy to see that u satisfies the equation
N -1
(W' P~2u) + —— /[P0 + au(r) + Bro () + [ul*"tu(r) = 0, r>0. (4)

Since we are interested in radial regular solutions, we impose the condition «'(0) = 0.
Thus we consider the following Cauchy problem.

Problem (P): Find a function u defined on [0,+oo[ such that |u/|P72u’ €
C1([0, +00[) and satisfying

N

-1
(Ju'|P~2u") + — |u' [P0 + au(r) + Bru’ (r) 4 [u|T tu(r) =0, r>0 (5)
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and
uw(0)=A4>0, 4/'(0)=0, (6)

wherep>2,¢g>1, N>1, a>0and g > 0.

By reducing the problem (P) to a fixed point for a suitable integral operator (see for
example [5]), we prove that for each A > 0, the problem (P) has a unique global solution
u(., A, a, ).

The main results are the following.

Theorem 1.1 Problem (P) has a unique solution u(., A). Moreover,

(1 [P~ 0) = S (a+ 477Y). ™
'Eheorem 1.2 Problem (P) has no positive solutions in the following cases:
. BNZZ‘ e
(44) o1 < 3 < N. N
(#it) g <p—1 and % < p—_f
(i) g>p—1 (mdg;é P N=p

Theorem 1.3 Assume % < N. Then the solution u(., A) of problem (P) is strictly
positive in the following cases:
1
(i) 0< A< (BN —a)7T1.

o« P . (N-p p)
1) - = ——— < min y = |-
()B qg+1—p ( p 2

o _
Theorem 1.4 Assume — = P p‘ Let u be a strictly positive solution

<
Boq+l-p p-1
of problem (P). Then

lim rfu(r)=0T>0

r——400
and
. a —
lim 75t/ (r) = —T,
r—~400 ﬂ
where

The rest of the paper is organized as follows. In the second section, we present basic
tools for the study of the problem (P). The third section concerns asymptotic behavior
near infinity of solutions of problem (P); more precisely, we give explicit equivalents of
solutions and their derivatives near infinity. The fourth section concerns the structure
of solutions of problem (P). The last section, in the form of a conclusion, presents
the asymptotic behavior of the solution of a nonlinear dynamical system around its
equilibrium point and explains its relation with the asymptotic behavior of the solution
of the problem (P).
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2 Preliminaries and Basic Tools

In this section, we give existence of global solutions of problem (P) and we present the
necessary basic tools that will be useful to us in the rest of the work.

Theorem 2.1 Problem (P) has a unique solution u(., A). Moreover,

(Ju'[P~2u') (0) = % (a+ A7), ®)

Proof. The proof of theorem is divided into three steps.
Step 1: Existence and uniqueness of a local solution.
Multiply equation by rN~1, we obtain

’

(TN_I\u/|p_2ul (r) + 57"Nu(r)) = (BN — o)V tu(r) — N 9 (). (9)

Integrating @ twice from 0 to r and taking into account @, we see that problem (P)
is equivalent to the equation

w(r) = A — / G(F[u](s)) ds, (10)

where
G(s) = |s|@P/P=Ds  seR, (11)

and the nonlinear mapping F' is given by the formula

Flu](s) = Bsu(s) + sV /O‘N_lu(0'> (= BN) + [u(c)|9™") do. (12)

Now, we consider for A > M > 0, the complete metric space
Ey={peC([0,R]) suchthat ||¢— Allo < M}. (13)
Next, we define the mapping ¥ on F4 by

Bgl(r) = A— / G(Fgl(s)) ds. (14)

Claim 1: ¥ maps F4 into itself for some small M and R > 0.

Obviously, ¥[y¢] € C([0, R]). From the definition of the space E4, ¢(r) € [A— M, A+ M],
for any r € [0, R]. It is easy to prove that F[p] has a constant sign in [0, R] for every
@ € E4. Moreover, there exists a constant K > 0 such that

Fly](s) > Ks for all s €[0,R], (15)

where K = % (a—i—Aq’l).

