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semilinear retarded differential equation with infinite delay and impulses on time-
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1 Introduction

In the last decades, the theory of time scales has occupied an important space within
the mathematical community, attracting the interest of many researchers since it is a
powerful tool for continuous and discrete analysis from a unified point of view (see, for
instance, [1–3] and references therein).

The time scales theory has made possible to create models in population dynamics,
physics, chemical technology, economics, control theory, among others, that allow the
study of certain phenomena and processes where the temporal variable can vary both
continuously and discretely (see [3, 6–9] and references therein). However, there exists
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the possibility that these processes and phenomena on time scales could undergo drastic
changes of their states at given times. These alterations in state might be due to certain
external factors and these changes can be represented in mathematical notation in the
form of impulses, which cannot be well described by pure time scales models, there-
fore, the influence of these impulses on the system could be investigated by introducing
impulses effects, see, for instance, [10–12] and references therein.

In these order of ideas, in this paper we are going to study the existence, uniqueness
and continuation of solutions for the following semilinear functional dynamic equation
with infinite delay and impulses:

z∆(t) = A(t)z(t) + f(t, zt), t ∈ [0,∞)T \
∞⋃
k=1

{tk},

z(s) = ϕ(s), s ∈ (−∞, 0]T,

z(t+k ) = z(t−k ) + Jk(tk, z(t
−
k )), k = 1, 2, . . . .

(1)

For system (1), we are assuming that 0 ∈ T, inf T = −∞, supT = ∞ and t + τ ∈ T if
t, τ ∈ T. 0 < t1 < t2 < t3 · · · < tk → +∞, tk ∈ T. Here z(t+k ) and z(t−k ) represent the
right and left limits with respect to the time scale, and, in addition, if tk is right-scattered,
then z(t+k ) = z(tk), whereas if tk is left-scattered, then z(t−k ) = z(tk). Moreover, it is
usually assumed that the solution z should be left-continuous (see [10]), in this case
z(t+k ) = z(tk) + Jk(tk, z(tk)), k = 1, 2, . . . . On the other hand, if tk is right-scattered,
then J(tk, z(tk)) = 0, in other words, it makes sense to consider impulses at right-dense
points only (see [11]). Here A(t) ∈ R(T,Rn×n) and ϕ ∈ Chp, where Chp is called the
phase space that will be defined later. For this type of problems, the phase space for
initial functions plays an important role in the study of both qualitative and quantitative
theory, for more details, in the continuous case and without impulses, we refer to Hale
and Kato [13], Hino et al. [14] and Shin [15]. In the case of functional dynamic equations
on time scales with and without impulses, there are a few works in this directions, we can
cite Benchohra et al. [16] and Li et al. [17]. Particularly in this work we will use a modified
version of the phase space defined in [17] since the initial function ϕ : (−∞, 0]T −→ Rn

has a fixed number of points of discontinuity, where the side limits exist and the function
ϕ is left-continuous at such points. The function zt(θ) = z(t + θ) for θ ∈ (−∞, 0]T
illustrates the history of the state up to the time t, and also remembers much of the
historical past of ϕ, carrying part of the present to the past. f : [0,∞)T × Chp −→ Rn

is an rd-continuous function on t and continuous on Chp, Jk : [0,∞)T × Rn −→ Rn are
rd-continuous on t and continuous on Rn.

The paper is organized as follows. In Section 2, we present a summary on dynamical
systems on time scale, particularly the concept of rd-continuity, the exponential function,
the variation of constants formula and a generalization of Gronwall’s inequality to be
applied to impulsive differential equations. In Section 3, we define the phase space for our
problem, which satisfies the Hale and Kato Axiomatic Theory for Retarded Differential
Equations with Infinite Delay. Section 4 is devoted to the proof of our main results,
the existence and the uniqueness of solutions, which is done in two theorems, one for
the existence using the Arzela-Ascoli theorem on time-scale (see [18]) and applying the
Leray-Shauder alternative; and the other theorem for the uniqueness of solutions. Section
5 is dedicated to the study of the continuation of the solutions of our system, introducing
the concept of maximal interval of existence of solutions on time scale and applying the
generalization of Gronwall’s inequality. Section 6 is devoted to an example, where we
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can apply our results. Finally, Section 7 presents the conclusion and final remark, where
we formulate future problems to investigate.

2 Preliminaries

In this section, we will make a brief introduction to the calculus on time scales, especially
to clarify the notations and definitions, for a better understanding by the reader. For
more details about time scales theory, we recommend the excellent monograph [3].

