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Abstract: The question of the equivalence of various Lorenz-like systems has been
recently discussed, it has been found that with the help of various transformations it
is possible to reduce such systems to the same form. In this paper, we show that the
Lorenz system and the Li system are topologically equivalent. However, in a recent
work it was shown that there is a homothetic transformation which converts the Li
system into the Lorenz system and, therefore, all the dynamical behavior exhibited
by the Li system is also present in the Lorenz system. Consequently, the results
obtained in the papers devoted to the study of the Li system unnecessarily duplicate
the scientific literature, while it can be trivially derived from the corresponding results
on the Lorenz system.
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1 Introduction

In 1963, E.N. Lorenz [9] discovered chaos in a simple system of three autonomous ordinary
differential equations  X ′ = σ(Y −X),

Y ′ = ρX − Y −XZ,
Z ′ = −βZ +XY,

(1)

where σ, ρ and β are real parameters, the system is chaotic on a small subset {σ, ρ, β} =

{10, 28, 8
3
}. The Lorenz system is the first mathematical and physical model of chaos.

Since the introduction of the Lorenz system, which attracted much attention from re-
search teams, many other chaotic systems (generally called Lorenz-like systems) have
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been analyzed (see, for instance, [13–18]). Among them, we mainly focus on the au-
tonomous chaotic system proposed by X.F. Li et al. [15], which has been the subject of
some study (see, for example, [20–22]).

For several years great effort has been devoted to the study of the question of the
equivalence of various Lorenz-like systems, as discussed in [1–8], thus, with the help of
various transformations, it is possible to reduce such systems to the same form. However,
Algaba et al. showed that the Chen and the Lü systems are a special case of the Lorenz
system [1,2].

The purpose of this paper is to show that the Lorenz system and the Li system
are topologically equivalent. Moreover, in [8] it was shown that there is a homothetic
transformation which converts the Li system into the Lorenz system.

The Li system has the following form [15]: x′ = −ax+ ay,
y′ = −y + xz,

z′ = b− cz − xy,
(2)

where a, b and c are positive real parameters. With the following transformation:

x = X, y = Y, z = −Z +
b

c
, (c ̸= 0) , (3)

the system (2) becomes 
X ′ = a (Y −X) ,

Y ′ = b
cX − Y −XZ,

Z ′ = −cZ +XY.
(4)

Note that system (4) corresponds to the Lorenz system with parameters

σ = a, ρ =
b

c
, β = c. (5)

Therefore, if c ̸= 0, the Li system is equivalent to the Lorenz system. Thus, for each
Lorenz system, there are infinitely many Li systems, parameterized by c. In this case,
the two systems are homothetic copies, i.e., all the dynamics found in the Li system with
c ̸= 0 is also present in the Lorenz system.

Moreover, if c = 0 and a ̸= 0 (for a = 0, the Li system is linear and then trivially
solvable), with the linear scaling

x = aX, y = aY, z = −aZ, τ = at,

the Li system is transformed into the system
X ′ = −X + Y,

Y ′ = − 1
aY −XZ,

Z ′ = − b
a2 +XY.

(6)

Consequently, the system (6) is a particular case of a system, which has been proposed
and analysed by Pehlivan and Uyaroğlu [19].

2 Dynamics Found in the Lorenz and the Li Systems

In this section, we give some examples to illustrate how we can trivially deduce the
dynamics that appears in the Li system from the dynamics found in the Lorenz system.
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2.1 Equilibria and local bifurcations

It is clear that the Lorenz system has three equilibrium points if β(ρ− 1) > 0, i.e.,

P1(0, 0, 0), P2(−
√

β(ρ− 1),−
√
β(ρ− 1), ρ− 1),

P3(
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1).

Simply use equations (3) and (5) to obtain that the corresponding equilibrium points
of the Li system are

Q1(0, 0, b/c), Q2(
√
b− c,

√
b− c, 1),

Q3(−
√
b− c,−

√
b− c, 1),

when b− c > 0.
Denote the vector fields on the right-hand sides of (1) and (2) by

−→
U (X,Y, Z) and

−→
V (x, y, z), respectively. It is clear that the Jacobian of (1) is

D
−→
U (X,Y, Z) =

 −σ σ 0
ρ− Z −1 −X
Y X −β

 .

Simply use equations (3) and (5) to obtain that the corresponding Jacobian of the system
(2) is

D
−→
V (x, y, z) =

 −a a 0
z −1 −x
y x −c

 .

For ρ > 1, the origin is unstable. A pitchfork bifurcation of equilibria in the Lorenz
system appears for β(ρ − 1) = 0, and, consequently, a pitchfork bifurcation in the Li
system occurs when b = c. The Hopf bifurcation of the nontrivial equilibria occurs in the
Lorenz system at

ρ =
σ(σ + β + 3)

σ − β − 1
≡ ρh > 1, σ − β − 1 > 0, (7)

using equations (5), that corresponds to the Hopf bifurcation of the nontrivial equilibria
in the Li system [15]

bh =
ac(a+ c+ 3)

a− c− 1
, a > c+ 1.

In [15], the following statement appears: “If we fix c = 1 and vary a and b, we can
observe a continuous Hopf bifurcation, as shown in Fig.1. It is similar to that of the
Lorenz and Chen systems, all of them have quadratic functions of parameter a”. This
fact is very easy to obtain in the dynamic of the Lorenz system: if we use equations (5)
in the expression (7) with β = 1.

2.2 Invariant algebraic surfaces

Invariant algebraic surfaces in the Lorenz system were discussed in [10–12]. From the in-
variant algebraic surfaces of the Lorenz system, using equations (3) and (5), the invariant
algebraic surfaces of the Li system for c ̸= 0 are trivially obtained.
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The Lorenz system, when β = 2σ, has the invariant algebraic surface

X2 − 2σZ,

using equations (3) and (5) we get, when c = 2a, the invariant algebraic surface of the
Li system is written as

2ax2 + 4a2z − 2ab.

