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Abstract: In this paper, we study the existence of the maximum number of crossing
limit cycles of planar piecewise differential systems formed by linear Hamiltonian
saddles. Firstly, we prove that if we separate these systems by either a parabola or
hyperbola or an ellipse, they can have at most three crossing limit cycles. Secondly,
we provide an example of four crossing limit cycles when these systems have four
zones separated by two intersecting straight lines xy = 0.
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1 Introduction

One of the important and difficult problems in the qualitative study of differential systems
is the determination of the existence or non-existence of limit cycles and their position in
the plane, the same problem arises for the piecewise linear differential systems separated
by an algebraic curve. Planar discontinuous piecewise linear differential systems were
firstly studied by Andronov, Vit and Khaikin [1].

Recently, these systems have been of great importance to the mathematical com-
munity due to their applicability to modeling and control of the environment, see for
example the books [7, 14].
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Many authors studied the upper bound of crossing limit cycles that some families of
discontinuous piecewise differential systems can have. In 2010, Han and Zhang [9] conjec-
tured that we can have two crossing limit cycles when we separate planar discontinuous
piecewise linear differential systems by a straight line, but in 2012, Huan and Yang [10]
proved that the conjecture of Han is wrong by proving the existence of a numerical ex-
ample with three limit cycles. Afterward, Llibre and Ponce in [12] proved analytically
the existence of this example. In 2015, Llibre et al. [11] showed that the discontinuous
piecewise linear differential centers sepatated by a straight line can not exhibit any limit
cycle, while if we consider that the curve of discontinuity is different from a straight
line, we can produce limit cycles, see for example the papers [3–5]. For another kind of
discontinuous planar piecewise differential systems, Benterki and Llibre [2,6] studied the
existence of limit cycles of planar piecewise linear Hamiltonian systems without equilib-
rium points, where they solved the 16th Hilbert problem of these systems when the curve
of separation are conics or irreducible cubic curves.

In [8], Damene and Benterki provided the maximum number of crossing limit cycles
of two different families of discontinuous piecewise linear differential systems separated
by cubic curves.

Our objective in this paper is to study the crossing limit cycles of planar piecewise
differential systems with linear Hamiltonian saddles separated by conics.

We recognize that each conic occurs in nine canonical forms, but we omit some of
them due to the fact that they do not separate the plane into connected regions such as
x2 + 1 = 0, x2 + y2 = 0, and x2 + y2 + 1 = 0.

In [13], the authors proved that the maximum number of limit cycles for discontinuous
planar piecewise differential systems formed by linear Hamiltonian saddles and separated
by two parallel straight lines is at most one.

The main goal of our work is to provide the upper bounds of crossing limit cycles of
discontinuous planar piecewise differential linear Hamiltonian saddles (or simply PHS)
separated by either an ellipse x2 + y2 − 1 = 0, or a parabola y − x2 = 0, or a hyperbola
x2 − y2 = 1 or by the two intersecting straight lines xy = 0. The main tool that we used
to prove our results is the first integrals method.

A normal form for an arbitrary linear differential system with Hamiltonian saddles is
given in the following proposition. For the proof, see for instance [13].

Proposition 1.1 Differential systems with a linear Hamiltonian saddle can be writ-
ten as

ẋ = −bx− δy + d, ẏ = αx+ by + c, (1)

where α ∈ {0, 1} and b, δ, c, d ∈ R. Moreover, if α = 0, then c = 0, and if α = 1, then
δ = b2 − ω2 with ω ̸= 0. The corresponding first integral of system (1) is

H(x, y) = −(α/2)x2 − bxy − (δ/2)y2 − cx+ dy.

2 Statements of the Main Results

In this section, and specialy in Theorem 2.1, we prove our results for discontinuous piece-
wise differential systems formed by linear Hamiltonian saddles intersecting the parabola,
or hyperbola or ellipse at two points. While in Theorem 2.2 we are interested in studying
the number of crossing limit cycles intersecting the straight lines xy = 0 at exactly four
points. Our first main result is the following.
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Theorem 2.1 The following statements hold.

(i) The maximum number of crossing limit cycles of PHS intersecting the parabola at
two points, is at most three. This maximum is reached in Figure 1.

