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Abstract: This paper studied the performance of a new class of evolutionary algo-
rithms called the chaos optimization algorithms (COA). It was originally proposed
to solve nonlinear optimization problems with bounded variables by Caponetto et
al. [1, 2]. Different chaotic mappings have been considered, combined with several
working strategies. We propose four different 2-D chaotic maps in the optimization
algorithm using a two-stage chaos optimization method and compare them. This
study surveys and compares the chaotic optimization algorithms in the literature.
Furthermore, a two-phase strategy is a technique commonly used in the COA to fine
tune the solution and help escaping from local optimums. The performance study is
conducted to understand their impact on the chaos optimization algorithm.
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1 Introduction

The existence of chaotic systems is an accepted fact of science [3]. Chaos is a kind of
characteristics of nonlinear systems and chaos theory studies the behavior of systems
that follow deterministic laws but appear random and unpredictable. This theory brings
many qualitative and quantitative tools, namely, ergodicity, entropy, expansivity, and
sensitive dependence on initial conditions. Theory of chaos, since its evolution, has found
application in various important areas such as engineering, medicine, biology, economy
and many others. The application of the Chaotic Search strategy in engineering had
its peak of popularity over the last few years [3–8]. This approach configured as an
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attractive option for global optimization. One of the modern optimization algorithms is
the chaos-based optimization [9, 10].

The chaos optimization search as a novel method of global optimization has attracted
much attention in nonlinear fields. The chaos optimization algorithm (COA) is an ef-
fective way to solve the optimization problem of a nonlinear multimodal function with
boundary constraint. Due to the nonrepetition of chaos, it can carry out overall searches
at higher speeds than stochastic searches, which depend on probabilities. The applica-
tion of chaotic sequences instead of random sequences in the COA is a powerful strategy
to improve the COA’s performance in preventing premature convergence to local min-
ima [11,14].

In the present paper, a robust chaos optimization algorithm is applied to efficiently
solve the problem of optimizing a nonlinear multimodal function. In most of the chaos
optimization algorithms, chaos variables are generated by logistic mapping [15, 16], but
the uneven distribution will weaken the ergodicity of chaos variables. To overcome this
problem, we select 5 different two-dimensional maps and replace the chaos variable gen-
erator in one of the existing COAs [17–20] with them. The remainder of this paper is
organized as follows. Section 2 is made for Chaotic maps. Then in Section 3, the chaos
optimization algorithm is introduced, experiments and simulation results are shown in
Section 4, and finally, the conclusion is presented in Section 5.

2 Two-Dimensional Maps

Non-linear systems with complex dynamics have lately been the subject of intense re-
search and exploration, giving birth to chaos theory. Chaotic systems are deterministic
systems that exhibit irregular behavior and a sensitive dependence on the initial con-
ditions. Chaos theory studies the behavior of systems that follow deterministic laws
but appear random and unpredictable, i.e., dynamical systems. Chaotic variables can
go through all states in certain ranges according to their own regularity without repeti-
tion [3, 8].

A chaotic map is a map that exhibits some type of chaotic behavior. In this work,
we applied five different chaotic maps that are common in the literature, namely, the
Hénon map, Lozi map, Duffing map, Gingerbreadman map, and Zeraoulia map. The
mathematical form of a chaotic two-dimensional map, which maps the unit square I × I,
where I = [0, 1], onto itself in a one-to-one manner, is chosen.

Later on, we will use these maps in the chaotic searches.

2.1 The Hénon map

The Hénon map is a discrete-time dynamical system [21]. It is one of the most studied
examples of dynamical systems that exhibit chaotic behaviour. The Hénon map takes a
point (xn, yn) in the plane and maps it to a new point{

y1(k) = 1− a(y1(k − 1))2 + by(k − 1),

y(k) = y1(k − 1),
(1)

where k is the iteration number.
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Figure 1: A chaotic Hénon attractor obtained for a = 1.4 and b = 0.3.

2.2 The Lozi map

Lozi map [22, 23] is a piecewise linear simplification of the Hénon map and it admits
strange attractors. It is given by{

y1(k) = 1− a|(y1(k − 1))|+ by(k − 1),

y(k) = y1(k − 1).
(2)

 

Figure 2: A chaotic Lozi attractor obtained for a = 1.7 and b = 0.5.

2.3 The Duffing map

The Duffing map (also called the ’Holmes map’) [24] is a discrete-time dynamical system.
It is an example of a dynamical system that exhibits chaotic behavior. The Duffing map
takes a point (xn, yn) in the plane and maps it to a new point given by{

y1(k) = y(k − 1),

y(k) = −by1(k − 1) + y1(k − 1)− y(k − 1)3.
(3)
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The map depends on two constants a and b. These are usually set to a = 2.75 and
b = 0.2 to produce chaotic behaviour.

It is a discrete version of the Duffing equation.

 

Figure 3: A chaotic Duffing attractor obtained for a = 2.75 and b = 0.2.