Taking into account that the function r —

Glr)

is decreasing on (0, 400), we have

wlelr) - Al < [ CRED i) as < [ CED P ds

0 0
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for r € [0, R]. On the other hand,
[Fll(s)] < Cs, where C =[5+ |% = Bl + (A+ M) (A + M).
We thus get
Wel(r) - 4| < Pt oK it
for every r € [0, R]. Choose R small enough such that
[W[pl(r) — Al < M, @€ Ea.
And thereby P[] € E4. The first claim is thus proved.
Claim 2: U is a contraction in some interval [0,74].

According to Claim 1, if r4 is small enough, the space E4 applies into itself. For any
©, Y € E4, we have

[Wp](r) = wly)(r)] < /IG(F[@](S)) = G(F[Y](s))] ds, (16)

where F[y] is given by Next, let
®(s) = min(F[g](s), F[¢](s))-
As a consequence of estimate , we have

O(s) > Ks for 0<s<r<ry

and then
GFIpl(s) - GFIulEN] < S SRl - FIvlG) (17)
G(Ks)
< 2 Flp)(s) - Fly)(s)
Moreover,

IFlel(s) = FI1(s)| < C'lle = wllos, (15)
where C' = [ + |% — B] + (A+ M)~ (A + M). Combining , and , we
have

Wlel(s) ~ Ivl(e)] < Er O K o~ vl (19)

for any r € [0,74]. When choosing r 4 small enough, ¥ is a contraction. This proves the
second claim.

The Banach Fixed Point Theorem then implies the existence of a unique fixed point
of ¥ in E 4, which is a solution of and consequently, of problem (P). As usual, this
solution can be extended to a maximal interval [0, 7maz], 0 < s < 400.



248 A. BOUZELMATE AND M. EL HATHOUT

Step 2: Existence of a global solution.
Define the energy function

p—1, e +1
Er)=—"+ =u*(r) + —|u|T"". 20
() = L+ ) + (20)
Then by equation , the energy function satisfies
N -1
E'(r)=— ( [/ |P + BruQ) . (21)
T

Then E is decreasing, hence it is bounded. Consequently, u and u’ are also bounded and
the local solution constructed above can be extented to RY.

’ ! _A
Step 3: (|u'|"~2u) (0) = =~ (a + A7),
Integrating (9) between 0 and r, we get

/

™ ”

= —pu(r) + (BN — a)r*N/stlu(s) ds —r= N / sV Hu|7 tu(s) ds.

0 0

ju' [P~

r

Hence, using L’Hospital’s rule and letting » — 0, we obtain the desired result. The proof
of the theorem is complete. O

Proposition 2.1 Let u be a solution of problem (P) and let S, := {r >0, u(r) > 0}.
Then v'(r) <0 for anyr € S,.

Proof. We argue by contradiction. Let 7o > 0 be the first zero of u’. Since by
u'(r) < 0 for r ~ 0, we have by continuity and the definition of rq, there exists a left
neighborhood |rg — €,79[ (for some ¢ > 0), where «’ is strictly increasing and strictly
negative, that is, (|u/|P~2u/)'(r) > 0 for any r €]rg — €, 79[, hence, by letting r» — 7o,
we get (|u'|P=2u’)(ro) > 0. But by equation (5)), we have (|u/[P~2u’) (rg) = —au(ro) —
|u|?tu(rg) < 0 since u(rg) > 0, u/(rg) = 0 and « > 0. This is a contradiction. The
proof is complete. O

Proposition 2.2 Assume N > 1. Let u be a solution of problem (P). Then

lim u(r)= lim u/(r) = 0. (22)

r—-+00 r—-+00

Proof. Since E'(r) < 0 and E(r) > 0 for all 7 > 0, there exists a constant [ > 0 such
that lirf E(r) =1. Suppose | > 0. Then there exists r; > 0 such that
T—+00

E(r) > % for r > ry. (23)
Now consider the function
N-1 N-1 f
D(r) = E(r) 7\u’\p72u'(r)u(r) + %UZ(T) + B/sua(s) ds.

