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Abstract: In this paper, the dynamic behaviour of all the Lorenz related systems
is examined in a previously unexplored region of parameter space. The Lorenz, hid-
den chaotic, Chen and broken butterfly attractors can be generated at any desired
size, with different equilibria. We focus on the attractors smaller or larger than the
original one, we call them mini and maxi, and study their global dynamic behaviour
to demonstrate that they are similar or equivalent to the original chaotic attractor.
We finally examine their phase portraits, bifurcation diagrams, the largest Lyapunov
exponents and their multiscale entropy MSE1D. The analysis results show that the
mini, original and maxi Lorenz related attractors have the same MSE1D values and
are independent of the scale factor. We can conclude that the MSE1D analysis can
be used successfully to quantify the complexity of the dynamic response.

Keywords: attractors; bifucation; equilibria; Lyapunov; entropy.

Mathematics Subject Classification (2010): 37M22, 65P30, 70K42, 93D05,
94A17.

1 Introduction

Since the Lorenz system was discovered, chaos and many phenomena in nonlinear dy-
namic systems have been developed and studied. This allowed to explore more chaotic
systems and to discover new chaotic systems with a more complex dynamic behaviour.
Chen and Lü [1] found a similar but not equivalent chaotic attractor, the dual of the
Lorenz system. After that, Lü [2] reported a new chaotic system which is the transi-
tion between the Lorenz and Chen systems. [3] presented a comparative analysis of the
Lorenz and Chen systems in order to understand better what distinguishes them. It is
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notable that for certain values of the parameters, the classical Lorenz butterfly attractor
is broken into a symmetric pair of strange attractors [4].

Several complex dynamic systems, called multistable systems, are characterized by
the existence of many coexisting attractors. In this kind of systems, the trajectory will
eventually end in an attractor strongly influenced by the initial conditions. [5] introduced
a new category of chaotic systems with a line of equilibria. The basin of attraction may
intersect with the line of equilibria, in some sections. There are many examples of
chaotic systems with no equilibrium [6], one stable equilibrium [7], a single unstable
equilibrium [8], many equilibria, a line equilibrium [5], a surfaces of equilibria [9].

Most of the known chaotic attractors (like the Lorenz, Chua or Van der Pol ones)
are located in the neighbourhood of unstable fixed points. Such attractors are called
self-excited and their basins of attraction touch unstable equilibrium. The transient
trajectory of the attractor starts in the neighbourhood of this unstable equilibrium,
oscillates around and then traces it. The concept of hidden attractors has been suggested
by the discovery of unexpected attractor in Chua’s circuit. Recently, it has been shown
that multistability is connected with the occurrence of hidden attractors. In multistable
systems, particularly in the case of the existence of attractors with very small basins like
in [9], the switching from one attractor to another unexpected attractor can be observed.
Hidden attractors are important in engineering applications [10] because many physical
structures can have disastrous responses to perturbations, as the crash of aircraft YF-22
Boeing in 1992. Other applications of chaos theory such as synchronization [11], [12] and
chaos control of hyperchaotic financial model have become topics for research.

The Chen system, butterfly attractor broken into a symmetric pair and hidden at-
tractor are named the Lorenz related systems because they are derived from the Lorenz
system. We introduce a parameter γ in (2) describing these systems and study the in-
fluence of a variation of γ on the occurrence of such chaotic attractors and on their size.
In this paper, we find that the chaotic attractors occurred are mini and maxi attractors.
By changing the parameter γ, all the quantitative properties of the Chen, Lorenz, hidden
and broken butterfly attractors are preserved. This is why, the Lorenz related systems
are essentially the one-parameter systems.

The irregularity of time series can be studied through several measures, e.g., sample
entropy (SampEn1D), which improves the understanding of the nonlinear behaviour of
complex systems. SampEn1D is the measure of the degree of irregularity and disor-
der of finite length time series; it evaluates the probability of finding similar patterns.
SampEn1D is precisely the negative natural logarithm of the conditional probability that
two sequences similar for m points remain similar at the next point, where self-matches
are not included in the computation of the probability [13]. A lower value of SampEn1D

indicates many similarities in time-series. However, SampEn1D is not adapted for struc-
tures at the multiple time scale. This is why the multiscale entropy MSE1D has been
proposed to extend the computation of SampEn1D over a range of time scales. The
concept of multi-scale entropy is used to characterize the complexity of different research
fields [14]. Serving as a quantification parameter, MSE1D is based on the coarse-graining
procedure that uses a coarse-grained time series, as an average of the original data points
within not overlapping windows by increasing the scale factor τ .