2.4 The Gingerbreadman map

In dynamical systems theory, the Gingerbreadman map [25] is a chaotic two-dimensional
map. It is given by the piecewise linear transformation{

y1(k) = 1− a(y1(k − 1))2 + by(k − 1),

y(k) = y1(k − 1).
(4)

 

Figure 4: A chaotic Gingerbreadman attractor obtained for a = 1 and b = 1.
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2.5 The Zeraoulia map

In dynamical systems theory, the Zeraoulia map [26] is a chaotic two-dimensional map.
It is given by the piecewise linear transformation{

y1(k) = 1− asin(y1(k − 1)) + y(k − 1),

y(k) = by1(k − 1).
(5)

The choice of the term sin(x) has an important role in that it makes the solutions
bounded for the values of b such that |b| ≤ 1, and all values of a, while they are unbounded
for |b| > 1. The chosen parameter values are a = 4 and b = 0.9 as suggested in [26]. For
these values the observed attractor shown in Figure 5.

 

Figure 5: A chaotic Zraoulia attractor obtained for a = 4 and b = 0.9.

3 Chaos Optimization Search

The study of chaos has been rapidly developed and attracted a great attention due to a
variety of applications in science and technology, e.g., chaos-based global optimization.
The chaos optimization algorithm (COA) is one of the hot topics in recent years. The
COA is an effective method to solve the optimization problem of a nonlinear multimodal
function with boundary constraint. Many chaotic strategies in the COA generally include
two major stages [17–19]: the global phase and the local phase. Firstly, during the global
phase, chaotic points are drawn from the domain of searches [L,U ] according to a certain
2-D chaotic model. Then, the objective function is evaluated at these points and the point
with the minimum objective function as the current optimum is chosen. Secondly, during
the local phase, the current optimum is assumed to be close to the global optimum after
certain iterations and it is viewed as the center with a little chaotic perturbation and the
global optimum is obtained through the fine search.

Consider the following optimization problem on the minimum of functions. If the
target function f(xi) is continuous and differentiable, the object problem to be optimized
is find xi to minimize f(xi);xi ∈ [Li, Ui]; i = 1, 2, ..., n. The main procedures of this
algorithm are shown as follows:

Input :
Mg : maximum number of iterations of the global search.
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Ml : maximum number of iterations of the local search.
Ml +Mg : stopping criterion of the chaotic optimization method in iterations
λ : step size in the chaotic local search
Output :
X∗ : best solution from the current run of the chaotic search.
f∗ : best objective function (minimization problem).

• Step 1 : Initialization of the numbersMg,Ml of steps of the chaotic search and ini-
tialization of the parameters λ and initial conditions. Set k = 1, y(0), y1(0).a = 1.4
and b = 0.3 of the Henon map, a = 1.7 and b = 0.5 of the Lozi map, a = 2.75 and
b = 0.2 of the Duffing map, a = 4 and b = 0.9 of the Zraoulia map. Set the initial
best objective function f∗ = infini.

• Step 2 : algorithm of the chaotic global search:

Map the chaotic variables zi(k) =
(xi(k)−Li)
(Ui−Li)

into the optimization variables xi(k)

by the following equation in the chaotic map function:

xi(k) = Li + (Ui − Li)zi(k),

where i = 1, 2, ..., n.

Equation xi(k) = Li + (Ui − Li)zi(k) is suitable for most chaotic maps. It is
determined by the range of the chaotic sequences generated by each chaotic map
to select the equation. As the chaotic sequences generated by chaotic maps is the
interval (0, 1), equation xi(k) = Li+(Ui−Li)zi(k) can map (0, 1) into the interval
(L,U) for optimization variables.

• Step 3 : compute the function value f(x(k)). If f(x(k)) < f∗, then f∗ = f(x(k))
and the optimal solution x∗ = x(k).

• Step 4 : utilize a chaotic map function to generate next chaotic variables zi(k+1).

• Step 5 : k = k + 1. If k ≤ Mg, turn to step 2, otherwise terminate the first stage
search.

• Step 6 : algorithm of the chaotic local search:
If r < 0.5, then (where r is a uniformly distributed random)
Map the chaotic variables zi(k) into the optimization variables xi(k) by one of the
following equations of the chaotic map function:

xi(k + 1) = x∗
i + λ.zi(k).|Ui − L∗

i |,

xi(k + 1) = x∗
i − λ.zi(k).|Ui − L∗

i |,

where i = 1, 2, . . . , n.
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• Step 7 : compute the function value f(x(k1)), f(x(k2)). Take the
minimum value of the two as f(x(k)). If f(x(k1)) < f(x(k2)), then
x(k) = x(k1), f(x(k)) = f(x(k1)); otherwise x(k) = x(k2), f(x(k)) = f(x(k2)).
Compare f(x(k1)) with the optimal value, so far f∗. If f(x(k)) < f∗, then
f∗ = f(x(k)) and the optimal solution x∗ = x(k).

• Step 8 : utilize a chaotic map function to generate next chaotic variables zi(k+1).

• Step 9 : k = k+1. If k ≤ Mg+Ml, turn to step 6, otherwise terminate the second
stage search.

