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Abstract: In this paper, we present the asymptotic stability for a class of nonlinear
control systems. To achive the asymptotic stability, we will design a dynamic feedback
control. The design of the dynamic feedback control is based on the modification of
the trajectory following method. To apply the modification of the trajectory following
method, the system will be transformed through the input state linearization.
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1 Introduction

In the analysis for nonlinear control systems, there is no general method which can
be applied to any nonlinear control system in designing the control input for solving
the stability problems. Therefore, in general, the researchers describe some particular
nonlinear classes only. Recently, stability problems for nonlinear control systems have
been intensively investigated. Daizhan Cheng [1] has discussed the stability problem for
a nonlinear system, where the zero dynamic has a multiplicity eigenvalue of 2. Zhengtao
Ding [2] has discussed the stability of a nonlinear system through backstepping, where
the backstepping design starts from the estimation of the output transformation. In
2004, Chen P et al. [3] and Diao L et al. [4] introduced the problem of stability through
the system transformation, where the transformation of the system is made through
dynamic feedback. In 2019, Erkan Kayacan [5] has discussed the Sliding Mode Learning
Control (SMLC) of uncertain nonlinear systems with the Lyapunov stability analysis.
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One of popular methods for solving stability problems is the input-output linearization
method. Some research on the stability problems of a nonlinear control system using
the input-output linearization method was carried out by: Ricardo Marino and Patrizio
Tomei [6], who discussed the stability of lower triangular nonlinear control system. Its
stabiity control was the dynamic feedback of order n + 2(r − 1) (n is the system order,
r is the relative degree). Results on stabilization of nonlinear lower triangular systems
with uncertainties in the output feedback form have been presented in [7] and [8]. In [9],
Naiborhu J. et al. discussed the asymptotic stability problem for a nonlinear class, where
its control design used the exact linearization. Furthermore, Firman et al. [10] have
introduced the problem of stabilization for a class of nonlinear systems with uncertainty.
Then, in [11], Firman et al. have introduced the problem of stabilization for some class
of affine nonlinear control systems with the relative degrees of the system being 1 and
n-1. For the design of input controls, the system will be transformed through the partial
feedback linerization. Naiborhu J. and Shimizu K. [12] have proposed a dynamic feedback
control for the asymptotic stability of a nonlinear class where its unforced dynamic is
asymptotically stable.

In this paper, we will propose a dynamic feedback control for asymptotic stability in a
system nonlinear control, even though its unforced dynamic is not asymptotically stable.
The proposed dynamic feedback control is a modification of the trajectory following
method.

2 Problem Formulation

Consider the affine nonlinear control system

ẋ(t) = f(x(t)) + g(x(t))u, (1)

y(t) = h (x(t)) , (2)

where x(t) ∈ Rn, u(t) ∈ R. f : D → Rn, f (⃗0) = 0⃗ and g : D → Rn are sufficiently
smooth in a domain D ⊂ Rn. Let a state y(t) = h(x(t)), h : D → R is sufficiently
smooth in a domain D ⊂ Rn , h(⃗0) = 0.

Our objective is to make the output y(t) go to zero as t → ∞. The main task
is to design the input control u such that the system (1) has an asymptotically stable
equilibrium at x = 0.

For designing the control input u, we need a system transformation based on the
relative degree of the system. In the following, we present the method of the input state
linearization by Isidori [13].

Let the relative degree of the system (1) with respect to the state y be r, r ≤ n . If
the relative degree of the system (1)-(2) is n, the system (1) with respect to the state y
can be transformed to

żk = zk+1, k = 1, 2, · · · , n− 1, (3)

żn = f(z) + g(z)u, (4)

y = z1.

If g(z) ̸= 0, ∀t, then the relative degree of the system with respect to the state y is well
defined.
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Let the relative degree of the system (1)-(2) be r, r < n, the system (1) with respect
to the state y can be transformed to

żk = zk+1, k = 1, 2, · · · , r − 1, (5)

żr = f(z, η) + g(z, η)u, (6)

η̇ = q(z, η), (7)

y = z1

with the internal dynamic

η̇ = q(z, η), (8)

where (z, η) = (z1, z2, · · · , zr, η1, η2, · · · , ηn−r). If g(z, η) ̸= 0, ∀t, then the relative degree
of the system with respect to the state y is well defined. Then if z1 = 0, for all t, the
system (8) is said to be zero dynamic with respect to the state y = z1.