In this paper, the dynamic behaviour of the Lorenz related systems is examined in
a previously unexplored region of parameter space. By simulation, the attractors can
be generated at different equilibria in the function of γ. Furthermore, the generated
attractors (smaller than the original attractor called mini and bigger called maxi) are
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similar to it but are not identical because of their chaotic behaviour. According to the
Jacobian matrix of the nonlinear system, the local stability of the generated attractors is
studied. In order to study the global dynamic behaviour, firstly, bifurcation diagrams and
Lyapunov exponents are used to investigate the presence of chaos in the Chen system.
The simulations reveal the same value of the largest Lyapunov exponent of the attractor’s
size. Secondly, multiscale entropy MSE1D is proposed to evaluate the complexity of
these mini, original and maxi chaotic attractors. MSE1D is applied to different time
series of the chaotic attractors to determine their irregularity over a range of temporal
scales. The results show that the mini, original and maxi chaotic attractors have the
same irregularity values for all time scales (i.e., the same complexity of the time series).
More precisely, all the quantitative properties are preserved.

2 The Lorenz Related Systems

The Lorenz related systems are described by the following set of differential equations:
ẋ = σ(y − x),

ẏ = ρx− αy − xz,

ż = xy − βz.

(1)

Lorenz found the first canonical chaotic attractor in a three-dimensional autonomous
system. The usual values of the classical Lorenz system parameters are σ = 10, ρ =
28, α = 1, β = 8/3; this produces a chaotic attractor with a butterfly shape. Then, a
similar looking but nonequivalent chaotic attractor was found out, which is the dual of
the Lorenz system. Moreover, both attractors occur for different values of the parameters
(σ = 35, ρ = -7, α = -28, β = 3). The work of Lü [2] introduced a unified chaotic system
(Lü system) which bridges the gap between the Lorenz system and the Chen system. A
hidden chaotic attractor was illustrated in the classical Lorenz system depending on the
values of both system parameters and initial conditions (σ = 4, ρ = 29, α = 1, β = 2).
For some values of the parameters (σ = 0.12, ρ = 0, α = 1, β = -0.6), Li and Sprott [4]
broke the classical butterfly attractor into a symmetric pair of strange attractors. In this
paper, we introduce the parameter γ in (1)

ẋ = σ(y − x),

ẏ = ρx− αy − γxz,

ż = xy − βz.

(2)

Special sides of the system (2) are then pointed out: the attractor’s size depends on the
variation of the parameter γ in system (2). γ ∈(0,1) leads to a chaotic attractor (called
maxi) with a larger size than the original chaotic attractor of system (1) (i.e., for γ =
1). Similarly, γ > 1 leads to a chaotic attractor (called mini) with a smaller size than
the chaotic attractor of (1).

3 MSE1D Algorithm

Complexity measures are important to understand and analyze systems with one dimen-
sional data. One of the most well-known complexity measures is the multiscale sample
entropy MSE1D. For the time series, the computation of MSE1D is defined as the
following two steps:
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– The first step is the coarse-graining (average) procedure, which consists in deriving
a set of time series of the system dynamics on different time scales. Given a discrete time
series of the form x = {x1, x2, . . ., xi, . . ., xN}, the coarse-grained time series {y(τ)}, at
the scale τ , is

y
(τ)
j =

1

τ

iτ∑
i=(j−1)τ+1

xi, (3)

where 1 ≤ j ≤ ⌊N/τ⌋ and τ is the scale factor. If the scale factor τ is equal to one, the
coarse-grained time series y(1) corresponds to the original time series x.

– The second step computes the sample entropy for each coarse-grained time series
as the negative of the natural logarithm of the conditional probability that the sequences
for m consecutive data points remain close to each other when one more point is added

to each sequence SampEn1D(x,m, r) = − ln Am(r)
Bm(r) , where Am(r) is the probability that

two sequences will match for m + 1 points, whereas Bm(r) is the probability that two
sequences will match for m points. They are computed as

Am(r) =
1

N −m

N−m∑
i=1

Am
i (r) and Bm(r) =

1

N −m

N−m∑
i=1

Bm
i (r). (4)

Am
i (r) is 1

N−m−1 times the number of vectors xm+1(j) within r of xm+1(i), where j goes

from 1 to N −m and j ̸= i to exclude self-matches. Bm
i (r) is 1

N−m−1 times the number
of vectors xm(j) within r of xm(i), where j goes from 1 to N − m and j ̸= i for the
same reason as above. The distance d between two vectors is defined as the maximum
absolute difference of their corresponding scalar components. MSE1D can be written

as MSE1D(x, τ,m, r) = − ln
Am

τ (r)
Bm

τ (r) , where Am
τ (r) and Bm

τ (r) are calculated from the

coarse-grained time series at the scale factor τ .