The time scales theory was introduced by Stefan Hilger (see [4]), and defined a time
scale as any arbitrary nonempty closed subset of R, this set is denoted by T. For every
t ∈ T, the forward and backward jump operators σ, ρ : T −→ T are defined, respectively,
as σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}. A point t ∈ T is
said to be right-dense if σ(t) = t, right-scattered if σ(t) > t, left-dense if ρ(t) = t, left-
scattered if ρ(t) < t, isolated if ρ(t) < t < σ(t). The function µ : T −→ [0,∞) defined
by µ(t) := σ(t) − t is known as the graininess function. It is assumed that T has the
topology inherited from standard topology on the real numbers. The time scale interval
[a, b]T is defined by [a, b]T = {t ∈ T : a ≤ t ≤ b}, with a, b ∈ T, and is similarly defined
by open intervals and open neighborhoods.

Definition 2.1 [3] A function f : T −→ Rn is said to be right-dense continuous or
just rd-continuous if f is continuous at every right-dense point t ∈ T and lim

s→t−
f(s) exists

(finite) for every left-dense point t ∈ T.

The class of all rd-continuous functions f : T −→ Rn is denoted by Crd(T,Rn). If
f : T → Rn is a function, then we define the function f ◦ σ : T → Rn by fσ(t) = f(σ(t))
for all t ∈ T, i.e., fσ = f ◦ σ. We define the set Tκ by Tκ = T \ (ρ(supT), supT] if T has
a left-scattered maximum, and Tκ = T otherwise.

Definition 2.2 [3] A function f : T −→ Rn is called delta differentiable (or simply
∆-differentiable) at t ∈ Tκ provided there exists f∆(t) with the property that given
ε > 0, there is a neighborhood U = (t− δ, t+ δ)T for some δ > 0 such that∥∥fσ(t)− f(s)− f∆(t)(σ(t)− s)

∥∥ ≤ |σ(t)− s)| , for all s ∈ U.

In this case, f∆(t) will be call the ∆-derivative of f in t.

If f is ∆-differentiable at t ∈ Tκ, then it is easy to show that (see [3], Thm. 1.16)

f∆(t) =


fσ(t)− f(t)

σ(t)− t
if σ(t) > t,

lim
s→t

f(t)− f(s)

t− s
if σ(t) = t.

Definition 2.3 [3] A function F : T −→ Rn is called an antiderivative of f : T −→
Rn if F∆(t) = f(t) for t ∈ Tκ. The Cauchy integral is defined by∫ t

s

f(τ)∆τ = F (t)− F (s), t, s ∈ T,

where F is an antiderivative of f .
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A function p : T −→ R is said to be regressive if 1 + µ(t)p(t) ̸= 0, t ∈ T, and positively
regressive if 1 + µ(t)p(t) > 0, t ∈ T. We will denote by R the set of all regressive and
rd-continuous functions and by R+ the set of all positive regressive and rd-continuous
functions.

Definition 2.4 [3] If p ∈ R, then the generalized exponential function is defined by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
,

where

ξµ(z) :=

{ 1
µLog(1 + µz) if µ > 0,

z, if µ = 0.

Here z ∈ Cµ := {z ∈ C : z ̸= 1/µ} and Logz = log |z|+ i arg z, −π < arg z ≤ π.
Let A be an n× n-matrix valued function on T.

Definition 2.5 [3] We say that A is rd-continuous on T if each entry of A is rd-
continuous on T, and the class of all such rd-continuous n × n matrix-valued functions
on T is denoted by Crd(T,Rn×n). A is called regressive (with respect to T) provided
I + µ(t)A(t) is invertible for all t ∈ Tκ, and the class of all such regressive and rd-
continuous functions is denoted by R(T,Rn×n).

Let t0 ∈ T and A be an n× n regressive matrix-valued function defined on T. Then
the unique solution of the initial value problem

X∆ = A(t)X, X(t0) = I,

is called the matrix exponential function and it is denoted by eA(t, t0). The matrix
exponential function has the following properties.

Theorem 2.1 ([3], Thm. 5.24) Let A ∈ R(T,Rn×n) and suppose that f : T −→ Rn

is rd-continuous. Let t0 ∈ T and x0 ∈ Rn. Then the initial value problem{
x∆(t) = A(t)x(t) + f(t),

x(t0) = x0
(2)

has a unique solution x : T −→ Rn. Moreover, this solution is given by

x(t) = eA(t, t0)x
0 +

∫ t

t0

eA(t, σ(s))f(s)∆s.

