Nonlinear Dynamics and Systems Theory, 22(1) (2022) 46-57

A Geometric Study of Relative Operator Entropies

A. El Hilali¹, B. El Wahbi¹ and M. Chergui^{2*}

¹ Department of Mathematics, Faculty of Sciences, Ibn Tofail University, LAGA-Lab Kenitra,

Morocco. ² Department of Mathematics, CRMEF-Kenitra, EREAM Team, LaREAMI-Lab, Kenitra, Morocco.

Received: August 6, 2021; Revised: January 22, 2022

Abstract: This paper investigates geometrical properties for relative operator entropies acting on positive definite matrices by the use of the log-determinant metric. Particularly, we prove that both entropies $S_p(A|B)$ and $T_p(A|B)$ lie inside the sphere centered at the geometric mean of A and B with the radius equal to half the log-determinant distance between A and B.

Keywords: parametric relative operator entropy; Tsallis relative operator entropy; general perturbation schemes; general systems.

Mathematics Subject Classification (2010): 54C70, 47A63, 70K60, 93A10.

1 Introduction

Let \mathcal{M}_n be the algebra of $n \times n$ matrices over \mathbb{R} , and \mathbb{P}_n denote the cone of symmetric positive definite elements of \mathcal{M}_n . The identity matrix will be denoted by I. We recall that for any two matrices A and B from \mathbb{P}_n , we set $A \leq B$ to mean that $B - A \geq 0$, i.e., B - A is a positive semi-definite matrix. This order, known in the literature by the Löwner order, is partial.

Kamei and Fujii introduced in [7,8] the relative operator entropy S(A|B) for two positive definite matrices A and B, by the following formula:

$$S(A|B) = A^{\frac{1}{2}} \log\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right) A^{\frac{1}{2}},\tag{1}$$

which represents an extension of the operator entropy defined by Nakamura and Umegaki [18] and of the relative operator entropy introduced by Umegaki [21]. Later, a generalized parametric extension of the relative operator entropy was stated by Furuta in [10] as

$$S_p(A|B) = A^{\frac{1}{2}} \left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}} \right)^p \log\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}} \right) A^{\frac{1}{2}}, \qquad p \in \mathbb{R}.$$
 (2)

^{*} Corresponding author: mailto:chergui_m@yahoo.fr

^{© 2022} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 46