4 Equilibria and Stability

The system equilibria (2) can be found by solving the equations ẋ = ẏ = ż = 0. This
leads to 

x− y = 0,

ρx− αy − γxz = 0,

xy − βz = 0.

(5)

The first equation of the system (5) yields immediately x = y, so that the third one
gives z = x2/β. Therefore, the second equation leads to z = (ρ− α)/γ. There are three
equilibria: X0 = (0, 0, 0),

X∗
+ =

(
+

√
(ρ− α)β

γ
,+

√
(ρ− α)β

γ
,
ρ− α

γ

)
, (6)

X∗
− =

(
−

√
(ρ− α)β

γ
,−

√
(ρ− α)β

γ
,
ρ− α

γ

)
. (7)

The three equilibrium points are indicated in Table 1, Table 2 and Table 3. The equilib-
rium points X∗ depend on γ. For a variation of this parameter γ, they take place in the
plane x = y and on the precise curve z = x2/β at (ρ− α)/γ.
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Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3) (4, 29, 1, 2) (0.12, 0, 1, -0.6) (35, -7, -28, 3)

X0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
X∗

+ (8.48, 8.48, 27) (7.48, 7.48, 28) (0.77, 0.77, -1) (7.94, 7.94, 21)
X∗

− (-8.48, -8.48, 27) (-7.48, -7.48, 28) (-0.77, -0.77, -1) (-7.94, -7.94, 21)

Table 1: Three equilibrium points of the Lorenz related systems (σ, ρ, α, β, γ = 1).

Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3) (4, 29, 1, 2) (0.12, 0, 1, -0.6) (35, -7, -28, 3)

X0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
X∗

+ (4.24, 4.24, 6.75) (3.74, 3.74, 7) (0.4, 0.4, -0.25) (3.97, 3.97, 5.2)
X∗

− (-4.24, -4.24, 6.75) (-3.74, -3.74, 7) (-0.4, -0.4, -0.25) (-3.97, -3.97, 5.2)

Table 2: Three equilibrium points of the Lorenz related systems (σ, ρ, α, β, γ = 4).

Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3) (4, 29, 1, 2) (0.12, 0, 1, -0.6) (35, -7, -28, 3)

X0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
X∗

+ (13.4, 13.4, 67.5) (11.8, 11.8, 70) (1.2, 1.2, -2.5) (12.5, 12.5, 52.5)
X∗

− (-13.4, -13.4, 67.5) (-11.8, -11.8, 70) (-1.2, -1.2, -2.5) (-12.5, -12.5, 52.5)

Table 3: Three equilibrium points of the Lorenz related systems (σ, ρ, α, β, γ = 0.4).

Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3, 1) (4, 29, 1, 2, 1) (0.12, 0, 1, -0.6, 1) (35, -7, -28, 3, 1)

λ1 -8/3 -2 0.6 -3
λ2 1.4462 8.3743 -0.12 23.836
λ3 -12.4462 -13.3743 -1 -30.835

Table 4: Three eigenvalues of the Lorenz related systems (σ, ρ, α, β, γ) for X0.

Linearizing (1) around X0 provides an eigenvalue λ1 = −β along with the following
characteristic equation: λ2 + (α + σ) · λ + σ · (α − ρ) = 0. The two eigenvalues of this
equation are indicated in Table 4, for the usual values of σ, ρ, α, β, γ. At the equilibrium
point X0, there are one positive real eigenvalue and two negative real eigenvalues. X0

is therefore an unstable saddle point for the classical Lorenz, hidden, Chen and broken
attractors. In order to study the stability of X∗, the Jacobian JX∗ is computed:

JX∗ =

 −σ σ 0
ρ− γz∗ −α −γx∗

y∗ x∗ −β

 . (8)
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Linearizing (1) around X∗ yields the following characteristic equation:

λI − JX∗ =

 λ+ σ −σ 0

−α λ+ α ±
√
(ρ− α)βγ

∓
√

(ρ−α)β
γ ∓

√
(ρ−α)β

γ λ+ β

 (9)

with the characteristic polynomial P (λ) = λ3+(α+β+σ)λ2+(ρ+σ)βλ+2βσ(ρ−α). This
characteristic polynomial is equivalent to P (λ) = λ3+Aλ2+Bλ+C, where A = α+β+σ,
B = (ρ + σ)β, C = 2βσ(ρ − α). The exact values of the eigenvalues λ1, λ2, λ3 can
be determined by setting λ = −A/3 + Λ. This yields P (Λ) = Λ3 + pΛ + q, where
p = −A2/3 +B and q = (2A3/27)− (AB/3) + C. This third order polynomial in Λ can
be solved using Cardan’s formula, thus giving the unique real eigenvalue

λ1 = −A

3
+ ΛR = −A

3
+

(
−q

2
+

√
q2

4
+

p3

27

)1/3

+

(
−q

2
−
√

q2

4
+

p3

27

)1/3

, (10)

along with two complex conjugate eigenvalues

λ2,3 = −A

3
− ΛR

2
± i

2

√
4p+ 3(ΛR)2. (11)

The three eigenvalues of equilibrium points X∗ of the classical Lorenz, Chen and broken
attractors are indicated in Table 5. Since the pair of complex conjugate eigenvalues has
a positive real part, the equilibrium points X∗

± are unstable. For the equilibrium points
X∗

± of the hidden attractor, λ1 is real and λ2,3 are complex conjugates, all with negative
real parts. Therefore, the equilibrium points X∗

± are stable focus-node points.

Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3, 1) (4, 29, 1, 2, 1) (0.12, 0, 1, -0.6, 1) (35, -7, -28, 3, 1)

λ1 -13.8546 -6.8764 -0.8212 -18.4280
λ2 0.094 + i · 10.19 −0.062 + i · 8.07 0.1506 + i · 0.39 4.214 + i · 14.88
λ3 0.094− i · 10.19 −0.062− i · 8.07 0.1506− i · 0.39 4.214− i · 14.88

Table 5: Three eigenvalues of the Lorenz related systems (σ, ρ, α, β, γ) for X∗
±.

5 Numerical Simulations

5.1 One-parameter Lorenz related systems

Let study the Lorenz related systems, described by (2), where σ, ρ, α, β, γ are real
parameters. Typically, when σ = 10, ρ = 28, α = 1; β = 8/3 and γ = 1, the system
is chaotic. Figure 1(a) is a graphical representation of the unique attractor on the
x − y plane using the Matlab plot(x, y) function. The magnitudes of x, y and z are
xm = max(x) − min(x), ym = max(y) − min(y), zm = max(z) − min(z). Now, let us
consider the following transformation of variables:

x̄ =
x

k
, ȳ =

y

k
, z̄ =

z

k
. (12)



72 C. MOREL, R. C. VLAD AND J. -Y. MOREL

The Lorenz related system (2) can be reformulated via (12) as
˙̄x = σ(ȳ − x̄),

˙̄y = ρx̄− αȳ − (kγ)x̄z̄,

˙̄z = kx̄ȳ − βz̄.

(13)

After redefining x, y and z, the resulting system is identical to (2), but with the first
term of the third equation multiplied by k. The Lorenz attractor is represented in Figure
1(b) on the x − y plane with γ = 1, k = 0.4 (Matlab plot(x̄, ȳ)). It can be observed
that the x − y representations of the systems (2) and (13) differ only by a scale factor.
Furthermore, there is no scale difference with plot(kx̄, kȳ): the representation of the
Lorenz attractor on x−y is also identical (visual aspect and scale). Let us take again the
system (2), where γ takes the value k. The unique attractor is represented graphically
in Figure 1(c) on the x − y plane using plot(x, y). The magnitudes of x, y and z are
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Figure 1: The Lorenz attractor of system (2) with σ = 10, ρ = 28, α = 1, β = 8/3. (a) γ =
1, (b) γ = 1 and k = 0.4, (c) γ = 0.4.

xm2 = max(x) − min(x), ym2 = max(y) − min(y), zm2 = max(z) − min(z). The x − y
representation of system (2) with γ = 1 and γ = 0.4 is identical, except for a scale factor.
If the variables x, y and z are multiplied by xm, ym and zm and divided by xm2, ym2

and zm2 with plot(x · xm/xm2, y · ym/ym2), there is no more a scale difference. The two
representations of the Lorenz attractor on x−y and y−z are also identical (visual aspect
and scale).