We will need the following fixed theorem to prove the existence of solutions of system
(1).

Theorem 2.2 (Leray-Schauder alternative ([5], Thm. 5.4)) Let D be a closed
convex subset of a Banach space Z with 0 ∈ D . Let P : D → D be a completely
continuous operator. Then either P has a fixed point in D or the set

{z ∈ D : z = λP(z), 0 < λ < 1}

is unbounded.
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Following Corollary 6.7 in [3] and Theorem 1.5.1 in [10], it is possible to prove the
following Gronwall’s inequality with impulses on time scales.

Theorem 2.3 (Gronwall’s inequality) Assume that

1. the sequence {tk} satisfies 0 ≤ t0 < t1 < · · · < tk . . . , limk→∞ tk = ∞,

2. u ∈ Crd(T,R) and u is left continuous at tk, k = 1, 2, . . . ,

3. p ∈ R+, p ≥ 0, βk ≥ 0, and α ∈ R.

Then

u(t) ≤ α+

∫ t

t0

p(s)u(s)∆s+
∑

t0<tk<t

βku(tk), t ≥ t0,

implies

u(t) ≤ α
∏

t0<tk<t

(1 + βk)ep(t, t0), t ≥ t0.

3 The Phase Space

In this section, we will introduce an adequate phase space that will permit us to solve
our problem. This phase space is a modification of the phase space presented in [17].

We denote by T− = (−∞, 0]T. Now, we shall define the functions space

PW p = {ϕ : T− −→ Rn :ϕ is rd-continuous except on sk ∈ T−, k = 1, 2, . . . , and such

that ϕ(s−k ), ϕ(s
+
k ) exist with ϕ(s−k ) = ϕ(sk)}.

Following [17], we consider h ∈ Crd(T−,Rn), h(s) > 0 for all s ∈ T− and∫ 0

−∞
h(s)∆s = 1.

Now, we define the following space of functions:

Chp =

{
ϕ ∈ PW p :

∫ 0

−∞
h(s) |ϕ|[s,0]T ∆s < ∞

}
,

where |ϕ|[a,b]T = sup
a≤θ≤b

|ϕ(θ)|, and |·| is a norm in Rn.

It is clear that Chp is a linear subspace of PW p, and for ϕ ∈ Chp,

∥ϕ∥Chp
=

∫ 0

−∞
h(s) |ϕ|[s,0]T ∆s.

Define a norm on Chp. Furthermore, analogously to Theorem 3.1 in [17], the space
(Chp, ∥·∥Chp

) is a Banach space.

Next, for τ ∈ (0,∞)T being arbitrary but fixed, we consider the space

PW hτ = PW hτ ((−∞, τ ]T,Rn)
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given by

PW hτ = {z : (−∞, τ ]T −→ Rn : z
∣∣
T− ∈ Chp and z

∣∣
[0,τ ]T

is rd-continuous except at

tk, k = 1, . . . , p with tp < τ, where z(t+k ), z(t
−
k ) exist and z(t−k ) = z(tk)}.

Note that PW hτ is a Banach space endowed with the norm

∥z∥PW hτ
=
∥∥z∣∣T−

∥∥
Chp

+ |z|[0,τ ]T .

By using Theorem 3.2 in [17], it is possible to show that if ϕ ∈ Chp, then

P1) If z ∈ PW hτ and z0 = ϕ, then for every t ∈ [0, τ ]T we have that

i) zt is in Chp,

ii) zt is rd-continuous with respect to t,

iii) there exists H > 0 such that |z(t)| ≤ H ∥zt∥Chp
.

P2) ∥zt∥Chp
≤ 2 ∥z∥PW hτ

.

4 Main Result

In this section we will show the existence of solutions for system (1). In order to accom-
plish this, we shall assume the following hypotheses:

H1) |f(t, ϕ)− f(t, φ)| ≤ η(t) ∥ϕ− φ∥Chp
, for all ϕ, φ ∈ Chp and t ∈ [0, τ ]T, where η ∈

Crd([0, τ ]T,R+).

H2) |f(t, ϕ)| ≤ ν(t)(1 + ∥ϕ∥Chp
), for ϕ ∈ Chp and t ∈ [0, τ ]T, ν ∈ Crd([0, τ ]T,R+).

