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1 Introduction

Nonlinear dynamics is widely used in engineering, physics, biology and many other scien-
tific areas. The interest in nonlinear dynamics and chaotic dynamics has grown rapidly
since 1963, when Edward Lorenz, an American meteorologist, discovered a classic chaotic
system, and the phenomenon of chaos was gradually being considered by many scholars
in various fields. Given the vast applications of chaos phenomena in various sciences
such as secure communications [1], nonlinear circuits [2], chemical reactions [3], power
electronics [4], lasers [5], encryption [6], study and research on the inherent character-
istics of this phenomenon and its control has become of importance in sciences. Due
to the introduction of new chaotic systems, the problem of controlling chaos in these
types of systems was considered by scientists and researchers in order to control chaos
for different purposes such as removing chaos, behavior and anti-chaos control (chaos for
a system), bipolar control and synchronization of two chaotic systems. A chaotic system
with more than one positive Lyapunov exponent is known as a hyperchaotic system which
means that its dynamics extends simultaneously in several different directions. Hyper-
chaos systems in the presence of more than one positive Lyapunov exponent due to more
complex dynamics, which improves applications in secure communications, encryption
and decryption, have attracted the attention of many researchers in recent years. Lately,
several supercharged systems have been discovered with high-level dynamics. For ex-
ample, Chua hyperchaos [7], Rossler system [8], Lorenz hyperchaos system [9]. In 2002,
Levechin found a new chaotic system known as the Lu system which is the bridge be-
tween Lorenz’s chaotic system and Chen’s chaotic system. The Lu hyperchaos system is
based on the chaos Lu system and state feedback [10].

One of the important applications of the hyperchaotic Lu system similar to most of the
other hyperchaotic systems mentioned above in the field of secure communications is the
use of hyperchaotic systems to increase the level of information security. Because of the
noise-like and complex behaviors, chaotic systems have the ability to cover information
with a high degree of reliability. The general idea for transmitting information by chaotic
systems is based on the fact that the embedding of information in the transmitter system
produces a chaotic signal.

In recent years, chaos and synchronization control have been investigated, for exam-
ple, synchronization with adaptive control [11], in which the problem of synchronizing
two hyperchaos systems with an adaptive controller is investigated, active control [12],
fuzzy sliding mode control [13], impulsive synchronization [14], active backstepping syn-
chronization [15], nonlinear schemes [16], [17], hybrid projective synchronization [18] and
so on.

Synchronization of chaos systems has been widely discussed in recent decades, and
attracted the attention of many researchers in controlling chaos. As a general synchro-
nization definition, it is possible to synchronize the variables of a chaotic system with
another chaotic system, when the primary system is called master, and the second system
is slave. The first method of synchronizing two chaotic systems was proposed in [19].

In this paper, synchronization of hyperchaos systems, despite the uncertainties, dis-
turbance and different initial conditions, was investigated. A sliding-adaptive control,
regarding its advantages such as simple and easy realization, quick answer, good transient
performance, and robustness against system uncertainties and disturbances, is designed
as a control method for synchronization. The stability of the chaotic system has been
proved by controllers designed using the Lyapunov theorem, and it is shown that the
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slave system states asymptotically track the states of the master system. One of the
most important applications of the presented method in this paper in nonlinear systems
and systems theory is a secure communications system, where synchronization between
the transmitter and the receiver is a vital problem. The overall structure of this paper
is as follows. In the second section, the dynamical model of the hyperchaos system is
introduced. The third part of the paper describes the issue of synchronization between
two hyperchaos systems, with known bound of uncertainties and disturbances. Further-
more in this section, estimation of the unknown parameters of the hyperchaos system is
investigated in spite of uncertainty and disturbance. Finally, simulation results of the
proposed controller are presented in Section 4.