5.2 Lorenz attractors

Figure 2(a) shows the original Lorenz attractor (grey) on the space x − y − z with the
initial conditions (x0, x0, 3 ∗ x0 ∗ x0/8) = (1,1,3/8) and γ = 1. The result is the self-
excited chaotic attractor. With a variation of γ, a mini and a maxi self-excited chaotic
attractors appear in a similar manner as the well-known Lorenz attractor, but their sizes
are different (Figure 2(a)). For γ ∈(0,1), a maxi self-excited chaotic red attractor is
generated and if γ > 1, a mini self-excited chaotic blue attractor is generated. All three
attractors, mini, original and maxi self-excited chaotic attractors, have two unstable
equilibria X∗ on the green curve z = x2/β. With the parameter γ, the height of the
attractors is selected on this curve, as well as their size. The positive Lyapunov exponent
in Table 6 for the mini and maxi self-excited chaotic attractors confirms their chaoticity.
The mini and maxi chaotic attractors have different sizes and their magnitudes depend on
the parameter γ. The mini and maxi chaotic attractors are not identical with the original
chaotic attractor because their chaotic behaviour differs. In order to prove the similarity
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and the equivalence with the original chaotic attractor, the use of multiscale entropy
MSE1D is proposed. Additionally, MSE1D is sensitive to signal amplitude changes. A
common practice to address this issue is to normalize the signal amplitude. The time
series x(t) is rescaled along the signal amplitude axis with a factor, thus normalising
the magnitude of the mini and maxi Lorenz attractors to the original Lorenz attractor.
MSE1D is applied to different time series of the chaotic attractors to determine their
entropy over a range of temporal scales from 1 to 20. The results show (Figure 2(b))
that the MSE1D increases with the variation of the scale factor for the mini, original
and maxi chaotic attractors and that they have the same MSE1D value. This indicates
that the complexity of these attractors is at the same level.

(a) Projection of phase portrait on space x− y − z.
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(b) MSE1D.

Figure 2: (a) The mini (γ = 4, blue), original (γ = 1, gray) and maxi (γ = 0.4, red) Lorenz
attractors with σ = 10, ρ = 28, α = 1, β = 8/3; (b) MSE1D of the time series of Lorenz
attractors for different scales.

Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3) (4, 29, 1, 2) (0.12, 0, 1, -0.6) (35, -7, -28, 3)

0.8878 0.6537 0.0497 2.0499
γ = 0.4 0.0029 0.0001 0.0009 0.0078

-14.5538 -7.6539 -0.57064 -12.0535
0.8904 0.6516 0.037 2.0684

γ = 1 0.0018 0.0005 -0.0025 0.0015
-14.555 -7.6522 -0.5545 -12.0657
0.8835 0.6691 0.0548 2.0243

γ = 4 -0.00498 0.00004 0.0005 0.0002
-14.5513 -7.6691 -0.668 -12.021

Table 6: The Lyapunov exponents of the Lorenz related systems (σ, ρ, α, β).

5.3 Hidden chaotic attractors

Figure 3(a) illustrates a hidden chaotic attractor in grey on the space x− y− z using the
initial conditions (x0, y0, z0) = (5,5,5) and γ = 1. This attractor has the equilibria X∗
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on the green curve z = x2/β. As in the previous case, the variation of γ can generate a
mini and a maxi hidden chaotic attractors. For γ ∈(0,1), a maxi hidden chaotic attractor
is generated and if γ > 1, a mini hidden chaotic attractor is generated. The mini and
maxi hidden attractors can be generated at any height on the z axis in the function of γ.
As the parameter γ varies, an attractor appears with a periodic motion around the stable
equilibrium points X∗. In this case, the rise of γ is accompanied by transformations of
the attractors’size. The higher γ, the smaller the attractor (Figure 5). As we can see
in Table 6, the Lyapunov exponents of the mini and maxi hidden chaotic attractors are
positive. MSE1D is now applied to different time series of the hidden chaotic attractor

(a) Projection of phase portrait on space x− y − z.
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(b) MSE1D.