0
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Then
N -1

N
D'(r) = == — |/ ()P + — /| 2uur) + [u(r)[T + au?(r)

Recall that u and u’ are bounded (because E is bounded), then

’ _ ’7
f P ()

r—+00 r

Moreover, by and , we have for r > rq,

=0.

Ju(r)[ T+ SuP(r) = B(r) >

~1
au?(r) + [u'(r)|7 + Ju(r) |1 > pTIU’(T)I” + 3

qg+1
Consequently, there exist two constants ¢ > 0 and ro > r1 such that
c
D'(ry< —= forr >rs.
r

Integrating the last inequality between ro and r, we get

D(r) < D(rq) — cln(L) for r > ro.

T2
In particular, we obtain lim D(r) = —oco. Since
r—+00
N -1
B(r) + —5— /" (r)u(r) < D(r),
r
we get lim E(r) = —oco. This is impossible, hence the conclusion. |

r——400

Proposition 2.3 Let u be a strictly positive solution of problem (P), then u and v’
have the same behavior @

Proof. If N > 1, then by Proposition lim u(r) = lim «/(r)=0. f N =1,

r—+00 r—+00
let
J(r) = |/ [P~/ (r) + Bru(r). (24)
Then by equation ,
J'(r) = (B — a)u— |ulT" u(r). (25)

Since w is strictly positive, it is strictly decreasing by Proposition Therefore
lir+n u(r) € [0,4o00[. Since the energy function E given by converges (because
r—+00
it is positive and decreasing), u’ also necessarily converges and hIE u'(r) = 0. Sup-
r—+00

pose by contradiction that 1ir+n u(r) = L > 0. Therefore lirJP J(r) = +o0.
r—+o0 =100

Using L’Hospital’s rule, we have

lm J(r) = lim 2
r—-+00 r—+oco T
That is,
(B—a)L—LT=p3L.

Therefore —aL — L? = 0. But this contradicts the fact that L > 0 and o > 0. Hence
lim wu(r) =0. U

r—400
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Proposition 2.4 Let(0 < c# g. Let u be a strictly positive solution of problem (P).
Then the function rcu(r) is strictly monotone for large r.
Proof. For any ¢ > 0, we consider the function
ge(r) = cu(r) +ru'(r), r>0. (26)

It is clear that
(reu(r)) = r“"tg.(r), r>0. (27)

The monotonicity of the function r°u(r) can be obtained by the sign of the function
ge(r). Using (B)), we have for any r > 0 such that u'(r) # 0,

_ N—p _
(p = D' ()P 2g.(r) = (p = 1)(e - pj)h/lp u/(r)
— Br2u (r) — aru(r) — rlu|d tu(r).
Consequently, if g.(ro) = 0 for some rg > 0, we obtain by and ,

(p = D[P~ (ro)g(r0) = rou(ro) [(ﬁc —a) = |u(ro)|*™

(28)

N — u(ro)|P~2 (29)

ot (Y e
Suppose that there exists a large 79 such that g.(rg) = 0. Since TEI-POO u(r) = 0 and
according to , we have for ¢ > % (respectively, ¢ < %), g-(ro) > 0 (respectively,
g.(rg) < 0) and thereby g.(r) # 0 for large r if ¢ # %. Consequently, the function r°u(r)
is strictly monotone for large r if ¢ # 2 O

B

Proposition 2.5 Let u be a strictly positive solution of problem (P). Then for any
0<e< %, we have g.(r) <0 for large r and liT ru(r) = 0.
T—>+00
Proof. We know by Proposition that if 0 < ¢ < %, ge(r) # 0 for large . Suppose

that g.(r) > 0 for large r. Then, by (26]) and the fact that «'(r) < 0, we get

u'(r)] <
This gives by equation ,

cu(r)

for large r. (30)