(ii) The maximum number of crossing limit cycles of PHS intersecting the hyperbola
at two points, is at most three. This maximum is reached in Figure 2.

(iii) The maximum number of crossing limit cycles of PHS intersecting the ellipse at
two points, is at most three. This maximum is also reached in Figure 3.
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Figure 1: Three crossing limit cycles of piecewise differential system (7)–(8).
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Figure 2: Three crossing limit cycles of piecewise differential system (10)–(11).

Theorem 2.2 The maximum number of crossing limit cycles of piecewise linear dif-
ferential systems formed by four linear Hamiltonian saddles and separated by the two
intersecting straight lines xy = 0, is at most eight. There is an example of these systems
with exactly four limit cycles.
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Figure 3: Three crossing limit cycles of piecewise differential system (13)–(14).
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Figure 4: Four crossing limit cycles of piecewise differential system (21)–(24).

3 Proof of Theorem 2.1

Proof. In this part, we are going to prove the statement (i) of Theorem 2.1. Then in
the first region R1 = {(x, y) : y−x2 ≥ 0}, we consider the planar discontinuous piecewise
Hamiltonian saddle

ẋ = −b1x− δ1y + d1, ẏ = α1x+ b1y + c1, (2)

its corresponding Hamiltonian function is

H1(x, y) = −α1

2
x2 − b1xy −

δ1
2
y2 − c1x+ d1y. (3)

In the second region R2 = {(x, y) : y − x2 ≤ 0}, we consider the PHS system

ẋ = −b2x− δ2y + d2, ẏ = α2x+ b2y + c2, (4)

with its corresponding Hamiltonian function

H2(x, y) = −α2

2
x2 − b2xy −

δ2
2
y2 − c2x+ d2y. (5)
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In order to have a crossing limit cycle that intersects the parabola y − x2 = 0 at the
points (xi, yi) and (xk, yk), with i ̸= k, these points must satisfy the following system:

H1(xi, yi)−H1(xk, yk)) = 0,
H2(xi, yi)−H2(xk, yk) = 0,
yi − x2

i = 0, yk − x2
k = 0.

(6)

We suppose that the system (2)–(4) has four crossing limit cycles. Then, system (6) must
have four pairs of points as solutions, namely, pi and qi taking the forms pi = (ri, r

2
i ) and

qi = (si, s
2
i ), with i = 1, 2, 3, 4. Due to the fact that these points satisfy system (6) and

if we consider the points p1 = (r1, r
2
1) and q1 = (s1, s

2
1), then simple calculations give the

following expressions of the parameters c1 and c2:

c1 =
1

2

(
2d1(r1 + s1)− 2b1(r

2
1 + r1s1 + s21)− (r1 + s1)(α1 + (r21 + s21)δ1)

)
,

and c2 has the same expression as c1 with the change of (d1, δ1, b1, α1) by (d2, δ2, b2, α2).
If the two points p2 = (r2, r

2
2) and q2 = (s2, s

2
2) satisfy system (6), then by solving

the two first equations of (6), we obtain the expressions of the two parameters d1 and d2

d1 =
1

2(r1 − r2 + s1 − s2)

(
2b1(r

2
1 − r22 + r1s1 + s21 − r2s2 − s22)− r2α1 + s1α1

−s2α1 + r31δ1 − r32δ1 + r21s1δ1 + s31δ1 − r22s2δ1 − r2s
2
2δ1 − s32δ1 + r1(α1 + s21δ1)

)
,

and d2 has the same expression as d1 with the change of (δ1, b1, α1) by (δ2, b2, α2).
Now let us suppose that the points p3 = (r3, r

2
3) and q3 = (s3, s

2
3) satisfy system (6),

then the parameters δ1 and δ2 must be δ1 = A/B, where

A = −2b1

(
(s1 − s2)(r

2
3 + (s1 − s3)(s2 − s3)− r3(s1 + s2 − s3)) + r21(r2 − r3 + s2

−s3) + r22(r3 − s1 + s3) + r1(−r22 + r23 − r3s1 + r2(s1 − s2) + s1s2 − s22 + r3s3