H3) |Jk(t, x)− Jk(t, y)| ≤ dk |x− y|, Jk(t, 0) = 0, k = 1, 2, . . . and
∑
k≥1

dk < ∞.

A straightforward computation shows that

Theorem 4.1 z(·) is a solution of system (1) on (−∞, τ ]T if and only if z(·) satisfies

z(t) =


ϕ(t), t ∈ T−,

eA(t, 0)ϕ(0)+

∫ t

0

eA(t, σ(s))f(s, zs)∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ]T.

(3)

Now, for a given ϕ ∈ Chp being arbitrary but fixed, define ϕ∗ : (−∞, τ ]T −→ Rn by

ϕ∗(t) =

{
ϕ(t), t ∈ T−,

eA(t, 0)ϕ(0), t ∈ [0, τ ]T.
(4)

Note that ϕ∗
0 = ϕ. Let x(t) = z(t)− ϕ∗(t), then x(t) satisfies
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x(t) =


0, t ∈ T−,∫ t

0

eA(t, σ(s))f(s, xs + ϕ∗
s)∆s+

∑
0<tk<t

eA(t, tk)Jk(tk, x(tk)+ϕ∗(tk)), t ∈ [0, τ ]T.

(5)
Finding a solution of system (1) on (−∞, τ ]T is equivalent to solving the integral

equation (5), and this is equivalent to finding a fixed point of the operator

T : PW 0
hτ −→ PW 0

hτ

defined by

(T x)(t) =


0, t ∈ T−,∫ t

0

eA(t, σ(s))f(s, xs+ϕ∗
s)∆s+

∑
0<tk<t

eA(t, tk)Jk(tk, x(tk)+ϕ∗(tk)), t ∈ [0, τ ]T,

(6)

where PW 0
hτ = {x ∈ PW hτ : x0 = 0}, with ∥x∥PW 0

hτ
=
∥∥x∣∣T−

∥∥
Chp

+|x|[0,τ ]T = |x|[0,τ ]T .
Notice that (PW 0

hτ , ∥·∥PW 0
hτ
) is a Banach space.

Theorem 4.2 Suppose that H1), H2) and H3) hold, then system (1) has at least one
solution on (−∞, τ ]T.

Proof. To prove that the operator (6) has a fixed point, we will use the Leray-
Schauder alternative. We denote by M = sup{∥eA(t, ξ)∥ : t, ξ ∈ [0, τ ]T}, η∗ = sup{η(t) :
t ∈ [0, τ ]T} and ν∗ = sup{ν(t) : t ∈ [0, τ ]T}.

First, we will show that in three steps the operator T is completely continuous.

Step 1: T is continuous. If t ∈ [0, τ ]T, then

|T x)(t)− (T y)(t)| ≤
∫ t

0

∥eA(t, σ(s))∥ |f(s, xs + ϕ∗
s)− f(s, ys + ϕ∗

s)|∆s

+
∑

0<tk<t

∥eA(t, s(s))∥ |Jk(tk, x(tk) + ϕ∗(tk))− Jk(tk, y(tk) + ϕ∗(tk))|

≤M

{∫ t

0

|f(s, xs + ϕ∗
s)− f(s, ys + ϕ∗

s)|∆s

+
∑

0<tk<t

|Jk(tk, x(tk) + ϕ∗(tk))− Jk(tk, y(tk) + ϕ∗(tk))|
}

≤M

{∫ t

0

η(s) ∥xs − ys∥Chp
∆s+

p∑
k=1

dk |x(tk)− y(tk)|
}

≤M

{
2η∗

∫ τ

0

∥x− y∥PW hτ
∆s+

p∑
k=1

dk |x(tk)− y(tk)|
}

≤M

{
2η∗τ +

∞∑
k=1

dk

}
∥x− y∥PW 0

hτ
.
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Therefore,

∥T x− T y∥PW 0
hτ

≤ M

{
2η∗τ +

∞∑
k=1

dk

}
∥x− y∥PW 0

hτ
.

So, we have proved that T is locally Lipschitz and therefore it is continuous.

