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The Geometry of Mass Distributions

S.B. Davis ∗

Research Foundation of Southern California,
8861 Villa La Jolla Drive #13595, La Jolla, CA 92037.

Received: October 25, 2021; Revised: February 8, 2022

Abstract: Geometrical characteristics of mass distributions are defined and the
relation with classical mechanics and general relativity is described. The classical
stability of closed geodesic trajectories on surfaces of arbitrary genus is established.
An iterative procedure for solving the N-body problem to a high degree of precision
is introduced through a complexity minimization method.
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1 Introduction

The equations of classical mechanics and general relativity describe the motion of particle
in a geometry of three or four dimensions. The potential in general relativity is derived
from the curvature of space-time which results from the energy-momentum tensor or
mass distribution. The effect of the geometry of the mass distribution on the dynamics
will be considered. A geometrical median will be given and verified for various curves and
surfaces. It is proven in the two theorems of Section 2 that the geometrical median of a
curve is located on the curve if it is a straight line in Euclidean space and a geodesic in
curved space. These theorems remain valid for the barycentre which coincides with the
center of mass of a uniform distribution. The role of the center of the mass distribution
then will be described in classical mechanics and general relativity. It is known that mass
distributions tend towards the center [8]. The local stability of geometrical configurations
under the gravitational potential will follow for geodesics.

The stability of geodesics that can be identified with strings on a surface is considered.
Given the tendency of uniform mass distributions towards the center of a geometrical
configuration, it follows from the theorems of Section 2 that only closed geodesics will
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be stable on a Riemann surface in a gravitational field. The geodesic flows on ellip-
tic and hyperbolic surfaces are described. The effect of the flow on an elliptic surface
is an infinitesimal displacement of the trajectory. On a hyperbolic surface, however,
the transformation of the Jacobi field tends to introduce divergences. The geodesics
are known to form a dense set on a hyperbolic Riemann surface [27] and the flow is
metrically transitive [17]. The dynamics is invariant under quasi-isometries [12]. The
stability of the geodesic flow under the action of the fundamental group has been proven
for diffusion paths on a geometrially finite hyperbolic surface with finite [24] or infinite
volume [10]. Gibbs measures for the dynamics of geodesic flow on negatively curved
Riemannian manifolds have been developed to describe the equilibrium state in the pres-
ence of a potential [29]. It is related to the Patterson-Sullivan density at the boundary of
Teichmüller space, which suffices for the Myrberg limit set with the full measure [33,37],
where singularities occur for an isometry in the interior.

Particles follow geodesics on the space-times shaped by energy-momentum tensors. A
measure of geometrical complexity will be defined in Section 3 for spatial curves satisfying
conditions of minimal complexity for geodesics and locally extremal values for curves
of high symmetry in a neighbourhood in path space. A divergence is found to arise
for the sets of points, with the same equivalence class of tangent vectors or covariant
derivatives, having zero Lebesgue measure. The occurrence of these infinities is similar
to that of the singularities in a theory of gravity or the elementary particles through point
particles. A fundamental length scale may be introduced which would require, however, a
theoretical basis. The sum representing this term in the intrinsic complexity is rendered
finite through the removal of the singular term in a zeta function regularization method.
Given this measure of the complexity, the geodesics paths of particles in curved spaces
may be derived from an action principle with a Lagrange multiplier term.

The principle of complexity minimization in deterministic processes may be used to
establish the time development of a configuration of masses. Its theoretical foundations
are enunciated in the first law of classical mechanics and the geodesic free motion in
general relativity. It is adapted in Section 3 to predict the dynamics of an N -body system
of approximately equal masses, with an iterative procedure of replacing two masses by a
single mass at the center of gravity. This subsequent motion can be placed in a general
relativistic setting and the geodesics on the curved manifold representing the force fields
would tend to reduce complexity of the system. The classical limit then would yield a
configuration that also minimizes complexity.

2 The Geometrical Characteristic

The geometrical median of any continuous set S will be defined to be that point a which
minimizes

∫
C
r(s, a)ds, where r(s, a) is the distance from the point a to the point s ∈ C.

For a discrete set of points, the sum
∑

s r(s, a)ds is minimized [39] and a generalization
to continuous sets has been given [13].

For a straight line of length L,
∫ L

0
r(s)ds = 2

∫ L
2

0
rdr = 2

(L
2 )

2

2 = L2

4 from the

midpoint, while
∫ L

0
r(s)ds =

∫ L

0
rdr = L2

2 from the endpoint. For the vertices of an
equilateral triangle with sides of length L, the sum of the distances from the center is
3 L√

3
=

√
3L, whereas the sum of the distances from any of the vertices equals 2L.