Consider a function G : Rr+1 → R, where G = G
(
z1, ż1, · · · , z(r)1

)
is a positive

definite function and ∂G
∂xi

exits for i = 1, 2, · · · , n. Our objective is to find a dynamic
feedback control u̇(t), for all t such that the function G becomes minimum. In this case,
if the function G becomes minimum, then the state y(t) goes to zero. The main task
is to design the control input u such that y(t) → ∞0 as t → ∞. Then our problem is
formulated as follows:

min G
(
z1, ż1, · · · , z(r)1

)
, (9)

subj. to ẋ(t) = f(x(t) + g(x(t))u(t), (10)

y(t) = h(x(t)). (11)

The dynamic feedback control is designed based on the trajectory following method [14]
as follows:

u̇ = −∂G

∂u
. (12)

When using the dynamic feedback control (12), the value of time derivative of function
G along the trajectory of the system can not be guaranteed to be less than zero, ∀t ≥ 0.

In this paper, we present the asymptotic stability of some class of affine nonlinear
control systems by modifying the dynamic feedback control (12), i.e., by adding an
artificial input.

3 Main Results

Consider the system (1)-(2). Let the relative degree of the system (1)-(2) be r, r ≤ n.
We design an input control u through the properties of the solution of a higher order
ordinary differential equation. Consider a differential equation

ary
(r)(t) + ar−1y

(r−1)(t) + · · ·+ a1ẏ + a0y(t) = 0, (13)

with y(i) = diy
dti , i = 1, 2, · · · , r, where r is the relative degree of the system (1)-(2),

r ≤ n. From equation (13), let ω1 = y, ω2 = ẏ, · · · , ωr = y(r−1), then the equation
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(13) becomes ω̇ = Bω, with B =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−a0

ar

−a1

ar
. . .

−a(r−1)

ar

. If all the roots of the

polynomial
p(λ) = arλ

r + ar−1λ
r−1 + . . .+ a1λ+ a0 (14)

have negative real part, then a solution of differential equation (13) tends to zero as
t → ∞. Constans ai, i = 0.1, · · · , r can be chosen such that all the roots of the polynomial
(14) have negative real part.

Define a function

G(z1, ż1, · · · , z(r)1 ) =
( r∑

j=0

ajz
(j)
1

)2

, r ≤ n. (15)

The main task is to design the control u(t) such that the function G becomes minimum.
If r < n, then the function G (15) contains the internal dynamic solution variable.
Therefore, if the zero dynamic of the system (1) with respect to the state y = z1 is not
asymptotically stable, then the function G (15) becomes unbounded. Furthermore, to
get dynamic feedback control, assume as follows.

Assumption 3.1 The zero dynamic of the system (1) with respect to the state y = z1
is asymptotically stable.

From equation (12), the dynamic feedback control

u̇ = −2ar

( r∑
j=0

ajz
(j)
1

)∂z(r)1

∂u
. (16)

Consider the extended system

ẋ = f1(x) + f2(x)u, (17)

u̇ = −2ar

( r∑
j=0

ajz
(j)
1

)∂z(r)1

∂u
. (18)

The derivative of function G (15) along the trajectory of the system (17)-(18) is given by

Ġ
(
z1, ż1, · · · , z(r)1

)
= 2

( r∑
j=0

ajz
(j)
1

)( r−1∑
j=0

ajz
(j+1)
1

)
+ 2ar

( r∑
j=0

ajz
(j)
1

)(∂f(z, η)
∂t

+
∂g(z, η)

∂t
u
)
−

(∂G
∂u

)2

. (19)

From equation (19), the value of the derivative of function G (15) along the trajectory of
the system (17)-(18) can not be guaranteed to be less than zero for 0 ≤ t. For this, the
dynamic feedback control in equation (16) will be modified by adding an input ν. Then
the extended system (17)-(18) becomes

ẋ = f1(x) + f2(x)u, (20)

u̇ = −2ar

( r∑
j=0

ajz
(j)
1

)∂z(r)1

∂u
+ ν. (21)
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In the same way, the derivative of function G (16) along the trajectory of the system
(20)-(21) is given by

Ġ
(
z1, ż1, · · · , z(r)1

)
= 2

( r∑
j=0

ajz
(j)
1

)( r−1∑
j=0

ajz
(j+1)
1

)
+ 2ar

( r∑
j=0

ajz
(j)
1

)(∂f(z, η)
∂t

+
∂g(z, η)