Step 2: T maps bounded sets of PW 0
hτ into bounded sets of PW 0

hτ . It is enough to
show that for any R > 0, there exists r > 0 such that for each x ∈ BR = {x ∈
PW 0

hτ : ∥x∥PW 0
hτ

≤ R}, we have that ∥T x∥PW 0
hτ

≤ r. Indeed,

|(T x)(t)| ≤ M

{∫ t

0

|f(s, xs + ϕ∗
s)|∆s+

p∑
k=1

dk |x(tk) + ϕ∗(tk)|

}

≤M

{∫ t

0

ν(s)(1 + ∥xs + ϕ∗
s∥Chp

)∆s+

p∑
k=1

dk(|x(tk)|+ |ϕ∗(tk)|)

}

≤M

{∫ t

0

ν(s)(1 + ∥xs∥Chp
+ ∥ϕ∗

s∥Chp
)∆s+

p∑
k=1

dk(|x(tk)|+∥eA(tk, 0)∥ |ϕ(0)|)

}

≤M

{∫ τ

0

ν∗(1 + 2 ∥x∥PW 0
hτ

+ 2 ∥ϕ∗∥PW hτ
)∆s+

p∑
k=1

dk(∥x∥PW 0
hτ
+M |ϕ(0)|)

}

≤M

{
ν∗(1 + 2R+ 2 ∥ϕ∗∥PW hτ

)τ + (R+M |ϕ(0)|)
∞∑
k=1

dk

}
= r,

Step 3: T maps bounded sets into equicontinuous sets. Let us consider BR as in step 2.
We shall prove that T (BR) is equicontinuous on the interval [0, τ ]T. If t′, t′′ ∈
[0, τ ]T with t′ < t′′, then

∣∣(T x)(t′′)− (T x)(t′)
∣∣ ≤ ∫ t′

0

∥eA(t′′, σ(s))− eA(t
′, σ(s))∥ |f(s, xs + ϕ∗

s)|∆s

+
∑

0<tk<t′

∥eA(t′′, tk)− eA(t
′, tk)∥ |Jk(tk, x(tk) + ϕ∗(tk))|

+
∑

t′<tk<t′′

∥eA(t′′, tk)∥ |Jk(tk, x(tk) + ϕ∗(tk))|

≤
∫ t′

0

∥eA(t′′, σ(s))− eA(t
′, σ(s))∥ ν(s)(1 + ∥xs + ϕ∗

s∥Chp
)∆s

+

∫ t′′

t′
∥eA(t′′, σ(s))∥ ν(s)(1 + ∥xs + ϕ∗

s∥Chp
)∆s

+
∑

0<tk<t′

dk ∥eA(t′′, tk)− eA(t
′, tk)∥ |x(tk) + ϕ∗(tk)|

+
∑

t′<tk<t′′

dk ∥eA(t′′, tk)∥ |x(tk) + ϕ∗(tk)|
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≤
∫ τ

0

∥eA(t′′, σ(s))−eA(t
′, σ(s))∥ ν(s)(1+ 2∥x∥PW hτ

+2 ∥ϕ∗∥PW hτ
)∆s

+

∫ t′′

t′
∥eA(t′′, σ(s))∥ ν(s)(1 + 2 ∥x∥PW hτ

+ 2 ∥ϕ∗∥PW hτ
)∆s

+
∑

0<tk<t′

dk ∥eA(t′′, tk)− eA(t
′, tk)∥ (∥x∥PW 0

hτ
+M |ϕ(0)|)

+
∑

t′<tk<t′′

dk ∥eA(t′′, tk)∥ (∥x∥PW 0
hτ

+M |ϕ(0)|)

≤ν∗(1 + 2R+ 2 ∥ϕ∗∥PW hτ
)

∫ τ

0

∥eA(t′′, σ(s))− eA(t
′, σ(s))∥∆s

+Mν∗(1 + 2R+ 2 ∥ϕ∗∥PW hτ
) |t′′ − t′|

+ (R+M |ϕ(0)|)
∑

0<tk<t′

dk ∥eA(t′′, tk)− eA(t
′, tk)∥

+M(R+M |ϕ(0)|)
∑

t′<tk<t′′

dk.

Since eA(·, σ(s)) is continuous, we have |(T x)(t′′)− (T x)(t′)| −→ 0 as t′ → t′′, inde-
pendently of x ∈ BR.

Therefore, T (BR) is equicontinuous. From the Arzéla-Ascoli theorem we have that
T (BR) is relatively compact, so T is completely continuous.

Now, let us consider the set

D = {x ∈ PW 0
hτ : x = λT x, 0 < λ < 1}.