From a point at a distance r0 from the point of symmetry of a circle,

r(θ) =
√
R2 + r20 − 2r0R cos θ, (1)
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where θ is the angle subtended from the point of symmetry. When r0 = 0,
∫
r(θ)ds =

R2
∫ 2π

θ=0
dθ = 2πR2. If r0 = R,∫

r(θ)ds =
√
2R2

∫ 2π

0

(1− cos θ)
1
2 dθ = 8R2. (2)

The geometrical median therefore coincides with the conventional definition of the center
for these sets of points.

More generally, let C(t) : [t0, t1] → C[t0, t1] be a curve in Euclidean space. The
distance from a point on the curve is

r(t) =
√
(x(t)− xc)2 + (y − yc)2 (3)

and the integral
∫ t1
t0
r(t)dt is minimized when

δxc

∫ t1

t0

√
(x(t)− xc)2 + (y(t)− yc)2dt = δyc

∫ t1

t0

√
(x(t)− xc)2 + (y(t)− yc)2dt = 0.

(4)
Then ∫ t1

t0

x(t)− xc√
(x(t)− xc)2 + (y(t)− yc)2

dt = 0, (5)∫ t1

t0

y(t)− yc√
(x(t)− xc)2 + (y(t)− yc)2

dt = 0.

The condition for the center to be a point on the curve is that there exists t′ ∈ [t0, t1]
such that ∫ t1

t0

x(t)− x(t′)√
(x(t)− x(t′))2 + (y(t)− y(t′))2

dt = 0, (6)∫ t1

t0

y(t)− y(t′)√
(x(t)− x(t′))2 + (y(t)− y(t′))2

dt = 0.

Theorem 2.1 The only curves in two-dimensional Euclidean space with geometrical
medians located on the curves are straight lines.

Proof. The conditions (6) can be verified for a straight line y = mx+ b. Let x(t) =

a1t + b1 and y(t) = a2t + b2 such that y(t) = a2

a1
(a1t + b1) +

(
b2 − a2

a1
b1

)
. Substituting

these linear relations into (6) gives∫ t1

t0

a1(t− t′)√
(a21(t− t′)2 + a22(t− t′)2

dt =
a1√
a21 + a22

∫ t1

t0

t− t′

|t− t′|
dt (7)

=
a1√
a21 + a22

∫ t1

t0

[θ(t− t′)− θ(t′ − t)] dt = 0, (8)∫ t1

t0

a2(t− t′)√
(a21(t− t′)2 + a22(t− t′)2

dt =
a2√
a21 + a22

∫ t1

t0

t− t′

|t− t′|
dt

=
a2√
a21 + a22

∫ t1

t0

[θ(t− t′)− θ(t′ − t)] dt = 0,
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which can be satisfied if

−(t′ − t0) + (t1 − t′) = 0, t′ =
t0 + t1

2
.

The use of nonlinear parameters for the straight line does not alter the result.

If y = mxα + b, where α ̸= 1, then the conditions on t′ will not be satisfied by a
single value of t′ ∈ [t0, t1]. Therefore, the center would not occur on the curve for α ̸= 1.
A similar conclusion is reached for a sum of terms with different exponents {α1, ..., αℓ},
where αi ̸= 1, i = 1, ..., ℓ.

The generalization of the definition of the geometric median of the curve would be
the point in a manifold which minimizes the integral

∫ t1
t0

√
gµν(x(t)− xµ0 )(x(t)− xν0)dt.

Theorem 2.2 The geometrical median is located on a curve in a manifold if and
only if it is a geodesic.

Proof. The geodesic extremizes the arc length of the curve
∫ t1
t0

√
gµν

dxµ

dt
dxν

dt dt be-

tween two fixed points x(t0) and x(t1). Since
dxµ

dt = lim
t−t′→0

xµ(t)−xµ(t′)
t−t′ for any curve x(t),

the arc length equals

lim
t−t′′→0

∫ t1

t0

√
gµν(xµ(t)− xµ(t′′))(xν(t)− xν(t′′))

(t− t′)2
dt. (9)

Since dxµ(t)
dt is a continuous function, one of the two sets of inequalities

xµ(t)− xµ(t− δt)

δt
<
dxµ(t)

dt
<
xµ(t+ δt)− xµ(t)

δt
, (10)

xµ(t)− xµ(t− δt)

δt
>
dxµ(t)

dt
>
xµ(t+ δt)− xµ(t)

δt
,

is valid when the second derivative d2xµ(t)
dt2 does not vanish. It follows that, given a

positive definite metric, either

∫ t

t− δt
2

(
gµν

(xµ(t)− xµ(t− δt
2 ))(x

ν(t)− xν(t− δt
2 ))