−s1s3 + s23)− r2(r
2
3 + r3(−s2 + s3)− (s1 − s3)(s1 − s2 + s3))

)
,

B = r31(r2 − r3 + s2 − s3) + r21s1(r2 − r3 + s2 − s3) + r32(r3 − s1 + s3) + r22s2(r3
−s1 + s3) + r1(−r32 + r33 − r3s

2
1 − r22s2 + s21s2 − s32 + r2(s

2
1 − s22) + r23s3 + s33

+r3s
2
3 − s21s3) + (s1 − s2)(r

3
3 + r23s3 + (s1 − s3)(s2 − s3)(s1 + s2 + s3)− r3(s

2
1

+s1s2 + s22 − s23))− r2(r
3
3 − s31 + s1s

2
2 + r23s3− s22s3 + s33 + r3(−s22 + s23)),

and we get the expression of δ2 by changing (b1, α1) by (b2, α2) in the expression of δ1.
Finally, if we suppose that the points p4 = (r4, r

2
4) and q4 = (s4, s

2
4) satisfy system (6)

and if αi ∈ {0, 1} with i = 1, 2, then we obtain b1 = 0 and b2 = 0.
We replace c1, d1, δ1, α1 and b1 in the expression of H1(x, y), and c2, d2, δ2, α2 and b2

in the expression of H2(x, y), we known that the expression of the first integral H1(x, y)
is the same as the expression of the first integral H2(x, y), i.e., H1(x, y) = H2(x, y).
Therefore, the piecewise linear differential system (2)–(4) becomes a linear differential
system, which does not have limit cycles. Consequently, the maximum number of crossing
limit cycles in this case is at most three.

Example with three limit cycles. Consider the planar discontinuous piecewise
linear Hamiltonian saddle

ẋ = 75x+ 250y − 550, ẏ = −75y − 100, (7)
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in the region R1 with its corresponding Hamiltonian function

H1(x, y) = 125y2 + 75xy + 100x− 550y.

In the region R2, we consider the PHS system

ẋ = 0.07125x+ 0.2375y − 0.0225, ẏ = x− 0.07125y − 0.095, (8)

its corresponding Hamiltonian function is

H2(x, y) = −x2

2
+ 0.0712..xy + 0.1187..y2 − 0.0224..y + 0.095..x.

Now system (6) has the three solutions (x
(1)
1 , y

(1)
1 , x

(1)
2 , y

(1)
2 ) = (1.5569.., 2.4239.., 0.7417..,

0.5502..), (x
(2)
1 , y

(2)
1 , x

(2)
2 , y

(2)
2 ) = (1.6356.., 2.6753.., 0.543.., 0.2948..), and (x

(3)
1 , y

(3)
1 , x

(3)
2 ,

y
(3)
2 ) = (1.6977.., 2.8823.., 0.264.., 0.0698..), which provide the three limit cycles shown in
Figure 1. This completes the proof of statement (i) of Theorem 2.1.

To prove the statement (ii) of Theorem 2.1, we consider in the region R1 = {(x, y) :
x2 − y2 − 1 ≥ 0} the PHS given in (2), with its corresponding Hamiltonian function
given in (3).

In the region R2 = {(x, y) : x2 − y2 − 1 ≤ 0}, we consider the PHS given in (4), with
its corresponding Hamiltonian function given in (5). In order to have a crossing limit
cycle that intersects the hyperbola x2 − y2 − 1 = 0 at the points (xi, yi) and (xk, yk),
with i ̸= k, they must satisfy the system of equations

H1(xi, yi)−H1(xk, yk) = 0,
H2(xi, yi)−H2(xk, yk) = 0,
x2
i − y2i − 1 = 0, x2

k − y2k − 1 = 0,
(9)

we suppose that system (2)–(4) has four crossing limit cycles. So, system (9) must
have four pairs of solutions which can be written as pi = (cosh ri, sinh ri) and qi =
(cosh si, sinh si), for i = 1, 2, 3, 4.