Figure 3: (a) The mini (γ = 4, blue), original (γ = 1, gray) and maxi (γ = 0.4, red) hidden
chaotic attractors with σ = 4, ρ = 29, α = 1, β = 2, with (x0, y0, z0) = (5,5,5); (b) MSE1D of
the time series of hidden chaotic attractors for different scales τ .

and of the one point attractor to qualify entropy over a range of temporal scales for τ =
1 to 20. The mini, original and maxi chaotic attractors have the same MSE1D values
for the small time scales (Figure 3(b)); very small differences appear for the large time
scales. MSE1D values of the mini, original and maxi one point attractors are identical at
the begining of the scale, and with small differences in the end of the scale, as in Figure
3(b). The complexity of the chaotic sequences tends to be uniform, independently of γ.

5.4 Broken butterfly attractors

Figure 4(a) illustrates the broken butterfly attractors in grey on the space x−y, where two
strange attractors coexist ((x0, y0, z0) = (-0.8,3,0), (x0, y0, z0) = (0.8,-3,0) and γ = 1).
Starting from the same initial conditions, for γ = 0.4, two strange maxi broken butterfly
chaotic attractors are generated. If γ = 4, two other strange mini broken butterfly chaotic
attractors are also generated. The positive Lyapunov exponents of the mini and maxi
self-excited chaotic butterfly attractors confirm their chaoticity. The magnitudes of the
broken butterfly chaotic attractors of the mini (γ = 4), original (γ = 1) and maxi (γ =
0.4) are different: they vary from 1 for the mini broken butterfly attractor to 4 for the
maxi broken butterfly attractor on the x-axis. The irregularity values MSE1D of the
three broken butterfly attractors are identical for the small time scales, while very small
differences appear for the large time scales, as shown in Figure 4(b).
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(a) Coexisting strange attractors on the x−y plane
for γ = 0.4, 1, 4 and two symmetric initial condi-
tions (∓0.8, ±3, 0).
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(b) MSE1D of the time series of broken attractors
for different scales τ .

Figure 4: Broken attractors with σ = 0.12, ρ = 0, α = 1, β = -0.6.

5.5 Chen chaotic attractors

Figure 5(b) illustrates the Chen attractor in grey on tri-dimensional space with γ =
1. For γ = 0.4, a maxi Chen red attractor is generated (Figure 5(a)) and if γ = 4, a
mini Chen blue attractor is generated (Figure 5(c)). A graphical comparison is given in
Figures 5(a), (b), (c), where the maxi, original and mini Chen attractors are represented
on the y−z plane. The mini and maxi Chen attractors are visually similar to the original
Chen attractor (Figure 5(b)), but not identical. The chaotic behaviour of all attractors
is proved by the positive Lyapunov exponents in Table 6.

(a) Maxi attractor γ = 0.4. (b) Original attractor γ = 1. (c) Mini attractor γ = 4.

Figure 5: The Chen chaotic attractor for σ = 4, ρ = 29, α = 1, β = 2 with (x0, y0, z0) = (0.1,
0, 0).

As shown in Figures 5(c), (b), (a), the magnitudes of the Chen attractors of the mini
(γ = 4), original (γ = 1) and maxi (γ = 0.4) attractors are different. The magnitude
of the original attractor is 40 (Figure 6 (a)), but for the mini and maxi attractors, the
magnitudes are 10 and 100, respectively. The multiscale entropy MSE1D is employed
to quantify the complexity of the time series of mini and maxi Chen attractors over the
same scales for τ = 1 to 20 with the original Chen attractor: the mini, original and maxi
chaotic attractors have the same MSE1D (Figure 6(b)).
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(a) Time series of x(t) for γ = 1.
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(b) MSE1D of the time series of the Chen at-
tractors for different scales.

Figure 6: The Chen attractors with the parameters σ = 35, ρ = -7, α = -28, β = 3.

6 Bifurcation Diagrams, Lyapunov Exponents and Multiscale Entropy
MSE1D Analysis of Chen Attractors

In the previous section, three chaotic Chen attractors were presented for a unique value
of the parameter β = 3. In this section, we are interested in the dynamic behaviour of
Chen system for a large variation of this parameter β changing gradually from the lower
to the upper values of β = [1, 7]. This system can generate chaotic dynamic behaviours
in a wide region of β. Figures 7, 8 and 9 show the bifurcation diagrams and the largest
Lyapunov exponent of the Chen system (with the parameters σ = 35, ρ = -7, α = -28)
for γ = 0.4, 1 and 4. In order to prove the similarity and the equivalence of different size
Chen attractors (γ > 1 or γ < 1) with the original Chen attractor (γ = 1), the MSE1D

is applied to different time series of the chaotic attractors to measure their degree of
irregularity and disorder. It evaluates the probability of finding similar patterns.