( δt2 )
2

) 1
2

dt (11)

< lim
t−t′→0

∫ t

t− δt
2

√
gµν(xµ(t)− xµ(t′))(xν(t)− xν(t′))

(t− t′)2
dt

lim
t−t′→0

∫ t+ δt
2

t

√
gµν(xµ(t)− xµ(t′))(xν(t)− xν(t′))

(t− t′)2
dt

<

∫ t+ δt
2

t

(
gµν

(xµ(t+ δt
2 )− xµ(t))(xν(t+ δt

2 )− xν(t))

( δt2 )
2

) 1
2

dt
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or ∫ t

t− δt
2

gµν
(xµ(t)− xµ(t− δt

2 ))(x
ν(t)− xν(t)− δt

2 ))

( δt2 )
2

dt (12)

> lim
t−t′→0

∫ t

t− δt
2

gµν(x
µ(t)− xµ(t′))(xν(t)− xν(t′))

(t− t′)2
dt,

lim
t−t′→0

∫ t+ δt
2

t

gµν(x
µ(t)− xµ(t′))(xν(t)− xν(t′))

(t− t′)2
dt

>

∫ t+ δt
2

t

gµν
(xµ(t+ δt

2 )− xµ(t))(xν(t+ δt
2 )− xν(t))

( δt2 )
2

dt.

At the point xµ(t), moving an infinitesimal distance δt in any other direction than the
tangent vector to the geodesic will increase the integrals in the bounds (10) and (11).
Therefore, by eliminating the fixed value of δt, the integral∫ t+ δt

2

t− δt
2

(gµν(x
µ(t)− x′µ)(xν(t)− x′ν))

1
2 (13)

is minimized with respect to x′µ, defined by a change of δt in the affine parameter along
a curve which is derived by exponentiation of a vector field at the point xµ(t), when this
curve is the same geodesic {xµ(s)|t− δt

2 < s < t+ δt
2 } in the neighbourhood Nexp δt

2
(xµ(t)).

By overlapping neighbourhoods (t− δt
2 , t+

δt
2 ) throughout the interval (t0, t1), it may be

concluded that there exists a point xµ0 on the path, equal to xµ(t′′), with t′′ fixed, such
that the integral ∫ t1

t0

√
gµν(xµ(t)− xµ0 )(x

ν(t)− xν0)dt (14)

achieves a minimal value.

Suppose that xµ0 is not located on the geodesic x(t) between x(t0) and x(t1). That
would be equivalent to the existence of a path x̂(t) including xµ0 which is not a geodesic
between x(t0) and x(t1). By triangulation of the interior region between the two curves
x(t) and x̂(t), with xµ0 = x̂µ(t′),∫ t1

t0

√
gµν(x̂µ(t)− x̂(t′))(xν(t)− x̂ν(t′)) dt <

∫ t1

t0

√
gµν(xµ(t)− xµ0 )(x

ν(t)− xν0) dt.

(15)

The inequality∫ t1

t0

√
gµν(x̂µ(t)− x̂µ(t′))(x̂ν(t)− x̂ν(t′)) dt (16)

>

∫ t1

t0

√
gµν(xµ(t)− xµ(t′′′))(xν(t)− xν(t′′′)) dt

for a choice of t′′′ is valid by the integral form of the mean value theorem and
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the minimization of the integral by the geodesic. Then∫ t1

t0

√
gµν(xµ(t)− xµ0 )(x

ν(t)− xν0) dt (17)

>

∫ t1

t0

√
gµν(xµ(t)− xµ(t′))(xν(t)− xν(t′)) dt

>

∫ t1

t0

√
gµν(xµ(t)− xµ(t′′′)(xµ(t)− xµ(t′′′) dt,

again, by triangulation. The inequality may be proven generally by overlapping neigh-
bourhoods of the geodesic. It follows that x(t′′′) is located on the geodesic, which,
therefore, includes its center.

Paths which are not geodesics do not minimize the integral (14) for some xµ0 on the
curve, and therefore, by triangulation, there exists another curve through xµ0 and the
endpoints x(t0) and x(t1) which has a lesser integral. A slight perturbation of the second
curve will produce a curve with nearly the same integral that does not include xµ0 . Then
xµ0 will minimize the integral for a curve on which it is not located. Consequently, the
only curves which include the geometrical medians are geodesics.