Due to the fact that the two points p1 = (cosh r1, sinh r1) and q1 = (cosh s1, sinh s1)
satisfy system (9), then by solving the two first equations in (9), we obtain the parameters
c1 and c2 as follows:

c1 =
1

2(cosh r1 − cosh s1)

(
− α1 cosh

2 r1 + α1 cosh
2 s1 + 2d1 sinh r1 − 2b1 cosh r1

sinh r1 − δ1 sinh
2 r1 − 2d1 sinh s1 + δ1 sinh s

2
1 + b1 sinh 2s1

)
.

By changing (α1, δ1, b1, d1) by (α2, δ2, b2, d2) in the expression of c1, we get the expression
of c2. We know that the two points p2 = (cosh r2, sinh r2) and q2 = (cosh s2, sinh s2)
satisfy system (9), then from this system, we get the parameters d1 and d2, where

d1 =
1

4
(
cosh

(r1 − 2r2 + s1
2

)
− cosh

(r1 + s1 − 2s2
2

))(csch( r1−s1
2 )

(
α1 cosh

2 r2 cosh s1

+α1 cosh
2 r1(cosh r2 − cosh s2) + α1 cosh

2 s1 cosh s2 − α1 cosh s1 cosh
2 s2 − δ1

cosh s2 sinh
2 r1 + δ1 cosh s1 sinh

2 r2 + b1 cosh s1 sinh(2r2) + δ1 cosh s2 sinh
2 s1

+b1 cosh s2 sinh(2s1) + cosh r2
(
− α1 cosh

2 s1 + sinh(r1 − s1)
(
2b1 cosh(r1 + s1)

+δ1 sinh(r1 + s1)
))

− 2b1 cosh s1 cosh s2 sinh s2 − δ1 cosh s1 sinh
2 s2

+cosh r1
(
− α1 cosh

2 r2 + α1 cosh
2 s2 − 2b1 cosh s2 sinh r1 + 2b1 cosh r2 sinh r2

−δ1 sinh
2 r2 + δ1 sinh

2 s2 + b1 sinh(2s2)
)))

,
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and by changing (α1, δ1, b1) by (α2, δ2, b2) in the expression of d1, we obtain d2.
We know that the points p3 = (cosh r3, sinh r3) and q3 = (cosh s3, sinh s3) satisfy

system (9), then we obtain the values of δ1 and δ2. The value of δ1 is given by δ1 = A/B,
where

A = −α1

(
cosh(

r1 − r2 − r3 + s1 − s2 − 3s3
2

) + cosh(
r1 − r2 − r3 + s1 − 3s2 − s3

2
)

− cosh(
r1 − r2 − 3r3 + s1 − s2 − s3

2
) + cosh(

r1 + 3r2 − r3 + s1 + s2 − s3
2

+ cosh(
r1 − 3r2 − r3 + s1 − s2 − s3

2
) + cosh(

3r1 + r2 − r3 + s1 + s2 − s3
2

)

− cosh(
r1 + 3r2 − r3 + s1 + s2 − s3

2
) + cosh(

r1 + r2 − r3 + 3s1 + s2 − s3
2

)

− cosh(
r1 + r2 − r3 + s1 + 3s2 − s3

2
)− cosh(

3r1 − r2 + r3 + s1 − s2 + s3
2

)

+ cosh(
r1 − r2 + 3r3 + s1 − s2 + s3

2
)− cosh(

r1 − r2 + r3 + 3s1 − s2 + s3
2

)

+ cosh(
r1 − r2 + r3 + s1 − s2 + 3s3

2
)
)
+ 2b1

(
sinh(

r1 − r2 − r3 + s1 − s2 − 3s3
2

)

− sinh(
r1 − r2 − r3 + s1 − 3s2 − s3

2
+ sinh(

r1 − r2 − 3r3 + s1 − s2 − s3
2

)

− sinh(
r1 − 3r2 − r3 + s1 − s2 − s3

2
) + sinh(

3r1 + r2 − r3 + s1 + s2 − s3
2

)

− sinh(
r1 + 3r2 − r3 + s1 + s2 − s3

2
) + sinh(

r1 + r2 − r3 + 3s1 + s2 − s3
2

)

− sinh(
r1 + r2 − r3 + s1 + 3s2 − s3

2
)− sinh(

3r1 − r2 + r3 + s1 − s2 + s3
2

)