∂t
u
)
−

(∂G
∂u

)2

+
∂G

∂u
ν. (22)

Suppose equation (22) is written as follows:

Ġ
(
z1, ż1, · · · , z(r)1

)
= ϕ

(
z1, ż1, · · · , z(r)1

)
+

∂G

∂u
ν −

(
∂G

∂u

)2

, (23)

where

ϕ
(
z1, ż1, · · · , z(r)1

)
= 2

( r∑
j=0

ajz
(j)
1

)( r−1∑
j=0

ajz
(j+1)
1

)
+ 2ar

( r∑
j=0

ajz
(j)
1

)(∂f(z, η)
∂t

+
∂g(z, η)

∂t
u
)
. (24)

If we take

ν =
1
∂G
∂u

(
−ϕ

(
z1, ż1, . . . , z

(r)
1

))
, (25)

then

Ġ
(
z1, ż1, · · · , z(r)1

)
= −

(
∂G

∂u

)2

, (26)

with ∂G
∂u ̸= 0.

Consider the function G (15) and its time derivative (26). Adding the artificial
input ν into dynamic controller (16) is used to guarantee the function G (15) will

decrease until
(∑r

j=0 ajz
(j)
1

)
becomes zero. Furthermore, if ∂G

∂u = 0, then we have

2ar

(∑r
j=0 ajz

(j)
1

)
∂z

(r)
1

∂u = 0. Therefore
(∑r

j=0 ajz
(j)
1

)
becomes zero if

∂z
(r)
1

∂u ̸= 0. In this

case, the relative degree of the system (1)-(2) is well defined.

Theorem 3.1 Consider system (1)-(2). Let the relative degree of the system (1)-(2)
be r, r ≤ n, with the relative degree of the system (1)-(2) being well defined. Especially
if r < n satisfies Assumptions 1. Choose constans ai such that all the roots of the
polynomial

p(λ) = arλ
r + ar−1λ

r−1 + . . .+ a1λ+ a0 (27)

have negative real part. Then, when using the dynamic feedback control

u̇ = −2ar

( r∑
j=0

ajz
(j)
1

)∂z(r)1

∂u
+ ν, (28)

with ν as in (25), y = z1 tends to zero as t → ∞. Furthermore, the system (1) has an
asymptotically stable equilibrium at x = 0.
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Proof. Let the relative degree of the system (1)-(2) be r, r < n satisfies Assump-
tion 1, then the function G becomes bounded if ∂G

∂u ̸= 0. From equation (26), then

Ġ
(
z1, ż1, · · · , z(r)1

)
< 0, with

(∑r
j=0 ajz

(j)
1

)
̸= 0. Let

(∑r
j=0 ajz

(j)
1

)
= 0. From

equation (26), Ġ
(
z1, ż1, · · · , z(r)1

)
= 0. Thus, the function G (15) becomes mini-

mum, where the minimum value is zero. Therefore, if G
(
z1, ż1, · · · , z(r)1

)
= 0, then(∑r

j=0 ajz
(j)
1

)
= 0.

Furthermore, ∂G
∂u = 0. Because the relative degree of the system (1)-(2) is well defined,

then
∂z

(r)
1

∂u ̸= 0, ∀t. Then
(∑r

j=0 ajz
(j)
1

)
= 0. Thus, if we choose aj , j = 0, 1, · · · , r

such that all the roots of polynomial (27) have negative real part, then y = z1 goes to
zero as t → ∞. Furthermore, x goes to zero as t → ∞. Thus the system (1) has an
asymptotically stable equilibrium at x = 0.

Example 3.1 Consider the nonlinear system

ẋ1 = x2 + 2x2
1,

ẋ2 = x3 + u, (29)

ẋ3 = x1 + x3.

If we choose the state y = x3, then the relative degree of the system (29) with respect to
x3 is 3. Thus the system transformation with respect to the state x3 is

ż1 = z2,

ż2 = z3,

ż3 = a(z) + u,

where z1 = x3, a(z) = z1 + z2 + (2(z2 − z1) + 1)(z3 − z2 − 2)(z2 − z1)
2 + 2(z2 − z1)

2.
Define a function as follows:

G
(
z1, ż1, z̈1, z

(3)
1

)
=

( 3∑
j=0

aj(z1)
(j)

)2

. (30)

With the above equation, the dynamic feedback control is

u̇ = −2a3

( 3∑
j=0

aj(z1)
(j)

)
+ v, (31)

with v as in equation (25).