The centroid or center of mass has been defined for regions in Euclidean space and
generalized to Riemannian manifolds [2,15,19]. The center of mass of an object occupying
a volume in a Euclidean space has coordinates

xi,c.m =

∫
ρ(x)xidV∫
ρ(x)dV

. (18)

The mass density ρ(x) is constant for a uniform distribution and

xi, c.m =
ρ
∫
xidV

ρ
∫
dV

=

∫
xidV∫
dV

. (19)

The barycenter minimizes the integral of the squared distance [20], [21] from a given
point x0 to the other points in the region∫ ∑

i

(xi − xi,0)
2dV. (20)

Extremizing this integral requires

δ

∫ ∑
i

(xi − xi,0)
2dV = 0. (21)

Suppose x0 = xc.m.. Then

−
∑

i

∫
(xi − xi,0)δxi,0dV = −

∑
i

∫
xiδxi,0dV +

∑
i

∫ ∫
xidV

′∫
dV ′ δxi,0dV

= −
∑

i

∫
xiδxi,0dV +

∑
i

∫
xiδxi,0dV

= 0.
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Therefore, the center of mass of a uniform distribution coincides with the barycentre of
the geometric configuration. It may be verified that the barycenter of a straight line
x(t) = a1t + b1 and y(t) = a2t + b2 between two points (x(t0), y(t0)) and (x(t1), y(t1))
occurs at t0+t1

2 . Similarly, the barycenter of a geodesic will be located on the geodesic

since the integral
∫ t1
t0
gµν(x

µ(t)−xµ0 )(xν(t)−xν0) dt will be minimized when xµ0 = xµ(t′′),

t′′ ∈ [t0, t1].

The geometrical median may be compared with the barycenter for various compact
sets including the circle [4, 40]. The variational conditions for this integral in Euclidean
space are

δxc

∫ t1

t0

[(x(t)−xc)2+(y(t)− yc)2]dt = 0, δyc

∫ t1

t0

[(x(t)−xc)2+(y(t)− yc)2]dt = 0,

or ∫ t1

t0

(x(t)− xc)dt = 0,

∫ t1

t0

(y(t)− yc)dt = 0.

These equations generally differ from Eq. (5). For the circle, with (xc, yc) located at the
center and

√
(x(t)− xc)2 + (y(t)− yc)2 equal to a constant, the conditions are equivalent.

The tendency of uniform mass distributions towards the centers would cause the linear
density of a geodesic on a Riemann surface to move towards a point on the curve. When
it is closed, there are no distinguished points on the geodesic, which should be stable
against variations satisfying classical equations. It may be identified, therefore, with a
closed string state. However, a closed curve that is not a geodesic would have a center
of mass located away from the path, and if it tends towards this point, the configuration
will not be stable. It follows that there is an equivalence between closed string states
and closed geodesics only.

The linear Poincare mapping of a closed geodesic translates the Jacobi field and its
covariant derivative from one curve to another. The eigenvalue of this transformation
has magnitude one when the geodesic is elliptic and stable and it is not equal to one if
the geodesic is hyperelliptic and unstable [31]. This variation does not cause a geodesic
to disintegrate. Instead, it is moved to a neighbourhood in the first class and diverges
in the second category. The transformation only would represent a form of propagation
of closed string states along the surface. Consequently, the geodesic flows differ at genus
g = 1 and g ≥ 2.

3 Complexity of a Curve and the Relation to the Center

Consider the Frenet frame of a curve spanned by the tangent, normal and binormal
vectors t⃗, n⃗ and b⃗ and the resultant v⃗ = t⃗+ n⃗+ b⃗. The integrals

−
∫
γ
ds

[
(v⃗·⃗t)2
|v⃗|2 ln

(v⃗·⃗t)2
|v⃗|2 + (v⃗·n⃗)2

|v⃗|2 ln (v⃗·n⃗)2
|v⃗|2 + (v⃗·⃗b)2

|v⃗|2 ln (v⃗·n⃗)2
|v⃗|2

]
∫
ds

(22)
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and

1∫
ds

[
−
∫
γ

ds

[
(∇t⃗t⃗ · t̂)2

|∇t⃗t⃗|2
ln

(
(∇t⃗t⃗ · t̂)2

|∇t⃗t⃗|2

)
+

(∇t⃗t⃗ · n̂)2

|∇t⃗t⃗|2
ln

(
(∇t⃗t⃗ · n̂)2

|∇t⃗t⃗|2

)
(23)

+
(∇t⃗t⃗ · b̂)2

|∇t⃗t⃗|2
ln

(
(∇t⃗t⃗ · b̂)2

|∇t⃗t⃗|2

)]

increase with the number of nonrepetitive windings of a spatial curve. When the curve
γ is a geodesic, ∇t⃗t⃗ = 0 or it is proportional to t⃗ with a change of the affine parameter

and ln
(∇t⃗ t⃗·t̂)

2

|∇t⃗ t⃗|2
= 0, the integral vanishes.