If x ∈ D , then for t ∈ [0, τ ]T, we get

|x(t)| =λ

∣∣∣∣∣
∫ t

0

eA(t, σ(s))f(s, xs + ϕ∗
s)∆s+

∑
0<tk<t

eA(t, tk)Jk(tk, x(tk) + ϕ(tk)
∗)

∣∣∣∣∣
≤
∫ t

0

∥eA(t, σ(s))∥ |f(s, xs + ϕ∗
s)|∆s+

∑
0<tk<t

∥eA(t, tk)∥ |Jk(tk, x(tk) + ϕ∗(tk))|

≤Mν∗
∫ t

0

(1 + ∥xs∥Chp
+ ∥ϕ∗

s∥Chp
))∆s+M

∑
0<tk<t

dk(|x(tk)|+ |ϕ(tk)∗|)

≤M

(
ν∗(1 + 2 ∥ϕ∗∥PW hτ

)τ +M |ϕ(0)|
∞∑
k=1

dk

)
+Mν∗

∫ t

0

∥xs∥Chp
∆s

+M
∑

0<tk<t

dk |x(tk)| .

If we put α = M

(
ν∗(1 + 2 ∥ϕ∗∥PW hτ

)τ +M |ϕ(0)|
∞∑
k=1

dk

)
, then

|x(t)| ≤ α+Mν∗
∫ t

0

∥xs∥Chp
∆s+MH

∑
0<tk<t

dk ∥xtk∥Chp
.



164 C. DUQUE, H. LEIVA AND A. TRIDANE

Thus

∥xt∥Chp
≤ α+Mν∗

∫ t

0

∥xs∥Chp
∆s+MH

∑
0<tk<t

dk ∥xtk∥Chp
.

By applying Gronwall’s inequality with impulses on time scales, we get that

∥xt∥Chp
≤ α

∏
0<tk<t

(1 +MHdk)eMν∗(t, 0) ≤ α

p∏
k=1

(1 +MHdk)eMν∗(t, 0).

Then

∥x∥PW 0
hτ

≤ αH

p∏
k=1

(1 +MHdk)eMν∗(t, 0).

Therefore, D is a bounded set, and by the Leray-Schauder alternative, the operator T
has a fixed point.

Theorem 4.3 Under the conditions of Theorem 4.2, the solution of system (1) on
(−∞, τ ]T is unique.

Proof. Let ϕ ∈ Chp, and suppose that for some τ0 ∈ (0, τ ]T, there are two solutions
z and z̃ mapping (−∞, τ0]T −→ Rn with z ̸= z̃. Let

τ∗ = inf{t ∈ (0, τ0)T : z(t) ̸= z̃(t)}.

Then, for −∞ < t < τ∗, z(t) = z̃(t). On the other hand

z(t) = eA(t, 0)ϕ(0) +

∫ t

0

eA(t, σ(s))f(s, zs)∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z(tk))

and

z̃(t) = eA(t, 0)ϕ(0) +

∫ t

0

eA(t, σ(s))f(s, z̃s)∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z̃(tk)).

Therefore,

|z(t)− z̃(t)| ≤
∫ t

τ∗
∥eA(t, σ(s))∥ |f(s, zs)− f(s, z̃s)|∆s

+
∑

τ∗<tk<t

∥eA(t, tk)∥ |Jk(tk, z(tk))− Jk(tk, z̃(tk))|

≤
∫ t

τ∗
Mη(s) ∥zs − z̃s∥Chp

∆s+
∑

τ∗<tk<t

Mdk |z(tk)− z̃(tk)|

≤ε+

∫ t

τ∗
Mη∗ ∥zs − z̃s∥Chp

∆s+
∑

τ∗<tk<t

MdkH ∥ztk − z̃tk∥Chp
,

for ε > 0 being arbitrary. So,

∥zt − z̃t∥Chp
≤ ε+

∫ t

τ∗
Mη∗ ∥zs − z̃s∥Chp

∆s+
∑

τ∗<tk<t

MdkH ∥ztk − z̃tk∥Chp
.
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By using Gronwall’s inequality, we get that

∥zt − z̃t∥Chp
≤ ε

∏
τ∗<tk<t

(1 +MHdk)eMη∗(t, τ∗) ≤ ε
∏

τ∗<tk<τ

(1 +MHdk)eMη∗(τ, τ∗).

Therefore,

|z(t)− z̃(t)| ≤ εH
∏

τ∗<tk<τ

(1 +MHdk)eMη∗(τ, τ∗).

Since ε is arbitrary, one has |z(t)− z̃(t)| = 0 for t ∈ (τ∗, τ)T, contradicting the
definition of τ∗.