The Lorenz system, when β = 6σ− 2 and ρ = 2σ− 1, has the invariant algebraic surface

X4 − 4σX2Z − 4σ2Y 2 + 8ρσXY + 4ρ2X2,

using equations (3) and (5) we get, when c = 6a − 2 and b = 2ac − c, the invariant
algebraic surface of the Li system is written as

c2x4 + 4ac2x2z +
(
4b2 − 4abc

)
x2 − 4a2c2y2 + 8abcxy.

The Lorenz system, when β = 1 and ρ = 0, has the invariant algebraic surface

Y 2 + Z2,

using equations (3) and (5) we get, when b = 0 and c = 1, the Li system has the invariant
algebraic surface

y2 + z2.

The Lorenz system, when β = 4 and σ = 1, has the invariant algebraic surface

X4 − 4X2Z − 4Y 2 − 8XY + 4ρX2 − 16 (1− ρ)Z,

using equations (3) and (5) we get, when c = 4 and a = 1, the Li system has the invariant
algebraic surface

x4 + 4x2z − 4y2 − 8xy − (4− b) (−4z + b).

The Lorenz system, when β = 1 and σ = 1, has the invariant algebraic surface
 

 

Figure 1: A chaotic attractor that exists in the Li system for a = 5, b = 16, c = 1.
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Figure 2: A chaotic attractor that exists in the Lorenz system for σ = 5, ρ = 16, β = 1.

 

Figure 3: Projections onto two coordinate planes of a chaotic attractor that exists in the Li
system for a = 5, b = 115, c = 1.

Y 2 + Z2 − ρX2,

using equations (3) and (5) we get, when c = 1 and a = 1, the Li system has the invariant
algebraic surface

y2 + z2 − bx2 − 2bz + b2.

The case when β = 0 and σ = 1
3 has no companion case in the Li system, is the case

when c = 0.

2.3 Chaotic attractors

The celebrated method developed by Tucker to demonstrate the existence of Lorenz’s
attractor can also be used to prove the existence of Li’s attractor. We illustrate now
the equivalence between both dynamical systems drawing a chaotic attractor. Thus, in
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Figure 4: Projections onto two coordinate planes of a chaotic attractor that exists in the Lorenz
system for σ = 5, ρ = 115, β = 1.

 

 

Figure 5: Projections onto two coordinate planes of a chaotic attractor that exists in the Li
system for a = 5, b = 167, c = 1.

Figure 1, the chaotic attractor of the Li system is shown for the typical values a = 5, b =
16, c = 1 (Fig.2, [15]), in Figure 2, the companion chaotic attractor is presented that
exists in the Lorenz system for σ = 5, ρ = 16, β = 1.

In Figure 3, we have a projection of the chaotic attractors of the Li system for the
parameter values a = 5, b = 115, c = 1 (Fig.4(c), [15]), Figure 4, demonstrates the
projections onto two coordinate planes of the companion chaotic attractor that exists
in the Lorenz system for the parameter values σ = 5, ρ = 16, β = 1. In Figure 5,
we have a projection of the chaotic attractors of the Li system for the parameter values
a = 5, b = 167, c = 1 (Fig.4(h), [15]), Figure 6, displays the projections onto two
coordinate planes of the companion chaotic attractor that exists in the Lorenz system
for the parameter values σ = 5, ρ = 167, β = 1.
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Figure 6: Projections onto two coordinate planes of a chaotic attractor that exists in the Lorenz
system for σ = 5, ρ = 167, β = 1.

3 Conclusion

In conclusion, this study has shown with the help of a coordinate transform that the Li
system is only a particular case of the Lorenz system from the dynamical point of view.
Therefore, all the dynamical behavior exhibited by the Li system is present in the Lorenz
system. From this, we conclude that most results obtained in the previous studies of
the Li system (equilibria, bifurcations, periodic orbits, chaotic attractors, etc.) are a
duplicate of the corresponding literatures on the Lorenz system.
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[5] J. Lü, G. Chen, D. Cheng and S. Celikovsky. Bridge the gap between the Lorenz system
and the Chen system. Int. J. Bifurcation and Chaos 12 (2002) 2917–2926.

[6] Y. Chen and Q. Yang. The nonequivalence and dimension formula for attractos of Lorenz-
type systems. Int. J. Bifurcation and Chaos 23 (2013) 1250200.

[7] Z. Hou, N. Kang, X. Kong, G. Chen and G. Yan. On the nonequivalence of Lorenz system
and Chen system. Int. J. Bifurcation and Chaos 20 (2010) 557–560.

[8] L. Meddour and E. Zeraoulia. About the threedimensional quadratic autonomous system
with two quadratic terms equivalent to the Lorenz system. Dyn. Contin. Discrte Impuls.
Syst. B. 27 (2020) 133–143.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (1) (2022) 58–65 65

[9] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963) 130–141.

[10] M. Kus. Integrals of motion for the Lorenz system. J. Phys. A. 16 (1983) L689–L691.

[11] J. Llibre and X. Zhang. Invariant algebraic surfaces of the Lorenz system. J. Math. Phys.
43 (2002) 1622–1645.

[12] J. Llibre, M. Messias and P.R. da Silva. Global dynamics of the Lorenz system with invariant
algebraic surfaces. Int. J. Bifurcation Chaos 20 (2010) 3137–3155.

[13] G. Chen and T. Ueta. Yet another chaotic attractor. Int. J. Bifurcation and Chaos 9 (1999)
1465–1466.
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