2 Introduction of Dynamic Model

Elabbasy et al. [20] represented dynamic equations of the hyperchaos system as follows:
ẋ1 = a(x2 − x1),
ẋ2 = cx2 − x1x3 + x4,
ẋ3 = x1x2 − bx3,
ẋ4 = x3 − dx4,

(1)

where the fourth state is a simple feedback, that is added to the second state, and
a = 20, b = 5, c = 10, d = 1.5, andX = [x1, x2, x3, x4] is the vector of the state variables
of the master system. Both master and slave systems follow the same dynamical equations
as equation (1) with different initial conditions, but the main difference is that all states of
the master system should be followed by a slave system using a controller. Therefore, the
slave system, with the disturbance and parametric uncertainty, is expressed as follows:

ẏ1 = a(y2 − y1) + ∆f1 + w1 + u1,
ẏ2 = cy2 − y1y3 + y4 +∆f2 + w2 + u2,
ẏ3 = y1y2 − by3 +∆f3 + w3 + u3,
ẏ4 = y3 − dy4 +∆f4 + w4 + u4,

(2)

in which u = [u1, u2, u3, u4] is the control vector, and Y = [y1, y2, y3, y4] is the vector
of states of the slave system, ∥∆fi∥ ≤ αi, i = 1, .., 4, is the parametric uncertainty with
known bound and ∥wi∥ ≤ βi, i = 1, .., 4, is the disturbance input with known bound. In
Figure 1, the hyperchaos system is shown with a parametric set of a = 20, b = 5, c =
10, d = 1.5 [14]. These parameters, with the Lyapunov exponent 0.75, 0.03,−1.55,−15.73
calculated in [21], cause a hyperchaos system.

3 Synchronization of Two Hyperchaos Lu Systems

In the real world, all or some of the system’s parameters are unknown or uncertain. So,
the synchronization issue may fail. In this section, a synchronization method for two
same hyperchaos Lu systems is mentioned. Consider the master and slave systems (1)
and (2). Due to the definition of the error as ei = yi − xi, i = 1, 2, 3, 4, we have

ė1 = a(e2 − e1) + ∆f1 + w1 + u1,
ė2 = ce2 + e4 − e1e3 − x1e3 − x3e1 +∆f2 + w2 + u2,
ė3 = −be3 + e1e2 + x2e1 + x1e2 +∆f3 + w3 + u3,
ė4 = e3 − de4 +∆f4 + w4 + u4.

(3)
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Figure 1: Images of attractor of hyperchaos Lu system.

3.1 Synchronization of two hyperchaos Lu systems with uncertainty and
disturbance input

First, the problem of synchronizing two same hyperchaos systems, with known parame-
ters is considered and the sliding mode controller is designed. The sliding mode control
is a nonlinear control method that guarantees control strategy over uncertainties. In this
way, stability is obtained by keeping system modes on the sliding surface.

In general, the sliding mode controller design consists of two steps:

• A. Sliding surface design that reduces the order of the closed loop system, and
provides a resilient bed in the movement of the system towards the equilibrium
point.

• B. Choosing the right control policy to move the system to this level and ensure
that it stays on it.

Now, with the sliding surface definition, we have the following:

si = ei +

∫
kiei i = 1, 2, 3, 4, (4)


ṡ1 = a(e2 − e1) + k1e1 +∆f1 + w1 + u1,
ṡ2 = ce2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2,
ṡ3 = −be3 + e1e2 + x2e1 + x1e2 +∆f3 + k3e3 + w3 + u3,
ṡ4 = e3 − de4 + k4e4 +∆f4 + w4 + u4,

(5)

and considering ṡ = 0, we have

ueq =


u1 = −a(e2 − e1)− k1e1,
u2 = −ce2 − e4 + e1e3 + x1e3 + x3e1 − k2e2,
u3 = be3 − e1e2 − x2e1 − x1e2 − k3e3,
u4 = −e3 + de4 − k4e4.