+ sinh(
r1 − r2 + 3r3 + s1 − s2 + s3

2
)− sinh(

r1 − r2 + r3 + 3s1 − s2 + s3
2

)

+ sinh(
r1 − r2 + r3 + s1 − s2 + 3s3

2
)
)
,

B = cosh(
r1 − r2 − r3 + s1 − s2 − 3s3

2
)− cosh(

r1 − r2 − r3 + s1 − 3s2 − s3
2

)

+ cosh
r1 − r2 − 3r3 + s1 − s2 − s3

2
)− cosh(

r1 − 3r2 − r3 + s1 − s2 − s3
2

)

− cosh(
3r1 + r2 − r3 + s1 + s2 − s3

2
) + cosh(

r1 + 3r2 − r3 + s1 + s2 − s3
2

)

− cosh
r1 + r2 − r3 + 3s1 + s2 − s3

2
) + cosh

r1 + r2 − r3 + s1 + 3s2 − s3
2

)

+ cosh(
3r1 − r2 + r3 + s1 − s2 + s3

2
)− cosh(

r1 − r2 + 3r3 + s1 − s2 + s3
2

)

+ cosh(
r1 − r2 + r3 + 3s1 − s2 + s3

2
)− cosh(

r1 − r2 + r3 + s1 − s2 + 3s3
2

).

We get the expression of δ2 by changing (α1, b1) by (α2, b2) in the expression of δ1.

If α1 = α2 = 1 or (α1 = α2 = 0), we assume that the points p4 = (cosh r4, sinh r4)
and q4 = (cosh s4, sinh s4) satisfy system (9), then we obtain b1 = 0 and b2 = 0.

We replace c1, d1, δ1, α1 and b1 in the expression of H1(x, y), and c2, d2, δ2, α2 and
b2 in the expression of H2(x, y) and we obtain H1(x, y) = H2(x, y). Hence, in these cases,
the piecewise linear differential system becomes a linear differential system, which does
not have any limit cycle. Therefore, the maximum number of crossing limit cycles in the
piecewise linear Hamiltonian saddles separated by a hyperbola is at most three.

Example with three limit cycles. We consider the PHS separated by the
hyperbola

ẋ = −18x+ 95y + 15, ẏ = 18y − 14, (10)
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in the region R1 = {(x, y) : x2 − y2 − 1 ≥ 0}, which has the Hamiltonian function

H1(x, y) =
95

2
y2 − 18xy + 14x+ 15y.

Now, in the region R2 = {(x, y) : x2 − y2 − 1 ≤ 0}, we consider the second PHS

ẋ = −0.2699..x+ 2.425..y + 0.225.., ẏ = x+ 0.2699..y − 0.21, (11)

its corresponding first integral is

H2(x, y) =
x2

2
− 0.2699..xy + 1.2124..y2 + 0.21x+ 0.2249..y.

The PHS (10)–(11) has exactly three crossing limit cycles because the system of equa-

tions (9) has three real solutions (x
(1)
1 , y

(1)
1 , x

(1)
2 , y

(1)
2 ) = (1.0571.., 0.3427.., 1.0362..,

− 0.2715..), (x
(2)
1 , y

(2)
1 , x

(2)
2 , y

(2)
2 ) = (1.1283.., 0.5227.., 1.0885..,−0.43..), and (x

(3)
1 , y

(3)
1 ,

x
(3)
2 , y

(3)
2 ) = (1.1969.., 0.6577.., 1.1385..,−0.5442), see Figure 2. This completes the proof

of statement (ii).

Finally, to prove the statement (iii), we consider the PHS given in (2) in the region
R1 = {(x, y) : x2 + y2 − 1 ≥ 0}, with its corresponding Hamiltonian function (3). We
consider the PHS given in (4) in the region R2 = {(x, y) : x2 + y2 − 1 ≤ 0}, with its
corresponding Hamiltonian function (5). In order that system (2)–(4) has crossing limit
cycles intersecting the ellipse y2 + x2 − 1 = 0 at the points (xi, yi) and (xk, yk), with
i ̸= k, they must satisfy the system

H1(xi, yi)−H1(xk, yk)) = 0,
H2(xi, yi)−H2(xk, yk) = 0,
y2i + x2

i − 1 = 0, y2k + x2
k − 1 = 0.