The first integral for the circle is maximized amongst planar curves. Given the coor-
dinates and the tangent vector

(x(t), y(t)) = (a cos t, a sin t), (24)(
dx

dt
,
dy

dt

)
= (−a sin t, a cos t),

the normal vector is n⃗ = (−a cos t,−a sin t). Then

v⃗ = (−a(sin t+ cos t), a(cos t− sin t)), (25)

|⃗t+ n⃗|2 = a2((sin t+ cos t)2 + (cos t− sin t)2) = 2a2

and

t⃗ · v⃗ = a2, (26)

n⃗ · v⃗ = a2.

It follows that

−
∫
γ
ds

[
(v⃗·⃗t)2
|v⃗|2 ln

(v⃗·⃗t)2
|v⃗|2 + (v⃗·n⃗)2

|v⃗|2 ln (v⃗·n⃗)2
|v⃗|2

]
∫
ds

=
2πa

(
− 1

2 ln
1
2 − 1

2 ln
1
2

)
2πa

= ln 2. (27)

If a series expansion
∑

k
1
k!Ik is considered, where

Ik (28)

=

−
∫
C

[
t⃗(k)·v⃗(k)

|v⃗(k)|2 ln
(

t⃗(k)·v⃗(k)

|v⃗(k)|2

)
+ n⃗(k)·v⃗(k)

|v⃗(k)|2 ln
(

n⃗(k)·v⃗(k)

|v⃗(k)|2

)
+ b⃗(k)·v⃗(k)

|v⃗(k)|2 ln
(

b⃗(k)·v⃗(k)

|v⃗(k)|2

)]
ds∫

C
ds

,

it may be verified that, by the Frenet equations,
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t⃗′ =
d|⃗t|
ds

t̂+ κ|⃗t|n̂, (29)

n⃗′ = −κ|n⃗|t̂+ d|n⃗|
ds

n̂+ τ |n⃗|b̂,

b⃗′ = −τ |⃗b|n̂+
d|⃗b|
ds

b̂,

v⃗′ =

(
d|⃗t|
ds

− κ|n⃗|
)
t̂+

(
κ|⃗t|+ d|n⃗|

ds
− τ |⃗b|

)
n̂+

(
τ |n⃗|+ d|⃗b|

ds

)
b̂,

and

I1 = − 1∫
C
ds

∫
C

ds

{ [
d|⃗t|
ds

(
d|⃗t|
ds − κ|n⃗|

)
+ κ|⃗t|

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)]

[(
d|⃗t|
ds − κ|n⃗|

)2
+
(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ] (30)

ln


[
d|⃗t|
ds

(
d|⃗t|
ds − κ|n⃗|

)
+ κ|⃗t|

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)]

[(
d|⃗t|
ds − κ|n⃗|

)2
+
(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ]


+

[
− κ|n⃗|

(
d|⃗t|
ds − κ|n⃗|

)
+ d|n⃗|

ds

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)
+ τ |n⃗|

(
τ |n⃗|+ d|⃗b|

ds

)]
[(

d|⃗t|
ds − κ|n⃗|

)2
+
(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ]

ln


[
− κ|n⃗|

(
d|⃗t|
ds − κ|n⃗|

)
+ d|n⃗|

ds

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)
+ τ |n⃗|

(
τ |n⃗|+ d|⃗b|

ds

)]
[(

d|⃗t|
ds − κ|n⃗|

)2
+
(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ]


+

[
− τ |⃗b|

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)
+ d|⃗b|

ds

(
τ |n⃗|+ d|⃗b|

ds

)]
[(

d|⃗t|
ds − κ|n⃗|

)2
+
(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ]

ln


[
− τ |⃗b|

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)
+ d|⃗b|

ds

(
τ |n⃗|+ d|⃗b|

ds

)]
[(

d|⃗t|
ds − κ+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ]
}.

For the circle,

I1 (31)

= − 1∫
ds

∫
ds

[
κ2 |⃗t|2

κ2 |⃗t|2 + κ2|n⃗|2
ln

κ2 |⃗t|2

κ2 |⃗t|2 + κ2|n⃗|2
+

κ2|n⃗|2

κ2 |⃗t|2 + κ2|n⃗|2
ln

κ2|n⃗|2

κ2 |⃗t|2 + κ2|n⃗|2

]
= − 1∫

ds

∫
ds

[
1

2
ln

1

2
+

1

2
ln

1

2

]
= ln 2,
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since |⃗t| = |n⃗| = a, d|⃗t|
ds = d|n⃗|

ds = 0 and |⃗b| = 0. Given equal magnitudes of the integrals
Ik, k ≥ 0, the entire measure would be

∑∞
k=0

1
k! ln 2 = e ln 2, which is the maximal

bound for planar curves.