Using the Poincaré map method, the bifurcation values are computed from the time
series x(t), against the bifurcation parameter β. The three bifurcation diagrams have
an almost identical structure apart from a scale dimensioning on the ordered axis. The
maxi, original and mini Chen chaotic attractors depend on the amplitude of the variables
x(t), y(t) and z(t), where x(t) is involved in the bifurcation diagrams. The attractors
have a higher size at a greater amplitude of bifurcation diagrams. The largest Lyapunov
exponent is calculated to analyze the dynamic Chen system for x(t). It can be observed
that the largest Lyapunov exponent values (Figures 7(b), 8(b) and 9(b)) properly reflect
the behaviour of the Chen system presented in the bifurcation diagrams (Figures 7(a),
8(a) and 9(a)). Furthermore, these figures show the same bifurcation scenario and the
same Lyapunov exponents for the same values of β and independently of γ.

Additionally, MSE1D is sensitive to the signal amplitude changes. A common prac-
tice to address this issue is to normalize the signal amplitude. The time series x(t) is
rescaled along the signal amplitude axis with a factor, thus normalising the magnitude
of the mini and maxi Chen attractors to the original Chen attractor. The MSE1D is
applied to determine their entropy over a scale τ from 1 to 20. The complexity of the
Chen system is analyzed by varying the system parameter β from 1 to 7 with a 0.01
step. The results show (Fig. 10) that the mini, original and maxi chaotic attractors have
almost the same MSE1D values for all time scales. For the region β ∈ [5, 7], the Chen
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Figure 7: (a) The bifurcation diagram and (b) the largest Lyapunov exponent plotted against
the bifurcation parameter β with σ = 35, α = 28 and γ = 0.4.
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Figure 8: (a) The bifurcation diagram and (b) the largest Lyapunov exponent plotted against
the bifurcation parameter β with σ = 35, α = 28 and γ = 1.
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Figure 9: (a) The bifurcation diagram and (b) the largest Lyapunov exponent plotted against
the bifurcation parameter β with σ = 35, α = 28 and γ = 4.
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system behaves as a limit cycle attractor, with a simplest behaviour of x. However,
when the largest Lyapunov exponent of the system is approximately equal to zero, it
corresponds to the oscillations before the first bifurcation point. More specifically, the
MSE1D values of the mini, original and maxi periodic attractors are zero (Fig. 10), which
indicates a lower complexity. However, the MSE1D surface begins to contain nonzero
values after the first bifurcation point. In the range, after the first bifurcation point and
before the second bifurcation, the system has an irregular behaviour. After this second
bifurcation, the complexity of the oscillations continues to rise. It should be pointed out
that for β ∈ [3.69, 3.8], the Chen system has an abundant dynamic behaviour. For this
tight interval of β, the original attractor sometimes has the same behaviour as the mini
attractor or the maxi attractor or, occasionally, both. For β = 3.73, Fig. 11 shows the
phase portraits of three attractors for γ = 0.4, 1 and 4. There is a similarity between
the two first orbits, but not with the last one. An interesting observation is that the
doubling-period bifurcations depend on the parameter γ. Decreasing more β = 3.72, the
periodic orbit of Fig. 11 (a), (b) evolves into the behaviour shown in Fig. 12 (a), (b). In-
deed, the Chen system represents the transition from one behaviour to another when the
parameter β is slowly varied. Furthermore, the generated mini and maxi attractors are
similar to the original attractor, but they have different sizes. The qualitative properties
are preserved independently of γ. As shown in Figs. 7, 8 and 9, the Chen system can
evolve into the chaotic attractors when β ∈ [1, 3.69]. The positive Lyapunov exponents
for the mini, original and maxi Chen attractors confirm their chaoticity. Compared with
the Lyapunov exponents and bifurcation diagrams, the MSE1D complexities are con-
sistent, which means that complexity can also reflect the chaotic characteristics of the
Chen system. MSE1D has small values for the periodic behaviour and increases when
the attractor moves from a period to chaos, as in Figure 10. According to the above
analysis, the complexity of different attractors has the same level independently of γ and
their sizes (the same maximum Lyapunov exponent values, the same MSE1D values).
The complexity of the mini (γ = 4) and maxi (γ = 0.4) attractors is similar to that of
the original attractors (γ = 1). Moreover, Fig. 13 shows that the complexity decreases
with β in the sense of the MSE1D values. To improve the understanding of the Chen
attractor behaviour for small values of β < 3 and for a scale factor τ = 1 (Figure 13),
the relative error of MSE1D is calculated. It is very useful to compare attractors of
different size to the reference one (the original attractor). This alternative is also used to
measure the complexity of attractors that visually look like the original attractor. The
accuracy of attractors of different size determines how far this one is from the original
attractor. It is often helpful to present numbers as percentages as this gives a sense of
proportion. The relative error of MSE1D of the mini and maxi Chen attrators reported
to the original Chen attractor is based on the absolute error of the MSE1D. Figure 14
(a) shows the absolute error of the MSE1D of the Chen system with γ = 0.4 compared
to the MSE1D of the original Chen system with γ = 1. A similar figure (Fig. 14(b))
is obtained from the difference between the MSE1D of the Chen system with γ = 4
and the MSE1D of the original Chen system with γ = 1. Figure 14 shows a very small
absolute error of 0.005 for the chaotic behaviour and 0 for the periodic behaviour. The
mean value of the absolute error of MSE1D is zero for the periodic attractor (β > 4)
and increases to 0.0027, respectively, 0.0023, when the system is in the route to chaos (β
<3). Figure 15 (a), (b) shows the relative error of MSE1D for the Chen attractors with
γ = 0.4, γ = 4 compared to the MSE1D of the Chen attractor with γ = 1. The MSE1D