(I [P~2u) () < u(r) [(ﬁc —a) (v et 0] (31)

rp
As 0 < ¢ < %, u(r) > 0 and liIJP u(r) = 0, then (|/|P~2/)(r) < 0 for large r.
T—+00
Combining with u' < 0, we get hT u'(r) € [~o0,0[, which is impossible. Hence,
T—+00
ge(r) < 0 for large r and by , Tl}rlloor u(r) € [0,4o00[. Suppose that THI’_POO’I‘ u(r) =

L > 0. Then ligl reteu(r) = 400 for 0 < c+¢ < %, but this contradicts the fact that
r—+00

gete(r) < 0 for large r. Consequently, lirf ru(r) = 0. O
100
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Proposition 2.6 Let u be a strictly positive solution of problem (P). Then for any
% < ¢ < N, we have g.(r) > 0 for large r and lim 7°u(r) = 4o0.

—+o0

Proof. Let Y k< B. We introduce the following energy function:
¢

o(r) = rHu' P72 + kréu(r). (32)
Using equation , we have
&' (r) =(c — N)re 2o/ P20’ + (k — B)ra/ (r)+
(ke — a)retu(r) — v u| 9 tu(r). (33)
Asu <0,c< N and k < f3, then
¢'(r) >rrulke —a— [u|t]. (34)
As kc—a > 0 and ngr_loo u(r) =0, then ¢'(r) > 0 for large r, therefore ¢(r) # 0 for large
r. Suppose that ¢(r) < 0 for large r, then
W/ |P~2u’ < —kru(r) for large r. (35)
Therefore
WurT < —kFireT  for large 1. (36)

Integrating this last inequality on (R, r) for large R, we obtain

u= (1) < ub T (R) = 22 2 ittt P2 2 gt
p p
Letting » — 400, we obtain lim w(r) = —oo, which is a contradiction. Consequently,

r—-+00
¢(r) > 0 for large . Since ¢ is strictly increasing for large r, we have ligl o(r) €]0, +0o0],
r—+00

so there exists C; > 0 such that ¢(r) > C; for large r. This gives by and the fact
that u/(r) <0,

C
ru(r) > ?1 for large 7.

On the other hand, using and the fact that lim wu(r) = 0, we obtain

Stoo
r¢'(r) > kc; arcu(r) for large r. (37)
This implies that
r¢'(r) > C for large r, (38)
Ci(ke — a)

where C' =
. . ' /
obtain 7-115?00 ¢(r) = +oo. Consequently, by 1' and the fact that v/(r) < 0, we have

lim 7°u(r) = 4+o00. Moreover, since g.(r) # 0 for large r, using l) we have necessarily
r—+00

ge(r) > 0 for large 7.

> 0. Integrating this last inequality on (R,r) for large R, we
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@
Proposition 2.7 Assume — < N. Let u be a strictly positive solution of problem

(P). Then the function r®/Bu(r) is not strictly monotone for large r.

Proof. Assume by contradiction that r®/8u(r) is strictly monotone for large r. Then
by , gs (r) # 0 for large 7. We distinguish two cases.
Case 1: gg (r) <0 for large 7.
We set
V(r) =u(r) — rP o' P71 (39)
Then by equation ,
Vi(r)y=r""u[—a—u? ] +rPu [-B+ 1P+ (p— N)r 2|/ P72 (40)

Using Proposition we have gy (r) > 0 for large r. Then

0 < rlu/(r)] < Nu(r) for large r, (41)
so lim ru/(r) =0 and therefore
r——4o00
ngloo V(r)y=0.