The second integral is significantly reduced because the projection of the covariant
derivative of the tangent vector onto the vectors would be given in a polar diagram by

t̂ =
1

r
θ̂, n̂ = r̂, (32)

∇t⃗t⃗ = Γθ
θθ θ̂ + Γr

θθ r̂,

Γθ
θθ = 0, Γr

θθ =
1

2
grr(gθθ,r) = r.

Then

Ccurve = −
∫
ds

(∇t⃗t⃗ · n̂)2

|∇t⃗t⃗|2
ln

(
(∇t⃗t⃗ · n̂)2

|∇t⃗t⃗|2

)
= 0. (33)

Even though the circle has maximal symmetry, it is not a geodesic in Euclidean space,
and therefore, given the changing direction of the tangent vector, the introduction of a
non-zero measure, less than that of neighbouring winding curves, may be considered.

The intrinsic complexity of a curve has been defined to be

∞∑
k=1

1

k!
C(k)
int , (34)

C(k)
int = −

∫
µ=Lδ

fk(ℓ)dℓ

L
ln
fk(ℓ)ℓ

(k)
i′ min

L
−
∑
i′

ℓ
(k)
i′

L
ln

ℓ
(k)
i′

L
,

where fk(ℓ) equals the finite number of times that the (k − 1)th covariant derivative of
the tangent vector can be identified, the index i′ labels arcs with identified (k − 1)th

derivatives and ℓi′ min is the minimum length of these arcs of non-zero measure [9].
When the curve is a geodesic, ∇t⃗t⃗ = 0, and the (k−1)th derivatives vanish for k ≥ 2 and

Cint = C(1)
int = 0 because the tangent vectors may be identified through parallel transport.

The angular component of this expression has been evaluated for a circle to be non-zero,
while the radial component is found to vanish [9], representing a local minimum amongst
neighbouring paths. If ℓi′ min ̸= 0, it would be proportional to the arc length of the curve
since a dilation of the curve increases ℓi′ min and the length L by the same factor. When
there are no points that can be identified, the second sum vanishes and ℓi′ min would be
set equal to δℓ

◦
L, where δℓ

◦
= δℓ

[δℓ] , which causes a divergence as δℓ→ 0. This infinity can

be removed from the formula by equating ℓi′ min to a constant for these curves, yielding
a dependence on L that breaks dilatational invariance. Another possibility for ℓi′ min

would be λδL, where λδ is constant. Then, although dilatational invariance is preserved,
the formula includes an arbitrary constant with no theoretical basis.

The measure δℓ ln δℓ
◦
, however, tends to zero, in this limit. Suppose that the variable

η is defined by

δη = −δℓ ln δℓ
◦
. (35)

The integral
∫ L

0
dℓ = L may be regarded as the limit of a Riemann sum

∑{ L
δℓ}

i=1

1 · δℓ =
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L
δℓ

}
δℓ. By contrast, the sum of the infinitesimals δη

L equals

−
{ L

δℓ}∑
i=1

1

L
· δℓ ln δℓ

◦
= − 1

L

{
L

δℓ

}
δℓ ln δℓ

◦
= −ln δℓ

◦
. (36)

Given the approximation ψ(z) ∼ ln z for z ≫ 1, this value may be replaced by{
L
◦

δℓ
◦

}
∑
k=1

1

k
− ln L ≃

{ L
◦

δℓ
◦ }∑

k={L◦}

1

k
. (37)

Independence with respect to L requires equality with
∑{ 1

δℓ
◦ }

k=1

1
k . Then, lim

δℓ
◦→0

∑{ 1

δℓ
◦ }

k=1

1
k =

lim
s→1

ζ(s). Zeta function regularization would consist of removing the singular term in the

expansion of the zeta function around s = 1, yielding lim
s→1

[
ζ(s)− 1

s−1

]
= γ.

At a point (x, y) on the circle x2 + y2 = r2, the polar coordinates are (r, θ), with r
equal to a constant. The tangent vector has components (−y, x) and

t⃗ = −y ∂
∂x

+ x
∂

∂y
= −y

(
x

r

∂

∂r
− y

r2
∂

∂θ

)
+ x

(
y

r

∂

∂r
+
x

r2
∂

∂θ

)
(38)

=
xy − xy

r

∂

∂r
+
x2 + y2

r2
∂

∂θ
=

∂

∂θ
.