(6)

On the other hand, the control signal of the proposed controller is considered as follows:

ui = ueqi − (rsi + ρsgn(si))− (αi + βi) , (7)
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in which ρ and r are greater than zero.

Theorem 3.1 If in the control signal (7), the parameters are positive and certain,
then all system states of (2) will tend to the states of system (1).

Proof. Suppose that the Lyapunov function is considered as (8), which is a positive
definite function. Given the Lyapunov stability theorem, to prove the stability of the
sliding mode dynamic (5), we need to show that the derivative of the Lyapunov function
is negative, so, according to the selective S, u proves the asymptotic stability by using
the Lyapunov stability.

The proposed Lyapunov function is as follows:

V =
1

2

4∑
i=1

s2i (8)

and its derivative is as follows:

V̇ =
4∑

i=1

siṡi = s1ṡ1 + s2ṡ2 + s3ṡ3 + s4ṡ4

= s1(a(e2 − e1) + k1e1 +∆f1 + w2 + u1)
+s2(ce2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2)
+s3(−be3 + e1e2 + x2e1 + x1e2 +∆f3 + k3e3 + w3 + u3)
+s4(e3 − de4 + k4e4 +∆f4 + w4 + u4),

(9)

V̇ ≤ s1(a(e2 − e1) + k1e1 + α1 + β1 + u1)
+s2(ce2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 + α2 + β2 + u2)
+s3(−be3 + e1e2 + x2e1 + x1e2 + k3e3 + α3 + β3 + u3)
+s4(e3 − de4 + k4e4 + α4 + β4 + u4),

V̇ ≤ s1 (−rs1 − ρsgn (s1)) + s2 (−rs2 − ρsgn (s2))
+ s3 (−rs3 − ρsgn (s3)) + s4 (−rs4 − ρsgn (s4)) ,

V̇ ≤
(
−rs21 − ρ |s1|

)
+
(
−rs22 − ρ |s2|

)
+
(
−rs23 − ρ |s3|

)
+
(
−rs24 − ρ |s4|

)
for r ≥ 0, ρ ≥ 0 ⇒ V̇ ≤ 0. (10)

By choosing ρ, r greater than zero, V̇ becomes negative, and Lyapunov’s stability condi-
tion will be established. 2

3.2 Synchronization of hyperchaos Lu systems with disturbance input and
unknown system parameters

Here is an estimate of the system’s uncertain parameters synchronizing two same hyper-
chaos systems despite the uncertainty. The master systems in the form of Equation (1)
and the slave system are defined as follows:

ẏ1 = ā(y2 − y1) + ∆f1 + w1 + u1,
ẏ2 = c̄y2 − y1y3 + y4 +∆f2 + w2 + u2,
ẏ3 = y1y2 − b̄y3 +∆f3 + w3 + u3,
ẏ4 = y3 − d̄y4 +∆f4 + w4 + u4,

(11)
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where ui, i = 1, ..., 4, are the control signals used to synchronize two same hyperchaos
systems and ā, b̄, c̄, d̄ are unknown parameters, and to estimate them, an adaptive rule is
suggested in the synchronization process.

Due to the definition of the error in the form ei = yi − xi, i = 1, 2, 3, 4, we have
ė1 = ā(y2 − y1)− a(x2 − x1) + ∆f1 + w1 + u1,
ė2 = c̄y2 + e4 − e1e3 − x1e3 − x3e1 − cx2 +∆f2 + w2 + u2,
ė3 = −b̄y3 + e1e2 + x2e1 + x1e2 + bx3 +∆f3 + w3 + u3,
ė4 = e3 − d̄y4 + dx4 +∆f4 + w4 + u4.

(12)

Now, by defining the sliding surface as (4), we have
ṡ1 = ā (y2 − y1)− a (x2 − x1) + k1e1 +∆f1 + w1 + u1,
ṡ2 = c̄y2 − cx2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2,
ṡ3 = bx3 − b̄y3 + e1e2 + x2e1 + x1e2 + k3e3 +∆f3 + w3 + u3,
ṡ4 = e3 − d̄y4 + dx4 + k4e4 +∆f4 + w4 + u4.