Simulation results are shown in Figs.1a) and 1b) for constants a0 = 15, a1 = 23,
a2 = 4, a3 = 1. The initial value x1(0) = −1, x2(0) = 1, 5, x3(0) = −1.5, u(0) = 10.
In Fig.1a), with the application of the control as in equation (31), the system (29) is
asymptotically stable at the equilibrium point x = (0, 0, 0). In Fig.1b), the response
curve of the control input is presented.
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a b
Figure 1: a) the simulation result for Example 3.1, b) the response curve of the input.

Example 3.2 Consider the nonlinear system

ẋ1 = −x1 + x2,

ẋ2 = 3x2 + x3
1 +

(
2 + sin2(x4)

)
u, (32)

ẋ3 = x1 − 2x3,

ẋ4 = −x4 + x2
3.

If we choose the state y = x4, then the relative degree of the system (29) with respect to
x3 is 4. Thus the system transformation with respect to the state x3 is

ż1 = z2,

ż2 = z3,

ż3 = z4, (33)

ż4 = a(z) + b(z)u,

where z1 = x4, b(z) = 2x3

(
2 + sin2(x4)

)
.

From the system transformation (33), we see that the relative degree of the system
(33) with respect to the state y = x4 is not well defined. So the input control as in
equation (28) cannot be used to make the state y = x4 → 0, t → ∞. In this case, the
system (32) can not be achieved. The problem is how to choose such a state that the
transformation of the system with respect to that state has an asymptotically stable zero
dynamic.

Choose the state y = x3. Then the system transformation with respect to the state
x3 is

ż1 = z2,

ż2 = z3,

ż3 = a(z, η) + b(z, η),

η̇ = −η + x3
1,

where z1 = x3, η = x4, a(z, η) = 6z1 + 7z2 + (2z1 + z2)
3, z2 = x1 − 2x3, b(z, η) =(

2 + sin2(η)
)
. So the zero dynamic of the system (29) with respect to the output x3 is

asymptotically stable, with the relative degree of the system being well defined.



176 FIRMAN, SYAMSUDDIN TOAHA AND KASBAWATI

a b
Figure 2: a) the simulation result for Example 3.2, b) the response curve of the input.

Define a function as follows:

G
(
z1, ż1, z̈1, z

(3)
1

)
=

( 3∑
j=0

aj(z1)
(j)

)2

. (34)

With the above equation, the dynamic feedback control is

u̇ =
(
−4− sin2(η)

)
a3

( 3∑
j=0

aj(z1)
(j)

)
+ v, (35)

where v =
1

2a3 (a0z1 + a1ż1 + ż2 + a3ż3) (2 + sin2(η))
(k (z1, ż1, ż2, ż3)), with

(k (z1, ż1, ż2, ż3)) = 2
( 3∑

j=0

aj(z1)
(j)

)( 2∑
j=0

aj(z1)
(j+1)

)

+ 2a3

( 3∑
j=0

aj(z1)
(j)

)(
∂a(z, η)

∂t
+

∂b(z, η)

∂t
u

)
.

Simulation results are shown in Figs.2a) and 2b) for constants a0 = 15, a1 = 13, a2 = 9,
a3 = 1. Initial value x1(0) = −2, x2(0) = 3, x3(0) = −3.5, x4(0) = −7, u(0) = 2.5.
In Fig.2a), with the application of the control as in equation (35), the system (32) is
asymptotically stable at the equilibrium point x = (0, 0, 0, 0). In Fig.2b), the response
curve of the control input is shown.

4 Conclusion

In this paper, we have investigated the asymptotic stability for a class of nonlinear
control systems, with the relative degree of the system being well defined. The dynamic
feedback control has been designed for asymptotic stability problems. The design of
the dynamic feedback control is based on the modification of the trajectory following
method. To apply the modification of the trajectory following method, the system will
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be transformed through the input state linearization. If the relative degree of the system
is smaller than the dimensions of the system, then the requirement to design a dynamic
feedback control is that the zero dynamic of the system must be asymptotically stable.

From the results obtained, the modification of the trajectory following method can
be an alternative control design for the asymptotic stability, even though its unforced
system is not asymptotically stable.
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