(12)

Now we assume that system (2)–(4) has four crossing limit cycles. Consequently, system
(12) must have four pairs of points pi = (cos ri, sin ri) and qi = (cos si, sin si) with
i = 1, . . . , 4 as solutions. So, if we consider the points p1 = (cos r1, sin r1) and q1 =
(cos s1, sin s1) from (12), we obtain that the parameters c1 and c2 must be

c1 =
1

2(cos r1 − cos s1)

(
− α1 cos

2 r1 + α1 cos
2 s1 + 2d1 sin r1 − 2b1 cos r1 sin r1−

δ1 sin
2 r1 − 2d1 sin s1 + δ1 sin

2 s1 + b1 sin(2s1)
)
.

Changing (d1, δ1, α1, b1) by (d2, δ2, α2, b2) in the expression of c1, we get the expression
of c2. Due to the fact that the two points p2 = (cos r2, sin r2) and q2 = (cos s2, sin s2)
satisfy system (12), then the parameters d1 and d2 have the expressions

d1 =
csc((r1 − s1)/2)

4
(
cos(2(r1 − 2r2 + s1)/2)− cos((r1 + s1 − 2s2)/2)

) (α1 cos
2 r2 cos s1

+α1 cos
2 r1(cos r2−cos s2) + α1 cos

2 s1 cos s2 − α1 cos s1 cos
2 s2 − δ1 cos s2 sin

2 r1
+δ1 cos s1 sin

2 r2 + b1 cos s1 sin(2r2) + δ1 cos s2 sin
2 s1 + b1

cos s2 sin(2s1) + cos r2(−α1 cos
2 s1+sin(r1−s1)(2b1 cos(r1+s1)+δ1 sin(r1+s1)))

−2b1 cos s1 cos s2 sin s2 − δ1 cos s1 sin
2 s2 + cos r1(−α1 cos

2 r2 + α1 cos
2 s2 − 2b1

cos s2 sin r1 − 2b1 cos r2 sin r2 − δ1 sin
2 r2 + δ1 sin

2 s2 + b1 sin(2s2))).
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We get the expression of d2 by changing (δ1, α1, b1) by (δ2, α2, b2) in the expression of
d1.

Likewise, the points p3 = (cos r3, sin r3) and q3 = (cos s3, sin s3) satisfy system (12),
then we obtain the expressions of δ1 and δ2 such that δ1 = A/B, where