(13)

The proposed controller is presented as follows:

ui = ueqi − (rsi + ρsgn(si)), (14)

where

ueq =



u1 = −(ã+ a) (e2 − e1)− k1e1 −
(
α̃1 + α1 + β̃1 + β1

)
,

u2 = −(c̃+ c)e2 − e4 + e1e3 + x1e3 + x3e1 + k2e2 −
(
α̃2 + α2 + β̃2 + β2

)
,

u3 = (b̃+ b)e3 − e1e2 − x2e1 − x1e2 − k3e3 −
(
α̃3 + α3 + β̃3 + β3

)
,

u4 = (d̃+ d)y4 − e3 − k4e4 −
(
α̃4 + α4 + β̃4 + β4

)
(15)

and ã, b̃, c̃, d̃ are the estimation of the adaptation error.

Theorem 3.2 If the control signal is the relation (14) with the adaptation rules of
relation (22), then all system states (11) will tend to the states of system (1).

Proof. Using the Lyapunov stability theorem, we consider the Lyapunov candidate
function as (16) which is a positive definite function

V =
1

2

(
4∑

i=1

s2i + ã2 + b̃2 + c̃2 + d̃2 + α̃2
1 + β̃2

1 + α̃2
2 + β̃2

2 + α̃2
3 + β̃2

3 + α̃2
4 + β̃2

4

)
(16)

with derivation, we have

V̇ =

4∑
i=1

siṡi+ã̃̇a+b̃̃̇b+c̃̃̇c+d̃̃̇d+α̃1̇̃α1+β̃1̇̃β1+α̃2̇̃α2+β̃2̇̃β2+α̃3̇̃α3+β̃3̇̃β3+α̃4̇̃α4+β̃4̇̃β4, (17)

where

ã = ā− a, b̃ = b̄− b, c̃ = c̄− c, d̃ = d̄− d,

α̃1 = ᾱ1 − α1, β̃1 = β̄1 − β1, α̃2 = ᾱ2 − α2, β̃2 = β̄2 − β2,

α̃3 = ᾱ3 − α3, β̃3 = β̄3 − β3, α̃4 = ᾱ4 − α4, β̃4 = β̄4 − β4,
˙̃a = ˙̄a, ˙̃b = ˙̄b, ˙̃c = ˙̄c, ˙̃d = ˙̄d, ˙̃α1 = ˙̄α1, ˙̃β1 = ˙̄β1,
˙̃α2 = ˙̄α2, ˙̃β2 = ˙̄β2, ˙̃α3 = ˙̄α3, ˙̃β3 = ˙̄β3,

˙̃α4 = ˙̄α4, ˙̃β4 = ˙̄β4.

(18)
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By replacing (13) in (17), we have

V̇ = s1 (ā(y2 − y1)− a (x2 − x1) + k1e1 +∆f1 + w1 + u1)
+ s2 (c̄y2 − cx2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2)
+ s3

(
−b̄y3 + bx3 + e1e2 + x2e1 + x1e2 + k3e3 +∆f3 + w3 + u3

)
+s4

(
e3 − d̄y4 + dx4 + k4e4 +∆f4 + w4 + u4

)
+ã̃̇a+ b̃̃̇b+ c̃̃̇c+ d̃̃̇d+ α̃1̇̃α1 + β̃1̇̃β1 + α̃2̇̃α2 + β̃2̇̃β2 + α̃3̇̃α3 + β̃3̇̃β3 + α̃4̇̃α4 + β̃4̇̃β4,

(19)

V̇ = s1 (ā(y2 − y1)− a (x2 − x1) + k1e1 +∆f1 + w1 + u1 + ā(x2 − x1)− ā(x2 − x1))
+ s2 (c̄y2 − cx2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2 + c̄x2 − c̄2x2)
+ s3