4 Simulation Results

The proposed algorithm was tested on two benchmark functions, see Table 1, Figures 6,
7 . All the programs were run on a 2 GHz Pentium IV processor with 2 GB of random
access memory in the MATLAB. The algorithm used for comparison is a two-stage chaotic
optimization algorithm with five chaotic maps. The algorithm was executed with 50 runs;
Mg=1000, Ml=400, and different values for the step size λ (such λ = 0.01 , λ = 0.001
and λ ∈]0.001, 0.01[). Tables 2,3,4 show the best solution, the mean of the solution and
standard deviation. From Tables 2, 3, 4, all of the best solutions are exactly equal to the
exact solution of the function 2. From Tables 3, 4, the Hénon map and Zeraoulia map
have better solutions for λ = 0.001 and λ ∈]0.001, 0.01[ of function 1 than other maps
according to the best solution. The Hénon map, Lozi map and Gingerbreadman map
have better solutions for λ = 0.001 and λ ∈]0.001, 0.01[ of function 2 than other maps
according to the best solution.

Function
name

Expression bounds Opt Modality

The
Schaffer

F1(x1, x2) = −0.5
(sin

√
(x2

1+x2
2)

2
)−0.5)

(1+0.001(x2
1+x2

2)
2 [−100, 100] −1 Multimodal

The Ea-
som

F2(x1, x2) = cos(x1) cos(x2) exp(−(x1− [-20,20] −1 unimodal

π)2 − (x2 − π)2)

Table 1: Properties of benchmark functions.
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Figure 6: Plot of F1.

Figure 7: Plot of F2.

λ = 0.01
Fun- Maps Best fit (Xbest,Ybest) Mean fit standard fit

ction
Hénon -0.9897 (3.1331,0.4282) -0.9897 1.0e-15×0.1121
Lozi -0.8304 (5.7743,10.8775) -0.8304 1.0e-14×0.1009

F1 Duffing -0.9398 (0.4017,-6.1062) -0.9398 1.0e-14×0.0224
Gingerbreadman -0.8217 (-11.7448,-11.7448) -0.8217 0.0000

Zraoulia -0.9870 (3.1432,-0.5825) -0.9870 1.0e-15×0.6729
Hénon -0.9961 (3.1739 ,3.1812) -09960 1.0e-03×0.0452
Lozi -0.9859 (3.0529,3.1054) -0.9818 0.0021

F2 Duffing -0.9963 (3.1819,3.1128) -0.9961 0.0002
Gingerbreadman -0.9918 (3.0893,3.0893) -0.9918 1.0e-15×0.4486

zraoulia -0.9961 (3.1006,3.1736) -0.9960 1.0e-03×0.0718

Table 2: COA based five chaotic saerches so that Mg=1000, Ml=400, for 50 run.
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λ = 0.001
Fun- Maps Best fit (Xbest,Ybest) Mean fit standard fit

ction
Hénon -0.9899 (3.1432,0.4698) -0.9899 1.0e-14×0.0336
Lozi -0.8727 (5.4511 ,11.0601) -08726 0.0001

F1 Duffing -0.9628 (0.2366,-6.2706) -0.9627 0.0001
Gingerbreadman -0.8218 (-11.4213,-11.4217) -0.8214 0.0004

Zeraoulia -0.9903 (3.0870,-0.6231) -0.9902 0.0001
Hénon -1 (3.0706,3.0244) -0.9983 0.0053
Lozi -0.9999 (3.1335,3.1428) -0.9999 0.001

F2 Duffing -1 (3.1393,3.1363) -1 0.0000
Gingerbreadman -1 (3.0303,3.030) -0.9971 0.0072

Zeraoulia -1 (3.1421,3.1388) -1 1.0e-0.3×0.0020

Table 3: COA based five chaotic searches so that Mg=1000, Ml=400, for 50 run.

λ ∈]0.01, 0.001[
Fun- Maps Best fit (Xbest,Ybest) Mean fit standard fit

ction
Hénon -0.9899 (3.0829,0.4698) -0.9899 1.0e-14×0.0336
Lozi -0.8727 (5.4511 ,11.0601) -0.8726 0.0001

F1 Duffing -0.9628 (0.2366,-6.2706) -0.9627 0.0001
Gingerbreadman -0.8218 (-11.4213,-11.4217) -0.8214 0.0004

Zeraoulia -0.9903 (3.0870,-0.6231) -0.9902 0.0001
Hénon -1 (3.0706,3.0244) -0.9984 0.0053
Lozi -0.9999 (3.1303,3.1385) -0.9999 0.0001

F2 Duffing -1 (3.1399,3.1363) -1 0.0000
Gingerbreadman -1 (2.9741,2.9741) -0.9931 0.0179

Zeraoulia -1 (3.1424,3.1388) -1 1.0e-03×0.0020

Table 4: COA based five chaotic searches so that Mg=1000,Ml=400, for 50 run.

5 Conclution

In this paper, we have proposed some two-dimensional maps which can be used as search
patterns in the chaos optimization algorithm. We use five chaotc map searches. Our
main conclusion is made by comparing different search patterns based on the numerical
simulation results. We exhibited the generated chaotic sequences and the obtained best
chaotic sequences. Further, this algorithm is tested on a benchmark consisting of two
known nonlinear objective functions.
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