5 Continuation of Solutions

In this section, we will show that z(t) is defined on (−∞,∞)T.

Definition 5.1 We shall say that (−∞, τ)T is a maximal interval of existence of the
solution z(·) of system (1) if there is no solution of (1) on (−∞, τ∗)T with τ∗ > τ .

Theorem 5.1 Suppose that the conditions of existence and uniqueness hold. If z is
a solution of problem (1) on (−∞, τ)T and τ is maximal, then either τ = +∞ or z(t) is
not bounded in any neighborhood of τ .

Proof. Suppose that τ < ∞ and there is a neighborhood U of τ such that |z(t)| ≤ R
for t ∈ U ∩ (−∞, τ)T, then we can suppose that |z(t)| ≤ R for all t ∈ (−∞, τ)T. Let tp
be such that tp ≤ τ . Suppose first that tp < τ .

If τ is left-dense, then there is a sequence {τn} such that tp < τ1 < τ2 < · · · < τn < · · · ,
lim

n→∞
τn = τ and lim

n→∞
z(τn) = z∗ for some z∗ ∈ Rn. We shall see that lim

t→τ−
z(t) = z∗.

Since lim
n→∞

τn = τ , then there is τN ∈ (τ − ε, τ)T such that |z(τN )− z∗| < ε. So, for

t ∈ (τ − ε, τ)T with t > τN , we have that |z(t)− z∗| ≤ |z(t)− z(τN )|+ |z(τN )− z∗|. Now

|z(t)−z(τN )| ≤∥eA(t, 0)−eA(τN , 0)∥ |ϕ(0)|+
∫ τN

0

∥eA(t, σ(s))−eA(τN , σ(s))∥ |f(s, zs)|∆s

+

∫ t

τN

∥eA(τN , σ(s))∥ |f(s, zs)|∆s+

p∑
k=1

dk ∥eA(t, tk)− eA(τN , σ(s))∥ |z(tk)|

≤ ∥eA(t, 0)−eA(τN , 0)∥ |ϕ(0)|+
∫ τN

0

∥eA(t, σ(s))− eA(τN , σ(s))∥ ν(s)(1 + ∥zs∥Chp
)∆s

+

∫ t

τN

Mν(s)(1 + ∥zs∥Chp
)∆s+

p∑
k=1

dk ∥eA(t, tk)− eA(τn, tk)∥R
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≤∥eA(t, 0)−eA(τN , 0)∥ |ϕ(0)|+
∫ τN

0

∥eA(t, σ(s))−eA(τN , σ(s))∥ ν(s)(1+2 ∥z∥PW hτ
)∆s

+

∫ t

τN

Mν(s)(1 + 2 ∥z∥PW hτ
)∆s+

p∑
k=1

dk ∥eA(t, tk)− eA(τN , tk)∥R

≤∥eA(t, 0)− eA(τN , 0)∥ |ϕ(0)|+
∫ τ

0

∥eA(t, σ(s))− eA(τN , σ(s))∥ ν(s)(1 + 2R)∆s∫ τ

τN

Mν(s)(1 + 2R)∆s+

p∑
k=1

dk ∥eA(t, tk)− eA(τN , tk)∥R.

Hence, we get that if τN −→ τ , then |z(t)− z(τN )| −→ 0, so lim
t→τ−

z(t) = z∗ and

therefore z(t) can be continued beyond τ , contradicting our assumption.
If τ is left-scattered, then ρ(τ) ∈ (0, τ)T and since tp is right-dense, we have tp < ρ(τ),

then the solution z exists also at τ , namely, by putting

z(τ) = z(ρ(τ)) + µ(ρ(τ))[A(ρ(τ))z(ρ(τ)) + f(ρ(τ), zρ(τ))],

we get a contradiction.
Now, if τ = tp and tp is left-dense, then we set z+ = z∗ + Jp(tp, z

∗). By using the
same argument as previously, we can show that lim

t→τ−
z(t) = z∗, and therefore z(t) can

be continued beyond τ .
If τ = tp is left-scattered, then

z(tp) =z(ρ(tp)) + µ(ρ(tp))[A(ρ(tp))z(ρ(tp)) + f(ρ(tp), zρ(tp))],

z(t+p ) =z(tp) + Jp(tp, z(tp))

and therefore z(t) can be extended beyond τ to the right. This is a contradiction.

Corollary 5.1 If hypothesis H2) is replaced by

|f(t, ϕ)| ≤ ν(t)(1 + |ϕ(0)|), ϕ ∈ Chp, t ∈ T,

then the system (1) has a unique solution defined on all T.