(
−b̄y3 + bx3 + e1e2 + x2e1 + x1e2 + k3e3 +∆f3 + w3 + u3 + b̄x3 − b̄x3

)
+s4

(
e3 − d̄y4 + dx4 + k4e4 +∆f4 + w4 + u4 + d̄x4 − d̄x4

)
+ã̃̇a+ b̃̃̇b+ c̃̃̇c+ d̃̃̇d+ α̃1̇̃α1 + β̃1̇̃β1 + α̃2̇̃α2 + β̃2̇̃β2 + α̃3̇̃α3 + β̃3̇̃β3 + α̃4̇̃α4 + β̃4̇̃β4,

V̇ = s1 (ā(e2 − e1) + k1e1 +∆f1 + w1 + u1 − a(x2 − x1) + ā(x2 − x1))
+ s2 (c̄e2 − cx2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2 + c̄x2)
+ s3

(
−b̄e3 + bx3 + e1e2 + x2e1 + x1e2 + k3e3 +∆f3 + w3 + u3 − b̄x3

)
+s4

(
e3 − d̄e4 + dx4 + k4e4 +∆f4 + w4 + u4 − d̄x4

)
+ã̃̇a+ b̃̃̇b+ c̃̃̇c+ d̃̃̇d+ α̃1̇̃α1 + β̃1̇̃β1 + α̃2̇̃α2 + β̃2̇̃β2 + α̃3̇̃α3 + β̃3̇̃β3 + α̃4̇̃α4 + β̃4̇̃β4.

(20)
By replacing (14) and (18) in (20), one gets

V̇ ≤ s1

(
ā(e2 − e1) + ke1 + α1 + β1 − a(x2 − x1) + ā(x2 − x1)
−ā(e2 − e1)− ke1 − (ᾱ1 + β̄1)− rs1 − ρsgn(s1)

)
+ s2

(
c̄e2 − cx2 + e4 − e1e3 − x1e3 − x3e1 + ke2 + α2 + β2 + c̄x2

−c̄e2 − e4 + e1e3 + x1e3 + x3e1 − ke2 − (ᾱ2 + β̄2)− rs2 − ρsgn(s2)

)
+ s3

(
−b̄e3 + bx3 + e1e2 + x2e1 + x1e2 + ke3 + α3 + β3 + u3 − b̄x3

+b̄e3 − e1e2 − x2e1 − x1e2 − ke3 − (ᾱ3 + β̄3)− rs3 − ρsgn(s3)

)
+s4

(
e3 − d̄e4 + dx4 + ke4 + α4 + β4 + u4 − d̄x4

−e3 + d̄e4 − ke4 − (ᾱ4 + β̄4)− rs4 − ρsgn(s4)

)
+(ā− a)˙̃a+

(
b̄− b

)
˙̃b+ (c̄− c)˙̃c+

(
d̄− d

)
˙̃d+ (ᾱ1 − α1)˙̃α1 +

(
β̄1 − β1

)
˙̃β1

+(ᾱ2 − α2)˙̃α2 +
(
β̄2 − β2

)
˙̃β2 + (ᾱ3 − α3)˙̃α3 +

(
β̄3 − β3

)
˙̃β3 + (ᾱ4 − α4)˙̃α4

+
(
β̄4 − β4

)
˙̃β4.