Using again inequality 1] we have
V(r)>u(r) (1— NP"'uP2(r)) for large r. (42)

Since 1iIJP u(r) = 0, one has V(r) > 0 for large r.
T—>+00
On the other hand, since lim wu(r) =0, hrf u'(r) =0 and g5 (r) <0 for large r, one
rT—+00

r—+00
has by ,

V'(r) ~ —arP tu(r) — preu/(r) = —BrP"tga(r) > 0 for large r. (43)

+o0 B

But this contradicts the fact that V(r) > 0 for large r and lim V(r) = 0.

r—+00
Case 2: g5 (r) > 0 for large r.
Using equation , we obtain
1p—2, 1\/ / N-1 /1p—2 q—1
(W'[P=2u) (1) = =1/ (r) | B+ —5— /P~ | —u(r) [a +[ul"™"]. (44)

r

Since lim wu(r) =0, lim u'(r) =0 and gs (1) > 0 for large 7, we have

r—+00 r—+00
(Ju'|P~20Y (1) fox —pru/(r) — au(r) = —Bgs (r) <0 for large r. (45)
But this contradicts the fact that v/(r) <0 and lim u/(r) = 0. O

r——4o00
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3 Asymptotic Behavior Near Infinity

In this section, we give explicit equivalents of the strictly positive solutions of the problem
(P) and their derivatives near infinity.

N —
Theorem 3.1 Assume & P < P
B q+l-p p-1
of problem (P). Then

. Let u be a strictly positive solution

ngrnoorfﬂu(r) =I'>0 (46)

and N
lim 75t/ (r) = —T 47
Jim o8 () = T (47)

where
o T [\ HE

I'= N—p—p—l) () . 48
( 2p-1) - (48)

Proof. We consider the following function:

N l\p—2,,/
h(r) = r¥u(r) {ﬂ + W} . (49)
ru
Using equation , we have
n'(r) = <g — N) 2| P2 () — B T (). (50)
The proof will be done in four steps.
Step 1: h(r) o Bre/Bu(r).
We know by Proposition [2.6] that gy (r) > 0 for large r, then using (1)), we get
/ p—1 p—2
0< % < Np_lurip(r) for large 7. (51)

: R ] i
Asp>2and lim wu(r) =0, we get lim ——~—— = 0. Consequently, by (49)), we

r—-+00 r—too  ru(r)
get h(r) ~ Bro/Bu(r).
—+oo
Step 2: liI_P r#u(r) exists and is finite. By Proposition we have for any o > 0,
r—r+00

lim 7% “u(r) = 0. In particular, for

r—-+too
O<U<min<a(q_l),1(a(p—2)+p>><aa (52)
Bq p-1\B B
there exists a constant M > 0 such that
w(r) < M r°~%  for large r. (53)
We have also by ,
[u'(r) [Pt < N Tur i (r) for large r. (54)

rp—1
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Combining and , we obtain

r%_luq(r) < M@= 5+E-1 for large r (55)
and
P ()P < (MNP LB @GP remD=p=l g Jarge 1. (56)

By , and , we get the function r — r% 'u?(r) and the function r —
75 %/ (r)[P~t belong to L'(rg,+00) for any ro > 0; therefore h'(r) € L'(rq,+oc) for
any ro > 0. Hence,

+oo
lim h(r) = h(rg) + / h'(s) ds (57)

r—+00
0
exists and is finite. Then by Step 1, lim 7% u(r) exists and is finite. Let lim r#u(r) =
r—-+4oo r——400
r>ao.