The r component of the gradient is ∂
∂r , while the θ component is 1

r
∂
∂θ . Therefore, the

components of the tangent vector in this basis are (0, r). There is no radial component
of the tangent vector, the theta component is constant, and yet, the vector ∂

∂θ keeps
changing with θ0 at the points (1, θ0) since

∂

∂θ

∣∣∣∣
θ0

= −rsin θ0
∂

∂x
+ rcosθ0

∂

∂y
(39)

in contrast with the fixed unit vectors ∂
∂x ,

∂
∂y and ∂

∂z . The vanishing of the radial
component of the tangent vector to the circle is sufficient to ensure a local minimum for
Cint
r for this curve, while the angular component yields a non-zero value, without any

further identification of the tangent vectors through Euclidean motions of the plane. The
non-zero value is supported by the work that is required to move an object travelling
at a constant velocity in a circular path, by contrast with a straight trajectory. It may
be noted that this feature is evident also if the distances from the center constitute the
sequence for the radial complexity. More generally, it would be necessary to evaluate
the perpendicular component of the distance. Then, it would be equal to zero from the
center to any other point on a straight line. Since the center is located on the geodesic
in curved space by Theorem 2, it would follow that the perpendicular component of the
distance to any point on this path and the radial complexity with respect to the center
would vanish.

The reduction of the N -body problem to an (N − 1)-body problem through the
replacement of two masses by another centrally located mass introduces an approximation
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in the description of the motion [26]. The error will be increased by the method of
induction culminating in a three-body problem, which has an analytic formulation and
can be solved in the plane, where it is equivalent to a system of geodesic equations [34].
It may be reduced through a complexity minimization procedure [9]. The tendency of
mass distributions to the center is a transition to a more symmetric and less complex
distribution about this point. The introduction of this variational principle selects a
classical configuration with each error range.

Theorem 3.1 The final motions in an N-body problem may be reduced to a three-
body problem for equal masses under the condition of the minimization of the complexity
of the configuration.

Proof. Lagrange multiplier terms may be added to give

LN =
1

2
m
∑

i

N∑
k=1

ẋ2i,k +Gm2
N∑

k<ℓ

1

rkℓ
+
∑

j

λj

N∑
k=1

(xj,k(t)− xc,N (t)). (40)

The minimization of complexity of the configuration of N masses is equivalent to the
extremization of the sum of the distances to the center of mass for this system. When
the masses of two bodies are replaced by the combined mass mN−1,N , the geometrical
center must be replaced by the center of mass xc.m.,N−1 [18], and given a tendency
towards this point, the Lagrangian may be formulated to be

LN−1 =
1

2
m
∑

i

N−2∑
k=1

ẋ2i,k +
1

2
mN−1,N

∑
i

ẋ2i,(N−1,N) +Gm2
N−2∑
k<ℓ

1

rkℓ
(41)

+GmmN−1,N

N−2∑
k=1

1

rk,(N−1,N)

+
∑

j

λ
j

[N−2∑
k=1

(xj,k(t)− xc.m,N−1(t)) + (xj,(N−1,N)(t)− xc.m.,N−1)

]
.

This averaging technique may be applied to the equations of motion derived from the La-
grangian, the nonlinear equations may be formulated with generalized derivatives which
yield estimates of deviations from the exact configurations and ensure existence and
convergence to the solution [25].

Since there exists one mass in the new configuration with a different magnitude,
the minimization of complexity would not coincide exactly with a tendency towards
the center of mass. Nevertheless, the process can be continued over extended intervals
progressing to a state of minimum complexity approximated by a tendency towards
the location x0,K near the center of mass xc.m.,K . Gradient transformation differential
equation algorithms have been developed for the minimization of a scalar function that
may be identified presently with the complexity [14].
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Iteration of the process yields the Lagrangian

LK =
1

2
m
∑

i

K−1∑
k=1

ẋ2i,k +
1

2
mK,...,N

∑
i

ẋ2i,(K,...,N) +Gm2
K−1∑
k<ℓ

1

rkℓ
(42)

+GmmK,...,N

K−1∑
k=1

1

rk,(K,...,N)

+
∑

j

λj

[K−1∑
k=1

(xj,k(t)− x0,K(t)) + (xj,(K,...,N) − x0,K(t))

]
,

where mK,...,N is the combined mass replacing the masses of N − K + 1 bodies,
{xi,(K,...,N)} is the location of center of mass for this system and xc.m.,K is the cen-
ter of mass derived from the mK,...,N and the remaining K − 1 masses.