A = α1

(
cos

(r1 − r2 − r3 + s1 − s2 − 3s3
2

)
− cos

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)
+cos

(r1 − r2 − 3r3 + s1 − s2 − s3
2

)
− cos

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)
− cos

(3r1 + r2 − r3 + s1 + s2 − s3
2

)
+ cos

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)
− cos

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)
+ cos

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)
+cos

(3r1 − r2 + r3 + s1 − s2 + s3
2

)
− cos

(3r1 − r2 + r3 + s1 − s2 + s3
2

)
+cos

(r1− r2 + r3 + 3s1 − s2 + s3
2

)
− cos

(r1− r2 + r3 + s1 − s2 + 3s3
2

))
−2b1

(
sin

(r1 − r2 − r3 + s1 − s2 − 3s3
2

)
+ sin

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)
− sin

(r1 − r2 − 3r3 + s1 − s2 − s3
2

)
+ sin

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)
− sin

(3r1 + r2 − r3 + s1 + s2 − s3
2

)
+ sin

(r1 + 3r2 − r3 + s1 + s2− s3

2

)
− sin

(r1 + r2 − r3 + 3s1 + s2− s3

2

)
+ sin

(r1 + r2 − r3 + s1 + 3s2− s3

2

)
+sin

(3r1 − r2 + r3 + s1 − s2 + s3

2

)
− sin

(r1 − r2 + 3r3 + s1 − s2 + s3

2

)
+sin

(r1 − r2 + r3 + 3s1 − s2 + s3

2

)
− sin

(r1 − r2 + r3 + s1 − s2 + 3s3
2

))
,

and the expression of B is

B = cos
(r1 − r2 − r3 + s1 − s2 − 3s3

2

)
− cos

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)
+cos

(r1 − r2 − 3r3 + s1 − s2 − s3
2

)
− cos

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)
− cos

(3r1 + r2 − r3 + s1 + s2 − s3
2

)
+ cos

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)
− cos

(r1 + r2 − r3 + 3s1 + s2 − s3
2

)
+ cos

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)
+cos

(3r1 − r2 + r3 + s1 − s2 + s3
2

)
− cos

(r1 − r2 + 3r3 + s1 − s2 + s3
2

)
+cos

(r1 − r2 + r3 + 3s1 − s2 + s3
2

)
− cos

(r1 − r2 + r3 + s1 − s2 + 3s3
2

)
.

A simple change of (α1, b1) to (α2, b2) in the expression of δ1, allows us to get the
expression of δ2.

Now, if we suppose that the points p4 = (cos r4, sin r4) and q4 = (cos s4, sin s4) satisfy
equation (12) and if αi ∈ {0, 1} with i = 1, 2, then we obtain b1 = 0 and b2 = 0.
We replace c1, d1, δ1, α1 and b1 in the expression of H1(x, y), and c2, d2, δ2, α2 and b2 in
the expression of H2(x, y), we have H1(x, y) = H2(x, y). Therefore, the piecewise linear
differential system becomes a linear differential system, which does not have limit cy-
cles. Therefore, the maximum number of crossing limit cycles in this case is at most three.

Example with three limit cycles. In the region R1 = {(x, y) : x2 + y2 − 1 ≥ 0},
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we consider the linear PHS

ẋ = −18x+ 95y + 15, ẏ = 18y − 14, (13)

with its Hamiltonian function H1(x, y) = 14x+ 15y − 18xy + 95
2 y2. In the region R1 =

{(x, y) : x2 + y2 − 1 ≤ 0}, we consider the linear PHS

ẋ = −0.2442..x+ 0.2892..y + 0.203571, ẏ = x+ 0.2442..y − 0.19, (14)

which has the Hamiltonian function

H2(x, y) = −x2

2
− 0.2442..xy + 0.1446..y2 + 0.19x+ 0.20357..y.

The linear PHS (13)-(14) has exactly three crossing limit cycles because the

system of equations (12) has exactly three real solutions (x
(1)
1 , y

(1)
1 , x

(1)
2 , y

(1)
2 ) =

(0.9273.., 0.3741.., 0.9445..,−0.3282..), (x
(2)
1 , y

(2)
1 , x

(2)
2 , y

(2)
2 ) = (0.8357.., 0.5491..,

0.83658..,−0.5478..), and (x
(3)
1 , y

(3)
1 , x

(3)
2 , y

(3)
2 ) = (0.7397.., 0.6729.., 0.6809..,−0.732..),

see Figure 3.

4 Proof of Theorem 2.2

In the quarter-plane R1 = {(x, y) : x > 0, y < 0}, we consider the PHS given by (2). Its
corresponding Hamiltonian function is given by equation (3).

In the quarter-plane R2 = {(x, y) : x < 0, y < 0}, we consider the PHS given by (4),
with its corresponding Hamiltonian function (5).

In the quarter-plane R3 = {(x, y) : x < 0, y > 0}, we consider the PHS

ẋ = −b3x− δ3y + d3, ẏ = α3x+ b3y + c3, (15)

its corresponding Hamiltonian function is

H3(x, y) = −α3

2
x2 − b3xy −

δ3
2
y2 − c3x+ d3y. (16)

In the quarter-plane R4 = {(x, y) : x > 0, y > 0}, we consider the PHS

ẋ = −b4x− δ4y + d4, ẏ = α4x+ b4y + c4. (17)

Its corresponding Hamiltonian function is

H4(x, y) = −α4

2
x2 − b4xy −

δ4
2
y2 − c4x+ d4y. (18)

In order to have a crossing limit cycle that intersects the two intersecting straight lines
xy = 0 at the points (x1, 0), (x2, 0), (0, y1) and (0, y2), we must satisfy the following
system:

P1(x1, y1) = H1(x1, 0)−H1(0, y1) = 0,
P2(x2, y1) = H2(0, y1)−H2(x2, 0) = 0,
P3(x2, y2) = H3(x2, 0)−H3(0, y2) = 0,
P4(x1, y2) = H4(0, y2)−H4(x1, 0) = 0,

(19)
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or, equivalently,

P1(x1, y1) = −2c1x1 − 2d1y1 − x2
1α1 + y21δ1 = 0,

P2(x2, y1) = 2c2x2 + 2d2y1 + x2
2α2 − y21δ2 = 0,

P3(x2, y2) = −2c3x2 − 2d3y2 − x2
2α3 + y22δ3 = 0,

P4(x1, y2) = 2c4x1 + 2d4y2 + x2
1α4 − y22δ4 = 0.

(20)

As x1 ̸= x2 and y1 ̸= y2, we know that the polynomials P1(x1, y1), P2(x2, y1), P3(x2, y2)
and P4(x1, y2) are of degree 2. By using Bézout Theorem, we know that the number
of solutions of the system (19) is bounded by the product of the degrees of the four
polynomials Pi(xk, yj), with k, j = 1, 2, which is equal to 16. According to the symmetry
of the solutions of this system, we know that the maximum number of solutions satisfying
(20) is at most 8. Then the upper bound of limit cycles of system (2)–(17) is eight.

Because of the higher degree of these polynomials and the number of their parameters,
we only can give an example with four limit cycles.

Example of four limit cycles for PHS separated by xy = 0. In the quarter-
plane R1 = {(x, y) : x > 0, y < 0}, we consider the PHS

ẋ = −4x− 35y + 8, ẏ = −x+ 4y + 8, (21)

its Hamiltonian function is

H1(x, y) = −1

2
x2 + 4xy +

35

2
y2 + 8x− 8y.

In the quarter-plane R2 = {(x, y) : x < 0, y < 0}, we consider the PHS

ẋ = −3x− 10.32..y + 5.17.., ẏ = −x+ 3y − 4.23.., (22)

its Hamiltonian function is

H2(x, y) = −1

2
x2 + 3xy + 5.16..y2 − 4.23..x− 5.17..y.

In the quarter-plane R3 = {(x, y) : x < 0, y > 0}, we consider the PHS

ẋ = +2.5x− 9y + 1, ẏ = −x− 2.5y − 5, (23)

where its Hamiltonian function is

H3(x, y) = −1

2
x2 − 2.5xy +

9

2
y2 − y − 5x.

In the quarter-plane R4 = {(x, y) : x > 0, y > 0}, we consider the PHS

ẋ = −4x− 22.61..y + 4.46.., ẏ = −x+ 4y + 9.05.., (24)

with the Hamiltonian function

H4(x, y) = −1

2
x2 + 4xy + 11.3..y2 − 4.46..y + 9.05..x.

The PHS (21)–(24) has exactly four crossing limit cycles because the system of equations

(20) has four real solutions (x
(1)
1 , y

(1)
1 , x

(1)
2 , y

(1)
2 ) = (−0.524.., 1.2176..,−1.12.., 1.171..),

(x
(2)
1 , y

(2)
1 , x

(2)
2 , y

(2)
2 ) = (−0.59.., 1.519..,−1.394.., 1.27..), (x

(3)
1 , y

(3)
1 , x

(3)
2 , y

(3)
2 ) = (−0.66..,

1.83..,−1.68.., 1.36..) and (x
(4)
1 , y

(4)
1 , x

(4)
2 , y

(4)
2 ) = (−0.72.., 2.16..,−2, 0, 1.44..), see Figure

4. This completes the proof of Theorem 2.2.
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5 Conclusion

We have solved the extension of the second part of the 16th Hilbert problem for a
family of discontinuous planar differential systems separated by conics. These piecewise
differential systems are formed by planar linear Hamiltonian saddles. By using the fisrt
integrals of these systems, we proved that the maximum number of crossing limit cycles
of this family of systems is either three or eight depending on the curve of separation.
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