Step 3: lim riu(r) =T >0 and lim r&*u/(r) = T <0.
ep 3: lim r u(r) >0 and lim 75"y (r) 3 <
We argue by contradiction and assume that liI_P réu(r) = 0. Then by the first step,
r—+400

lir+n h(r) = 0. Therefore, using L’Hospital’s rule, we obtain
r—+00

. hI(T) . h(r)
lim ———— = lim — = 0. 58
r—4o00 (T%u(r)) r—+oo p 5 y(r) p (58)

On the other hand, we have

W) =P (V-5 - ). (59)

Let 0 <ec< %, then by Proposition we have g.(r) < 0 for large r, then

[/ (r] > cu(r) for large r. (60)
T
This leads to
T“q(r) 1-p,.p, q+1—p
0< W <c U (T) (61)
q
Since % = q—l—r%—p’ then Tginoo rPudtP(r) = 0, therefore by » TEIJPOO m,g;% =

0. Using the fact that < N and |u/(r)] > 0, we obtain by , R'(r) > 0 for

o !/
large r. Therefore by 1} we have (’I"EU(’I’)> > 0 for large r, but this contradicts
Proposition [2.7, Consequently, HIJP r%u(r) =T > 0. Hence, using L'Hospital’s rule
T—>+00
(because rlﬂloo u(r) = 0), we get

TETOOT%HLLI(T) = ?a TEI_POOT%U(T) = _?OZF <0.
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1 p—1
q+1—p q+1—p
Step4:F(Npa(p1)) (a) .

5 5
By , we have

—B7 gasp(r) = /"7 (r) [ (N —p- %(p - 1)> +
(62)

(p— 1)9;/5(7’) rul(r) 1 .

W) ()

. . _ : 1y i o =
Since TEIJPOO u(r) = 0 and TEIEOO ru’'(r) = 0 (by Step 3), one has TBIJPOO gs(r) = 0.

Therefore, using again Step 3 and L’Hospital’s rule, we obtain

ga(r) gs(r '
s L L o) W (63)
r—+oo u/(1) r—+oo u(r) r—+oo \ f3 u(r)
Moreover, since @ L, we have
Boa+l-p
q _T[eti-p
im0 . (64)
r—+oo |u/|P~2u/ (1) (a>p
B
Suppose by contradiction that
a Tatl-r
Nep= 51— £0 (65)
(5)
Then, according to , and , we have
N2 1 a Te+1-p
—Brgs(r) ~ [W'P72(r) [N=p—2(—1)———=|- (66)
+00 I}

g
This gives gs (r) # 0 for large 7, that is, re u(r) is strictly monotone for large r, but this
contradicts Proposition Consequently,

- (N . % (p_ 1)) q+i-p (g) g+1—-p '

The proof of this theorem is complete. O

The following Figures[I]and [2 describe the strictly positive solution and its comparison
with the function r=/#.
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Figure 1: Strictly positive solution wu. fﬁ%‘f; e 2: Comparison of solution u with

4 Structure of Radial Solutions

In this section, we investigate the structure of the solutions of the problem (P). The
study depends strongly on the sign of N8 — a and the comparison between the three

N —
determining values —, b and b
B aq+1l-p p—1

Theorem 4.1 Assume % > N. Then the solution u of problem (P) changes the
stgn.
Proof. We consider the following function:
p(r) =N PR () + Bru(r). (67)
Therefore by @, we get
¢'(r) = (BN — o)V tu(r) — N Hul T u(r). (68)

Suppose that u(r) > 0 for all r € [0,400). As a > SN, then ¢'(r) < 0. Therefore, as
©(0) = 0, we have ¢(r) < 0 Vr € [0,400). Consequently, the function r — H(r) =

P 2u1€;—?(7’) + B71r7°T is decreasing. Then for any r € [0,400), we have

p

H(r) < H(0) = 2 A5, (69)

When letting » — 400, the term on the left-hand part of the inequality converges to
400, so we reach a contradiction.
Now, let 7o be the first zero of u, then ¢'(r) < 0 for all » € (0,7¢), thus ¢(rg) <
©(0) = 0. Therefore v'(rg) < 0, consequently, u changes the sign. O
The solution that changes the sign is illustrated by Figure

Theorem 4.2 Assume ¢ < N. Then the solution u of problem (P) is not strictly

positive in the following cases:
N —
() — <3

_1 3
(i) ¢g<p—1 and < <

=
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Figure 3: Solution that changes the sign.