(21)
The adaptation rules are given as follows:

˙̃a = (x1 − x2) s1,
˙̃b = x3s3,
˙̃c = −x2s2,

˙̃d = x4s4,
˙̃α1 = s1,
˙̃β1 = s1,

˙̃α2 = s2,
˙̃β2 = s2,
˙̃α3 = s3,

˙̃β3 = s3,
˙̃α4 = s4,
˙̃β4 = s4,

(22)

therefore from (21) and (22), we have

V̇ ≤ s1 (−rs1 − ρsgn (s1)) + s2 (−rs2 − ρsgn (s2))
+s3 (−rs3 − ρsgn (s3)) + s4 (−rs4 − ρsgn (s4)) ,

V̇ ≤
(
−rs21 − ρ |s1|

)
+
(
−rs22 − ρ |s2|

)
+
(
−rs23 − ρ |s3|

)
+
(
−rs24 − ρ |s4|

)
,

for r ≥ 0 , ρ ≥ 0 ⇒ V̇ ≤ 0. (23)

The hyperchaos system (11) with the initial conditions of yi(0) ∈ R4, by the control rules
in (14), where r, ρ > 0, and with the adaptation rules (22), follows the trajectory of the
master system. 2
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4 Simulation

In this section, simulations show the effectiveness of the proposed scheme for synchroniz-
ing hyperchaos Lu systems. Simulation results are obtained using the MATLAB software.

Example 4.1 In this part, simulation with the initial conditions [x1, x2, x3, x4]
T =

[0.1, 0.1, 0.1, 0.1]T and [y1, y2, y3, y4]
T = [−9.9, −4.9, 5.1, 10.1]T and a = 20, b = 5, c =

10, d = 1.5 is done. Parameters used in the design are ki = 15, r = 5, ρ = 10 . Uncer-
tainty and bounded disturbance applied to the system are ∆fi = A sin(x1) cos(x2), wi =
A sin(t), 0.1 < A < 1, respectively, in which ∆fi ≤ αi = 1, wi ≤ βi = 1.

Figures 2 and 3 show the states and error synchronization of hyperchaos system before
applying the controller to the slave system. Figures 4 and 5 show the synchronization
of the two systems after applying the controller of equation (7) which represents the
performance of the proposed controller.

Figure 2: Master and slave system states before applying the controller.

Example 4.2 In this part, we assume unknown slave system parameters. Simulation
with the initial conditions [x1, x2, x3, x4]

T = [0.1, 0.1, 0.1, 0.1]T and [y1, y2, y3, y4]
T =

[−9.9,−4.9, 5.1, 10.1]T is performed. Parameters used in the design are ki = 15, r =
5, ρ = 10. Uncertainty and disturbance input applied to the system are in the form
of ∆fi = A sin(x1) cos(x2), wi = A sin(t), 0.1 < A < 1, respectively. By applying the
control and estimation parameter rules of (14) and (22), respectively, and applying ᾱ0 =
β̄0 = ā0 = b̄0 = c̄0 = d̄0 = 1, the simulation results are shown in Figures 6 and 7.
Figure 6 shows the states of the master and slave systems. In Figure 7, the tendency of
synchronization error to zero is depicted over time. Figure 8 also shows the estimated
unknown parameters ā, b̄, c̄, d̄ of the slave system.
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Figure 3: Synchronization error before applying the controller.

Figure 4: Master and slave system states after applying the controller equation (7).

Figure 5: Synchronization error after applying the controller equation (7).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (2) (2022) 206–217 215

Figure 6: Master and slave system states after applying the controller equation (14).

Figure 7: Synchronization error after applying the controller equation (14).

Figure 8: Estimation of ā, b̄, c̄, d̄ parameters.
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5 Conclusion

The main objective of this paper is to design the adaptive controller for a hyperchaos sys-
tem with unknown parameters in the presence of parametric uncertainty and disturbance
input. To reach this goal, the combination of the two sliding mode control and the adap-
tive control methods is proposed to synchronize hyperchaos Lu systems. The stability
of the chaotic system is proved using the Lyapunov theorem. To achieve synchroniza-
tion, the sliding mode control method, which is a robust control against uncertainty, was
used. Also, adaptive rules are used to identify the unknown slave system parameters.
The results of simulation with MATLAB software showed the well-designed controllers
performance in two ways.
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