Proof. Suppose that z(t) is defined on (−∞, τ)T with τ < ∞, then

|z(t)| ≤

∣∣∣∣∣eA(t, 0)ϕ(0) +
∫ t

0

eA(t, σ(s))f(s, zs)∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z(tk))

∣∣∣∣∣
≤M |ϕ(0)|+

∫ t

0

Mν(s)(1 + |z(s)|)∆s+M

p∑
k=1

dk |z(tk)|

≤M(|ϕ(0)|+ ν∗τ) +Mν∗
∫ t

0

|z(s)|∆s+M

p∑
k=1

dk |z(tk)| .

So

|z(t)| ≤M(|ϕ(0)|+ ν∗τ)

p∏
k=1

(1 +Mdk)eMν∗(t, 0)

≤M(|ϕ(0)|+ ν∗τ)

p∏
k=1

(1 +Mdk)eMν∗(τ, 0).
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This implies that |z(t)| stays bounded in any neighborhood of τ . So, for Theorem 5.1
we have that τ = ∞.

6 Example

Consider the following semilinear functional dynamic equation with infinite delay and
impulses on time scales:

z∆(t) = a(t)z(t) + b(t) tanh(zt) + c(t), t ∈ [0,∞)T \
⋃∞

k=1{tk},
z(s) = ϕ(s), s ∈ (−∞, 0]T,
z(t+k ) = z(t−k ) +

1
2k

sin(z(t−k )), k = 1, 2, . . . ,
(7)

with a ∈ R(T,R) and b, c ∈ Crd(T,R). Then we have that

i) |f(t, ϕ)− f(t, φ)| = |b(t)| |tanh(ϕ)− tanh(φ)| ≤ |b(t)| ∥ϕ− φ∥Chp
;

ii) |f(t, ϕ)| = |b(t) tanh(ϕ) + c(t)| ≤ ν(t)(1 + ∥ϕ∥Chp
), where ν(t) = max{|b(t)| , |c(t)|};

iii) |Jk(t, x)− Jk(t, y)| ≤ 1
2k

|x− y|, Jk(t, 0) = 0, for k = 1, 2, . . . and
∑∞

k=1
1
2k

< ∞.

Therefore hypotheses H1), H2) and H3) hold, so, by Theorems 4.2 and 4.3, we get
that the problem (7) has a unique solution z(t) defined on (−∞, τ ]T.

7 Conclusion and Final Remarks

In this work, first of all, we prove the existence of solutions for a semilinear retarded dif-
ferential equation with infinite delay and impulses on time-scale, by using a version of the
Arzela-Ascoli theorem on time-scale and applying the Leray-Schauder alternative. Sec-
ondly, we prove the uniqueness of solutions by applying a version of Gronwall’s inequality
for impulsive differential equations, and finally, we study the continuation of solutions.
Of course, once we have an Arzela-Ascoli version on time-scale (see [18]), we can apply
other fixed point theorems to prove the existence of solutions for such equations, perhaps
one can apply Karakosta’s fixed point theorem like in [19]. Our next work is devoted to
the study of the exact controllability for this type of equations on time-scales by using
Rothe’s fixed point theorem like in [20].

References

[1] R. Agarwal, D. O’Regan and S. Saker. Dynamic Inequalities on Time Scales. Springer
International Publishing, Switzerland, 2014.

[2] S.G. Georgiev, Functional Dynamic Equations on Time Scales. Springer Nature, Switzer-
land, AG 2019.

[3] M. Bohner and A. Peterson. Dynamics Equations on Time Scales. An Introduction with
Applications, Birkähuser Boston Inc., Boston MA, 2001.

[4] S. Hilger. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten. PhD the-
sis, Universität Würzburg, 1988.

[5] A. Granas and J. Dugundji. Fixed point Theory. Springer Monographs Mathematics, New
York, 2003.



168 C. DUQUE, H. LEIVA AND A. TRIDANE

[6] C. Tisdell and A. Zaidi. Basic qualitative and quantitative results for solutions to nonlinear
dynamic equations on time scales with application to economic modeling. Nonlinear Anal.
68 (11) (2008) 3504–3524.

[7] M. Bohner, M. Fan and J. Zhang. Existence of periodic solutions in predator-prey and
competition dynamic systems. Nonlinear Analysis: Real World and Applications 7 (2006)
1193–1204.
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