o p N-—p
wi) ¢g>p—1 and — < .
(#) 67éq+1—p p—1

Proof. Assume by contradiction that u is strictly positive. The idea is to show that
under this assumption, we have g, /5(r) # 0 for large r in these three cases, which is not
possible by Proposition

Assume that there exists a large ro such that g, /s(ro) = 0, we obtain by ,

—1+(p—1) (Z)p_l x

(p — D' [P=2(r0)ge,5(ro) = rou(ro)

(70)
(5=t-5) o]
Using the fact that TEIEOO u(r) = 0, we have in the cases (i) and (i), g;/ﬁ(ro) < 0.
For the case (iii), we have by Proposition [2.5| and Proposition TEI—‘POO rariru(r) =0

or hT raFip u(r) = 400, then we get g’% (ro) # 0. Therefore, in the three cases, we
T—>+00

have g, /5(r) # 0 for large r, that is, 7*/Pu(r) is strictly monotone for large r. But this
contradicts Proposition 2.7} Consequently, u is not strictly positive in the three cases. O

Theorem 4.3 Assume - < N. Then for any 0 < A < (BN — a)ﬁ, the solution
u(., A) of problem (P) is strictly positive.

Proof. Let ro be the first zero of u, then u(rg) = 0 and u/(rg) < 0. Integrating (9)
on (0,79), we obtain

To

P 120 () = / [(BN — a) — ut="(s)] sN Lus) ds. (71)
0

As u(r) > 0 and v/(r) < 0 on (0,79), then

BN —a—u?(s) >N —a— ATt >0 forany s € (0,70). (72)



258 A. BOUZELMATE AND M. EL HATHOUT

Therefore by (71)), we get u/(rg) > 0, but this contradicts the fact that u'(ro) < 0. Hence
u(., A) is strictly positive. O

B q+l-p p
problem (P) is strictly positive.

N —
Theorem 4.4 Assume a__ P < min ( p, Z) Then the solution u of

Before giving the proof of the theorem, we need the following result.

Proposition 4.1 Let u be a solution of problem (P). Assume that there exists R > 0,
the first zero of u. Then for A > 1 and 0 < v < p, we have

R R
A
/ M/ |VsP L ds < ﬂ/ ! PP ds. (73)
0 P—=7Jo

Proof. By Holder’s inequality, we have

R R 1 R EE
/ urMu/|VsP 7 ds < </ uMTsP1=Y ds) (/ u [ LsP ds) . (74)
0 0 0

On the other hand, using the fact that u(R) = 0, we obtain
R , R
/ (WM sds = —/ w1 ds, (75)
0 0
Therefore

R R
A+7) / WM TPV ds + (p—1— ) / uWMsPTI ds =
0 0

R (76)
- / uM P71 ds,
0
Using the fact that ' < 0 in (0, R), we get
R R
A
/ Mgy g = 20 u/ |ur T 1@ ds. (77)
0 P—7Jo

Applying Holder’s inequality again, we obtain

R Atr [ R T R Ea
/ uMsP T ds < T / M sPIY ds / ! PP ds . (78)
0 P—7 \Jo 0

Therefore,

R 1_ﬁ R ﬁ
/ uMT P17 ds < Aty / w7 sP ds . (79)
0 P—7 \Jo

Combining and , we easily obtain the estimation . This completes the proof
of this proposition. O
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Now we turn to the proof of Theorem [£.4]
Proof. Assume that there exists ro > 0, the first zero of w. Then u(r) > 0
Vr € (0,70, u'(r) <0 ¥r € (0,79) and u'(ro) < 0.

N — N — N

Since P < p’ one has P > —.