mean relative error is zero for the periodic attractor (β > 4) and increases to 6.65 %,
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(a) γ = 0.4 (b) γ = 1 (c) γ = 4

Figure 10: MSE1D of x(t) for different scales and for σ = 35, α = 28, β = 3.

(a) γ = 0.4 (b) γ = 1 (c) γ = 4

Figure 11: The phase portraits of the chaotic attractors for σ = 35, α = 28, β = 3.73.

respectively, 5.73 %, when the system is in the route to chaos (β <3), as in Figure 15
(a), respectively, (b). In fact, the rise of complexity is significant to MSE1D for τ > 1
and not for τ = 1. Quantitatively, the relative error of MSE1D for the Chen attractors
with γ = 0.4 and γ = 4 compared to the MSE1D for the original Chen attractor with γ
= 1 is very small, almost insignificant. We can finally conclude that the MSE1D values
depict that the complexity of chaotic systems is independent of the size of attractors and
matches well with the largest Lyapunov exponent and the bifurcation diagram.

7 Conclusions

In this paper, the dynamic behaviour of the Lorenz system is examined in a previously
unexplored region of the parameter γ. The variation of this parameter reveals that
the chaotic Lorenz related systems can generate strange attractors of different sizes.
The use of bifurcation diagrams and the Lyapunov exponents is proposed to study the
global dynamic behaviour of the Chen attractor. Through the theoretical analysis and
mathematical simulations, the multiscale entropy MSE1D of different time series under
the γ variation parameter is calculated, qualifying the chaotic attractors’ irregularity.
The complexity of the chaotic sequences tends to be uniform, independent of the γ
variation. It is noticeable that all their quantitative properties are preserved for any value
of γ. Finally, throught the MSE1D, the complexity of chaotic systems is independent
of the size of attractors and matches well with the largest Lyapunov exponents and
bifurcation diagrams.
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(a) γ = 0.4 (b) γ = 1 (c) γ = 4

Figure 12: The phase portraits of the chaotic attractors for σ = 35, α = 28, β = 3.72.
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(a) γ = 0.4
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(b) γ = 1
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(c) γ = 4

Figure 13: MSE1D of x(t) of the Chen attractor for τ = 1, σ = 35, α = 28.
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(a) γ = 0.4
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(b) γ = 4

Figure 14: (a) The absolute error of MSE1D for the Chen attractor with γ = 0.4 and γ = 4
compared to the MSE1D with γ = 1.
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(a) γ = 0.4
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(b) γ = 4

Figure 15: The relative error of MSE1D for the Chen attractor with γ = 0.4 and γ = 4
compared to the MSE1D with γ = 1.
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