When K = 3,

L3 =
1

2
m
∑

i

2∑
k=1

ẋ2i,k +
1

2
m3....,N

∑
i

ẋ2i,(3,...,N) +Gm2
2∑

k<ℓ

1

rkℓ
(43)

+Gmm3,...,N

K−1∑
k=1

1

rk,(3,...,N)

+
∑

j

λ
j

[ 2∑
k=1

(xj,k(t)− x0,3(t)) + (xj,(3,...,N) − x0,3(t))

]

with m3,...,N being the combined mass for N − 2 bodies, {xi,(3,...,N)} is the center of
mass for this system and x0,3 is an attractor for the configuration of minimal complexity
for the mass m3.,...,N and the two masses at x1 and x2, amongst those motions that are
allowed by the equations of motion. The equations derived from this Lagrangian would
be solvable.

Series solutions to the three-body problem [35] and the N-body problem [38] con-
verge sufficiently slowly, and approximations are necessary over brief time intervals. The
general instability of solutions in the nonhierarchical three-body problem, where there
is a stratification of the masses and distances, requires statistical methods for a the-
oretical solution. The method derived from Theorem 3 would allow the errors to be
reduced over longer time intervals, especially through stable repeating trajectories in-
cluding the Lagrange-Euler family of solutions for three masses [11,23]. The replacement
of two masses by another mass at the center of gravity resembles the description of the
restricted three-body problem as a two-point boundary value problem [30]. The ap-
proximation introduced in this theorem would increase in precision given a longer time
interval. It is necessary, therefore, to minimize the error for each replacement by the
center of mass.

The complexity minimization principle provides a method for determining final states
of classical systems. These motions in the three-body problem have been classified,
including existence of five relative equilibria representing planar central configuration [5].
The classification may be extended to the N-body problem qualitatively [28], and the
addition of a mass yields only finitely many relative equilibria [16], the finiteness of the
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number of equivalence classes of these critical points has not been determined generally
for N > 3. By the above theorem, however, it would follow that this number is finite for
equal masses since the calculation can be reduced to a three-body problem through an
iteration of an algorithm consisting of the replacement of the location of two masses by
the center of mass.

The simplification of calculations resulting from a minimization of complexity is sim-
ilar to that of the virial theorem, equating the average total kinetic energy with half
of the negative of the Newtonian potential energy [3]. The generalization of relative
equilibrium motions to G-equivariant motions yields a classification of planar three-body
motions by the symmetry groups. Given the action for a certain class of motions, its
minimization for a certain subset of motions can be determined. It is found, for example,
that the minimum of the action amongst motions with an isosceles symmetry of order
2 is achieved by the Lagrange configurations with a discrete invariance group of order
6 [36]. By contrast, the minimization of the action for choreographic motions is found
to be given by relative equilibrium motion corresponding to a regular n-gon. The char-
acterization of stable solutions to the N -body problem by symmetry has generated a
classification of the equilibria [7]. The minimization of the gravitational action [6] may
be supplemented by that of the complexity, which may be combined with integration
techniques to give a description of the dynamics [1].

4 Conclusion

The complexity of a path in curved space would be minimized by geodesics. Prime
geodesics are represented by closed curves on surfaces with handles. Consequently, it
follows that the geodesic trajectories in two dimensions could represent the propagation
of closed strings only on Riemann surfaces of arbitrary genus. The other curves would
be unstable against classical perturbations given a tendency toward the center.

The consistency of the dynamics of closed string theory and gravitation therefore
follows from the motion of free particles along geodesics on a metric which is a solution
to the gravitational field equations. The string effective field equations that tend to the
equations of general relativity coupled to matter in the classical limit represent conditions
for the quantum conformal invariance. Given the propagation of the quantum string
along the surface, the equilibrium configuration of the geodesic can be derived from the
variation of an action that includes a Lagrange multiplier term for the minimization
of complexity [9]. This auxiliary condition may be transferred from the worldsheet to
geodesic motion in the embedding space.

The dynamics of mass distributions in classical mechanics and general relativity then
can be described, given the condition of minimization of complexity. The initial motion
of N masses in a gravitational field may be formulated in terms of an (N − 1)-body
problem after two masses are replaced by the combined system at the center of mass.
The subsequent coordinates then can be computed by requiring the complexity of the
configuration to be minimized, which would include the classical limit of geodesic trajec-
tories in a manifold curved by a gravity. Iteration of this procedure eventually produces
a Lagrangian for the solvable three-body problem. Then the motion of the N bodies is
predicted by separating the combined masses and determining the time evolution of this
and subsequent configurations along the geodesics on the curved manifold representing
the gravitational field of the remaining masses.
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