%+1—p P P q+1
Let P <6 < —= and we consider the following energy function:

q
_ N(p-—1 I"p 1 q+1 N—1, |, I {p—2, !
Gr)=r" | — P + ——u] + 6 T/ P (80)
P qg+1

Using equation , we get

N — N
G'(r)= ((5 - p) PN P+ ( — 6) N

p q+1 (81)
(a+ B8)rNulu!| — adrN "1u?(r) — BrVFIu2(r).
Integrating the last inequality on (0,rg), we obtain
N — To N T0
Go) = (3-8 ) [T e ase (2 - 6) [Tl as

T0 To T0
+ (a+ 65)/ sNulu'| ds — aé/ sVl (s) ds — B/ sV (s) ds.
0 0 0
With the choice of § and the fact that u > 0 and u’ < 0 on (0,79), we obtain by (82),
T0o T0o
G(ro) < (a+ 56)/ sNulu'| ds — ,3/ sNTLu/2(s) ds. (83)
0 0

According to Proposition we have

To 2 To
/ sNulu'| ds < —/ sV (s) ds. (84)
0 N Jo
Then by and , we see that
2 o
G(ro) < (N(a +36)—p / sV (s) ds. (85)
0
N — N

Since N > p and P < B, one has P < = - %. Again, with the choice of

q+1l—p 2 2

N « L . 2 .
0, we have § < 27 which implies that N(a + B86) — B | <0, that is, G(rg) < 0,
but this contradicts the fact that

-1
G(ro) = Z=20 N (ro)|P > 0.

Consequently, u is strictly positive. This completes the proof. O
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5 Conclusion

In this work, we studied the Cauchy problem (P). We proved the existence of global

o
solutions, we presented their complete classification in the cases — > N and — < N, and

we gave an explicit behavior near infinity of the positive solutions. More precisely, we
have given explicit equivalents to the positive solution u of problem (P) and its negative
derivative u’. The study of asymptotic behavior of positive solutions is carried out in
P — p7 which recalls the form of radial self-similar solutions
g+1—-p p—1
of the parabolic problem (2)) from which the problem (P) is derived.
Asymptotic behavior of positive solutions is ensured by the study of a nonlinear
dynamical system that we obtained by using the logarithmic change

«
the case — =

v(t) = r*Pu(r), r>0andt= Log(r). (86)

This obtained system, which we call (5), is as following:

V() = (0] wt) + o)
w'(t) :—(N—p—%(p—1))w(t)—Oée(er%(H))tv(t)—56(p+%(p_2))tz(f)—|U|q_1”(t)7
where
w(t) = |2[P~22(t) (87)
and o .
2(t) ='(t) — Ev(t) =5t/ (7). (88)

The solution (v,w) of the system (S) satisfies v > 0 and w < 0 (because u > 0 and
p—1
u’ < 0) and tends near infinity to the equilibrium point [ T, — <5F) , where T is

explicitly dependent on p, ¢ and N. Indeed, rewriting the second equation of the system
(S) by using expression (88), we obtain

a ' !
_ B+ EG=2Dty (1) — o (N —p— %(p —1)+ % - Z)U) : (89)

We have by and 7

im Y= 1 950
t—>1—~rpoo w T_}I_Poo(p -1 ' (r) 0 (90)
and ) o+l
) e _ rud(r _Tgq+1-p
til?ooz - rginoo \u’\P_Qu’(r) B (a)pl' (91)
B
Therefore
1 q+1—p
L gtz ) _ a0 T
im —pet o =N-p 5(19 1) (92)
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Recall by Proposition that v(t) is not strictly monotone for large ¢, then since w is
strictly negative, necessarily we have by ,

lim 756(p+%(p—2))t v'(t) =0
t—>+oo w ’

Hence the explicit expression of T' given by (48)).
Finally, using expressions , and , the convergence of the solution (v,w)

p—1
Q@
I‘) ) near infinity is expressed

of the system (S) to the equilibrium point (I‘, — <5

in terms of u and v’ by

. T i
lim reu(r) = (N —p-2 (p— 1)) (a)

r—+00 ﬂ ﬂ
and ) -
N — Fi-p +i-p
o= (rr- o) ™7 (5)
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